Now,
$$\frac{xf^{1}(x)}{f(x)}$$
 can be evaluated as follows:

$$\frac{4+5+25+122}{4-15+0+1+0} + 609 + \dots \\
\frac{4-20+0+4-4}{5+0-3+4} \\
\underline{5-25+0+5-5} \\
25-3-1+5 \\
\underline{25-125+0+25-25} \\
122-1-20+25 \\
\underline{122-610+0+122-122} \\
609-20-97+122 \\
\underline{609-3045+0+609-609}$$

•••••

Therefore,

$$\frac{xf'(x)}{f(x)} = 4 + \frac{5}{x} + \frac{25}{x^2} + \frac{122}{x^3} + \frac{609}{x^4} + \dots$$

Sum of the fourth powers of the roots = coefficient of x^{-4} .

5. If
$$\alpha + \beta + \gamma = 1$$
, $\alpha^2 + \beta^2 + \gamma^2 = 2$, $\alpha^3 + \beta^3 + \gamma^3 = 3$. Find $\alpha^4 + \beta^4 + \gamma^4$.

Solution:

Let $x^3 + P_1x^2 + P_2x + P_3 = 0$ be the equation whose roots are α, β, γ , then

$$\alpha + \beta + \gamma = -P_i \Rightarrow P_i = -1$$

By Newton's theorem,

$$S_2 + S_1P_1 + 2P_2 = 0$$

i.e., $2 + 1 \cdot (-1) + 2P_2 = 0 \implies P_2 = -1/2$

Again, by Newton's theorem

$$S_3 + S_2P_1 + S_1P_2 + 3P_3 = 0$$

i.e., $3 + 2 - 1 + 1 - \frac{1}{2} + 3 \cdot P_3 = 0$
 $\Rightarrow P_3 = -\frac{1}{6}$

Also $S_4 + S_3P_1 + S_2P_2 + S_1P_3 = 0$ (By Newton's theorem for the case r < n) Substituting and simplifying, we obtain $S_4 = {}^{25}/_6$

Thus
$$\alpha^4 + \beta^4 + \gamma^4 = \frac{25}{6}$$

6. Calculate the sum of the cubes of the roots of $x^4 + 2x + 3 = 0$

10

The required equation is (x - a)(x - b)(x - c) = 0

i.e.,
$$x^3 - (a+b+c)x^2 + (ab+bc+ac)x - abc = 0$$
(1)

$$a+b+c=\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6=\frac{\alpha(\alpha^6-1)}{\alpha-1}=\frac{\alpha^7-\alpha}{\alpha-1}=\frac{1-\alpha}{\alpha-1}=-1$$

(Since α is a root of $x^7 - 1 = 0$, we have $\alpha^7 = 1$)

Similarly we can find that ab + bc + ac = -2, abc = 1.

Thus from (1), the required equation is

$$x^3 + x^2 - 2x - 1 = 0$$

3. If α , β , γ are the roots of $x^3 + 3x^2 + 2x + 1 = 0$, find $\sum \alpha^3$ and $\sum \alpha^2$.

Solution:

Here
$$\alpha + \beta + \gamma = -3$$
, $\alpha\beta + \beta\gamma + \alpha\gamma = 2$, $\alpha\beta\gamma = -1$

Using the identity $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)$, we find that

$$\sum \alpha^3 = (\alpha + \beta + \gamma) \left[\alpha^2 + \beta^2 + \gamma^2 - (\alpha \beta + \beta \gamma + \alpha \gamma) \right] + 3\alpha \beta \gamma$$

$$= (\alpha + \beta + \gamma) \left[\left[(\alpha + \beta + \gamma)^2 - 2 (\alpha \beta + \beta \gamma + \alpha \gamma) \right] - (\alpha \beta + \beta \gamma + \alpha \gamma) \right] + 3\alpha \beta \gamma$$

$$= -3[(9 - 4) - 2] - 3$$

$$= -9 - 3 = -12$$

Also,
$$\sum \alpha^{-2} = \frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} = \frac{\beta^2 \gamma^2 + \alpha^2 \gamma^2 + \beta^2 \alpha^2}{\alpha^2 \beta^2 \gamma^2}$$

