if ' (x)

(x)

Now, can be evaluated as follows :

4454254122+ 609 +....
1-5+0+1-1)4-15+0+1+o

4-20+0+4-4
5#)-3+4
5-25+0+5-5
25-3-1+5
25-125+0+25-25
122-1-20+25
122-610+0+122-122
609-20-97+122
609 - 3045 +0+ 609 - 609

----------------------------

Therefore,

xf!(x) 5 25 12 609
=4+—+—+—+—+....
f(x) x x? x* x'

Sum of the fourth powers of the roots = coefficient of x4,
= 609.
5.1f a+B+y=L o’ +p*+y’ =2, o’ +p'+y’ =3 Find a* +B*+7"

Solution:
Let x3+ Pix? + P)x + P; = 0 be the equation whose roots are a.f,y, then
a+f+y=-P, > P =-I
By Newton'’s theorem,
S2+51P1+2P2=0
ie, 2+41.(-1)+2P,=0 = P3= -1/,
Again, by Newton’s theorem
53+ 5P +5P: +3P3=0
ie, 3+2-1+1.-1/;+3P=0
= Pi=-1

Also 5S¢+ 5:P1 +5:P2 +51P; =0 (By Newton's theorem for the case r <n)

Substituting and simplifying, we obtain Sy = 5/

25

Thus a'+8'+y' = =5

6. Calculate the sum of the cubes of therootsof x*+2x+3=0

15
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The required equation is (x-a)(x-b)(x-¢c)=0
ie, x3-(at+b+c)x2+ (ab+bctac)x-abc=0 iiavsasiaail)

o

a{u“—l)=u7-a= e
1

]_
o—1 a-1 o—

a+b+c=a+al+o’+o'+a’ +0° =

(Since a is a root of x7 -1 =0, we have a’=1)
Similarly we can find that ab + bc +ac=-2, abc=1.

Thus from (1), the required equation is
x3+x2-2x=-1=0

3.1f o, B, y aretherootsof x3+3x?+2x+1=0, find TolandTa .

Solution:
Here o +p+y=-3, of+Pfy+ay=2 ofy=-1
Using the identity a3+b3+c® - 3abc = (a+b+c) (a?+ b+ c2 - ab - bc - ac ), we find that

Yo' = (@+B+p) o+ B +7 —(@f+ Br+ay)+3apy
= (@+f+7) [lla+ﬁ+ ¥ -2 (aﬁ+ﬂr+aﬂl—tmﬂ+ﬂr+aﬂ]+3aﬂr
=-3{(9-4)-2]-3

=-9-3=-12

11 1 By +a’y + pa’
a,:'. ﬁl yz alﬁlyl

_@B+By+oy)’ ~2Fa’By e (1)
ulBIYI

We have:
YaBy=(o+B+yafy=-3.1=3

1= EEE=4;]2'—3=—2

4. Find the sum of the 4" powers of the roots of the equation x* -5x* +x-1=0.
Solution:

Let f(x)=x'-53+x-1=0
Then f'(x)=4x3-15x2+1

15
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S, +S_P+S_,P,+.....+SP_, +1P, =0

r=1

=
If r>n, then r-1> n-1.

Equating coefficients of y™! on both sides,

ie, S,+S_P+S _,P+....+8_P =

Remark:

To find the sum of the negative powers of the roots of f(x) =0, put x= L1
y

and find the sums of the corresponding positive powers of the roots of the new

equation.

Hlustrative Examples
1. If o, B,y are the roots of the equation x3 + px2 + gx + r = 0, find the value of the
following in terms of the coefficients.

HELG) L Gi)Ta’p
By o

Solution:
Here ot+Pp+y=-p,afp+py+ay=q,ofy=-r

. I=L_1-L_a’+ﬂ+y=—p=£
0 o By a afy -r r

By

(iii) Xo’B=a’p+pia+ya+yp+a’y+ply
= (@ +pr+ayfa+p+y)-3apy =(q.-p)-3(-r)=3r-pq .

2. If o is an imaginary root of the equation x’ -1=0 form the equation whose
rootsare a+o’,o’ +a’,a’ +a'.
Solution:

Let a=a+0® b=a’+0’ c=0o’+0a*

14



1.3. Symmetric Functions of the Roots

Consider the expressions like @’ + 8 + ' (-7’ +(y-a)’ +(a-8)°,
(B+ ) (y+a)a- f). Each of these expressions is a function of a,f,y with the
property that if any two of a,f,y are interchanged, the function remains
unchanged.