We have:

$$\sum \alpha^2 \beta \gamma = (\alpha + \beta + \gamma) \alpha \beta \gamma = -3. -1 = 3$$

$$(1) \Rightarrow \sum_{\alpha}^{-2} = \frac{4-2.3}{1} = -2$$

Find the sum of the 4th powers of the roots of the equation x⁴ - 5x³ + x - 1 = 0.
 Solution:

Let
$$f(x) = x^4 - 5x^3 + x - 1 = 0$$

Then
$$f^1(x) = 4x^3 - 15x^2 + 1$$

 $S_r + S_{r-1}P_1 + S_{r-2}P_2 + \dots + S_1P_{r-1} + rP_r = 0$

If r > n, then r-1 > n-1.

Equating coefficients of yr-1 on both sides,

$$0 = -S_r - S_{r-1}P_1 - S_{r-2}P_2 - \dots - S_{r-n}P_n$$

i.e.,
$$S_r + S_{r-1}P_1 + S_{r-2}P_2 + \dots + S_{r-n}P_n = 0$$

Remark:

To find the sum of the negative powers of the roots of f(x) = 0, put $x = \frac{1}{y}$ and find the sums of the corresponding positive powers of the roots of the new equation.

Illustrative Examples

1. If α, β, γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of the following in terms of the coefficients.

$$(i)\sum \frac{1}{\beta \gamma}(ii)\sum \frac{1}{\alpha}(iii)\sum \alpha^2 \beta$$

Solution:

Here
$$\alpha + \beta + \gamma = -p$$
, $\alpha\beta + \beta\gamma + \alpha\gamma = q$, $\alpha\beta\gamma = -r$

(i)
$$\sum \frac{1}{\beta \gamma} = \frac{1}{\alpha \beta} + \frac{1}{\beta \gamma} + \frac{1}{\alpha \gamma} = \frac{\alpha + \beta + \gamma}{\alpha \beta \gamma} = \frac{-p}{-r} = \frac{p}{r}$$

(ii)
$$\sum \frac{1}{\alpha} = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \alpha\gamma}{\alpha\beta\gamma} = \frac{q}{-r} = -\frac{q}{r}$$

(iii)
$$\sum \alpha^2 \beta = \alpha^2 \beta + \beta^2 \alpha + \gamma^2 \alpha + \gamma^2 \beta + \alpha^2 \gamma + \beta^2 \gamma$$
$$= (\alpha \beta + \beta \gamma + \alpha \gamma)(\alpha + \beta + \gamma) - 3\alpha \beta \gamma = (q \cdot -p) - 3 \cdot (-r) = 3r - pq \cdot .$$

2. If α is an imaginary root of the equation $x^7 - 1 = 0$ form the equation whose roots are $\alpha + \alpha^6, \alpha^2 + \alpha^5, \alpha^3 + \alpha^4$.

Solution:

Let
$$a = \alpha + \alpha^6$$
 $b = \alpha^2 + \alpha^5$ $c = \alpha^3 + \alpha^4$

1.3. Symmetric Functions of the Roots

Consider the expressions like $\alpha^2 + \beta^2 + \gamma^2$, $(\beta - \gamma)^2 + (\gamma - \alpha)^2 + (\alpha - \beta)^2$, $(\beta + \gamma)(\gamma + \alpha)(\alpha - \beta)$. Each of these expressions is a function of α, β, γ with the property that if any two of α, β, γ are interchanged, the function remains unchanged.

Such functions are called symmetric functions.

11

School of Distance Education, University of Calicut

Generally, a function $f(\alpha_1, \alpha_2,, \alpha_n)$ is said to be a symmetric function of $\alpha_1, \alpha_2,, \alpha_n$ if it remains unchanged by interchanging any two of $\alpha_1, \alpha_2,, \alpha_n$.

Remark:

The expressions S_1 , S_2 ,, S_n where S_r is the sum of the products of $\alpha_1, \alpha_2, \ldots, \alpha_n$ taken r at a time, are symmetric functions. These are called **elementary** symmetric functions.

Now we discuss some results about the sums of powers of the roots of a given polynomial equation.

1.3.1. Theorem

The sum of the rth powers of the roots of the equation f(x) = 0 is the coefficient of x^{-r} in the expansion of $\frac{xf'(x)}{f(x)}$ in descending powers of x.

Proof:

Let f(x) = 0 be the given n^{th} degree equation and let its roots be $\alpha_1, \alpha_2, ..., \alpha_n$ then, $f(x) = a_0(x - \alpha_1)(x - \alpha_2)...(x - \alpha_n)$ where a_0 is some constant. Taking logarithm, we obtain

$$\log f(x) = \log a_0 + \log(x - \alpha_1) + \dots + \log(x - \alpha_n)$$

Differentiating w.r.t. x, we have:

$$\frac{f'(x)}{f(x)} = \frac{1}{x - \alpha_1} + \dots + \frac{1}{x - \alpha_n}$$

Multiplying by x,

$$\frac{x f'(x)}{f(x)} = \frac{x}{x - \alpha_1} + \dots + \frac{x}{x - \alpha_n}$$

$$= \left(1 - \frac{\alpha_1}{x}\right)^{-1} + \dots + \left(1 - \frac{\alpha_n}{x}\right)^{-1}$$

$$= \left(1 + \frac{\alpha_1}{x} + \frac{{\alpha_1}^2}{x^2} + \dots\right) + \dots + \left(1 + \frac{\alpha_n}{x} + \frac{{\alpha_n}^2}{x^2} + \dots\right)$$

5. Solve the equation $x^3 - 9x^2 + 14x + 24 = 0$, given that two of whose roots are in the ratio 3: 2.

Solution:

Let the roots be $3\alpha, 2\alpha, \beta$

From (1), $\beta = 9 - 5\alpha$. Substituting this in (2), we obtain

$$6\alpha^2 + 5\alpha(9 - 5\alpha) = 14$$

i.e., $19\alpha^2 - 45\alpha + 14 = 0$. On solving we get $\alpha = 2$ or $\frac{7}{19}$.

When $\alpha = \frac{7}{19}$, from (1), we get $\beta = \frac{136}{19}$. But these values do not satisfy (3).

So, $\alpha = 2$, then from (1), we get $\beta = -1$

Therefore, the roots are 4, 6, -1.

1. If the roots of the equation $x^3 + px^2 + qx + r = 0$ are in arithmetic progression, show that $2p^3 - 9pq + 27r = 0$.

Solution:

Let the roots of the given equation be a - d, a, a + d.

Then
$$S_1 = a - d + a + a + d = 3a = -p \implies a = \frac{-p}{3}$$

Since a is a root, it satisfies the given polynomial

$$\Rightarrow \left(-\frac{p}{3}\right)^{3} + p\left(-\frac{p}{3}\right)^{2} + q\left(-\frac{p}{3}\right) + r = 0$$

On simplification, we obtain $2p^3 - 9pq + 27r = 0$.

2. Solve $27x^3 + 42x^2 - 28x - 8 = 0$, given that its roots are in geometric progression. Solution:

Let the roots be $\frac{a}{r}$, a, ar

Then,
$$\frac{a}{r}.a.ar = a^3 = \frac{8}{27} \Rightarrow a = \frac{2}{3}$$

Since $a = \frac{2}{3}$ is a root, $\left(x - \frac{2}{3}\right)$ is a factor. On division, the other factor of the

polynomial is $27x^2 + 60x + 12$.

Its roots are
$$\frac{-60 \pm \sqrt{60^2 - 4 \times 27 \times 12}}{2 \times 27} = \frac{-2}{9}$$
 or -2

Hence the roots of the given polynomial eqution are $\frac{-2}{9}$, -2, $\frac{2}{3}$.

Solution:

Let the given equation be

$$x^4 + P_1x^3 + P_2x^2 + P_3x + P_4 = 0$$

Here $P_1 = P_2 = 0$, $P_3 = 2$ and $P_4 = 3$

By Newton's theorem, $S_3 + S_2P_1 + S_1P_2 + 3P_3 = 0$

i.e.,
$$S_3 + 0 + 0 + 3 \cdot 2 = 0$$

$$\Rightarrow$$
 S₃ = -6

i.e., sum of the cubes of the roots of $x^4 + 2x + 3 = 0$, is -6.