Such functions are called symmetric functions.
11
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Generally, a function f(a,,a,,.....a,) is said to be a symmetric function of

a,.a,......a, if it remains unchanged by interchanging any two of a,,a,......a,.

Remark:
The expressions Sy, S, ....., Sn where S, is the sum of the products of

a,.@,,....a, taken r at a time, are symmetric functions. These are called elementary
symmetric functions.

Now we discuss some results about the sums of powers of the roots of a given
polynomial equation.
1.3.1. Theorem

The sum of the r'» powers of the roots of the equation f(x) = 0 is the

coefficient of x-* in the expansion of 't;-((? in descending powers of x.
X

Proof:

Let f(x)=0 be the given nt" degree equation and let its roots be
a,.a,.,.....a, then, f(x) = a,(x—a, Nx-a,)...(x—a,) where a, is some constant.
Taking logarithm, we obtain

log f(x)=loga, +log(x-a,)+...+log(x-a,)

Differentiating w.r.t. x, we have:
flix) _ 1 |

= E I
f(x) x-a x-0,
Multiplying by x,
1
xf l[r.}= X P X
f(x) x-o, x—0o,
(2] ooe{-2
-l ..+ -—=
=y X X
a o o .
l+—'+—'z+....]+.......+[l+ e ]
X x X X




5. Solve the equation x3-9x2 +14x + 24 =0, given that two of whose roots are in
the ratio 3: 2.

Solution:

Let the roots be 3a,2a, S

Then, I+ +P=DOHP=9 e (1)
3a2a+2a.f+3a. =14

ie, 6a*+5af=14 .......o......... 2
and 3a.2a.f=6a’f=-24
Sa’f=—4 e (3)
From (1), #=9—5a. Substituting this in (2), we obtain
6a> +5a(9—5a) = 14

ie, 19’ -45a+14=0. Onsolvingweget a=2 or %

When a= %, from (1), we get = 113—96 . But these values do not satisfy (3).

So, a =2, then from (1), we get f=-1

Therefore, the roots are 4, 6, -1.



1. If the roots of the equation x3 + px2 + qx + r = 0 are in arithmetic progression,
show that 2p*-9pq+27r=0.
Solution:

Let the roots of the given equationbe a-d, a, a+d.

Then 51-3-d+a+ﬂ+d-33 =-p = a=__3p

Since a is a root, it satisfies the given polynomial

(Y ol o

On simplification, we obtain  2p3-9pq + 27r =0.
2. Solve 27x3+ 42x? - 28x - 8 = 0, given that its roots are in geometric progression.
Solution:

Let the roots be E.a,ar
r

Then, E.a.ar=a"=£=>a=%

r 27

Since a =§ is a root, (x-%) is a factor. On division, the other factor of the

polynomial is 27x2 + 60x + 12.

—-60+v60° —4x27x12 -2
2x27

or =2

Its roots are

-2 2
Hence the roots of the given polynomial eqution are ‘B 2, 3
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Solution:

Let the given equation be
xt+P1x3+Pax2+ Pax + Ps=0
Here P1=P2=0, P3=2 and Ps=3
By Newton's theorem, S; + 5Py +5P2+ 3P3=0
ie, S3+0+0+3.2=0
= 53=-6

i.e., sum of the cubes of the roots of x4 + 2x +3 =0, is - 6.
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1
Now, ¥ 0 can be evaluated as follows :
fix)

4+5+25+122 + 609 +.....
1-540+1-1)4—15+0+1+40
4-204044-4
5+0-3+4
5-25+0+5-5
25-3-145
25—-125+0+25-25
122-1-20+25
122-610+0+122-122
609 — 2097 +122
609 — 3045 + 0 + 609 — 609

Therefore,

xf'(x) 5 25 122 609
— =44+ l.-1'—1'|'—*'|“...n-
f(x) X X X X

Sum of the fourth powers of the roots = coefficient of x.
= 609,
51 a+B+y=Lo’ +p' +v' =2, o' +p'+y =3.Find a* +p* +v".

Solution:
Let x® + Pjx2 + Pox + Pa = 0 be the equation whose roots are o, B, v, then
oa+f+y=—P =P =-I
By Newton's theorem,
S+ 51+ 2P =0
ie, 2+1.(-1)+2P:=0 = Pa= -1/
Again, by Newton's theorem
S+ 5Py + 512 +3P3 =0
ie, 3+42.-1+1-1/243P;=0
= Pi=-f¢
Also Sy + 5P + SP; + 51Ps =0 (By Newton's theorem for the case r <n)
Substituting and simplifying, we obtain Si= %/¢
Thus a'+8'+y' = %
6. Calculate the sum of the cubes of the roots of x*+2x+3=0

16
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1.3.2. Theorem (Newton’s Theorem on the Sum of the Powers of the Roots)

If &;,a,,......,a, are the roots of the equation x" +Px"" + Px"* +...+ P, =0,

and § =a +..+a,. Then, S, +85,_ P +...+SP_+rP. =0, if r<n
and S, +S5,_P+S _,P+..+5_ P =0if r>n.
Proof:

Wehave 1" +Px"™ +Px"7 +..+ P, =(x—a,)(x-a,)....(x—a,)

Put .:r=l
y

1 . A

P
= —+—F+—ZF+..+P = (l-a,}(l—azj.....(lha,),
} y y ¥

y 5  ;
and then multiplying by y*, we obtain:
1+ By + Py +..+Py" =(1-ay)1-a,y)...(1-a,y)
Taking logarithm and differentiating w.r.t y, we get

2 n—l
P, +2sz }Pﬂfﬂ to..+oPhy  -o vk
1+Py+Py +.....+Py" l-o,y 1-a,y l-a,y

—o, (1=, y) " =0, (1=, y) " ==t (I—ct,y)”

—o,(l+ay+a’y’ +..)—o,(l+a,y+oiy’ +...)—
...... —a,(l+a,y+oly’ +...)
i _"Sl _Szy‘_Ss}fz ‘_u"u_Sr_H‘Fr T mes
Cross - multiplying, we get

P, +2P,y+3P,y" +.....+nP,y" ' =—(1+Py+P,y’ +...+ Py ")

[S,+S,y+....+S ¥ +....]

Equating coefficients of like powers of y, we see that
P,=-S, = S§+1P=0
2P, =-§, -S,P, = S,+5P, +2P, =0
3p,=-8,-S,p,-SP, = S,+S,P,+SP,+3P,=0,andsoon.
If r £ n, equating coefficients of y*! on both sides,
P, =-8 -§_P-S_,P,-...-SP,
13



7 e J
3. Solve the equation 15x3 - 23x2 + 9x - 1 = 0 whose roots are in harmonic

progression.

School of Distance Education, University of Calicut
Solution:

[Recall that if a, b, ¢ are in harmonic progression, then 1/,, 1/1, 1/ are in arithmetic

]

progression and hence b= =

a+c

Let o,B,y be the roots of the given polynomial.

Then aﬁ+|3‘y+oq=% ........... 1)
afy = @
Y=g e
X ' ' ' 2oy
Since «, f,7 are in harmonic progression, f=——
a+y
= off + By =2ay
: g 9 9
Substitute in (1), 2ay +ay = T 3ay = =
S
15°
Substitute in (2), we obtain % B = %

=>f= % is a root of the given polynomial.

Proceeding as in the above problem, we find that the roots are % 1, % ;



4. Show that the roots of the equation ax®+bx2+cx +d =0 are in geometric
progression, then c3a = b3d.
Solution:

k
Suppose the roots are —, k, kr
r

Then st
r a
ie, k¥= -4

a
Since k is a root, it satisfies the polynomial equation,
ak3 + bk2+ck+d =0

a(i)+bk2+ck+d=0
a

10
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= bk +ck=0 = bk®=-ck

= (bk?)* = (—ck)® ie., b’k®=-ck’



1.2. Relation between the Roots and Coefficients of a Polynomial Equation

Consider the polynomial function f(x) = aox"+ ai;x™!+ ...+ an, a, #0
Let o, @, .,......0t, be the roots of f(x)=0.
Then we can write f(x)=a,(x—a,)(x—a,)...(x—a,)
Equating the two expressions for f(x), we obtain:

ax"+ax"" +..+a,=a,(x-a)(x-a,).(x—-a,)

Dividing both sides by a,,

-t
X +|— +..+|—|=(x—-a))(x—a,)....(x—,)
aﬂ aﬂ

=x"-8Sx" +5,x" -+ (-1)"S,
where S; stands for the sum of the products of the roots «,,....,ot, taken r ata
time.
Comparing the coefficients on both sides , we see that

o TN T
aﬂ aﬂ aﬂ