School of Distance Education, University of Calicut

Now, $\frac{xf^{1}(x)}{f(x)}$ can be evaluated as follows:

$$\frac{4+5+25+122}{4-15+0+1+0} + 609 + \dots \\
4-20+0+4-4 \\
5+0-3+4 \\
\underline{5-25+0+5-5} \\
25-3-1+5 \\
\underline{25-125+0+25-25} \\
122-1-20+25 \\
\underline{122-610+0+122-122} \\
609-20-97+122 \\
\underline{609-3045+0+609-609}$$

Therefore,

$$\frac{xf^{1}(x)}{f(x)} = 4 + \frac{5}{x} + \frac{25}{x^{2}} + \frac{122}{x^{3}} + \frac{609}{x^{4}} + \dots$$

Sum of the fourth powers of the roots = coefficient of x4.

$$= 609.$$

5. If
$$\alpha + \beta + \gamma = 1$$
, $\alpha^2 + \beta^2 + \gamma^2 = 2$, $\alpha^3 + \beta^3 + \gamma^3 = 3$. Find $\alpha^4 + \beta^4 + \gamma^4$.

Solution:

Let
$$x^3 + P_1x^2 + P_2x + P_3 = 0$$
 be the equation whose roots are α, β, γ , then $\alpha + \beta + \gamma = -P_1 \implies P_1 = -1$

By Newton's theorem,

$$S_2 + S_1P_1 + 2P_2 = 0$$

i.e., $2 + 1$, $(-1) + 2P_2 = 0 \implies P_2 = -1/2$

Again, by Newton's theorem

$$S_3 + S_2P_1 + S_1P_2 + 3P_3 = 0$$

i.e., $3 + 2 \cdot -1 + 1 \cdot -1/2 + 3 \cdot P_3 = 0$
 $\Rightarrow P_3 = -1/6$

Also $S_4 + S_3P_1 + S_2P_2 + S_1P_3 = 0$ (By Newton's theorem for the case r < n)

Substituting and simplifying, we obtain $S_4 = \frac{25}{6}$

Thus
$$\alpha^4 + \beta^4 + \gamma^4 = \frac{25}{6}$$

6. Calculate the sum of the cubes of the roots of $x^4 + 2x + 3 = 0$

1.3.2. Theorem (Newton's Theorem on the Sum of the Powers of the Roots)

If $\alpha_1, \alpha_2, \dots, \alpha_n$ are the roots of the equation $x^n + P_1 x^{n-1} + P_2 x^{n-2} + \dots + P_n = 0$,

and
$$S_r = \alpha_1^r + + \alpha_n^r$$
. Then, $S_r + S_{r-1}P_1 + + S_1P_{r-1} + rP_r = 0$, if $r \le n$.
and $S_r + S_{r-1}P_1 + S_{r-2}P_2 + ... + S_{r-n}P_n = 0$ if $r > n$.

Proof:

We have
$$x^n + P_1 x^{n-1} + P_2 x^{n-2} + \dots + P_n = (x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n)$$

Put $x = \frac{1}{y}$

$$\Rightarrow \frac{1}{y^n} + \frac{P_1}{y^{n-1}} + \frac{P_2}{y^{n-2}} + \dots + P_n = (\frac{1}{y} - \alpha_1)(\frac{1}{y} - \alpha_2) \dots (\frac{1}{y} - \alpha_n),$$

and then multiplying by yn, we obtain:

$$1 + P_1 y + P_2 y^2 + \dots + P_n y^n = (1 - \alpha_1 y)(1 - \alpha_2 y) \dots (1 - \alpha_n y)$$

Taking logarithm and differentiating w.r.t y, we get

$$\frac{P_1 + 2P_2y \cdot 3P_3y^2 + \dots + nP_ny^{n-1}}{1 + P_1y + P_2y^2 + \dots + P_ny^n} = \frac{-\alpha_1}{1 - \alpha_1y} + \frac{-\alpha_2}{1 - \alpha_2y} + \dots + \frac{-\alpha_n}{1 - \alpha_ny}$$

$$=$$

$$-\alpha_1(1 - \alpha_1y)^{-1} - \alpha_2(1 - \alpha_2y)^{-1} - \dots - \alpha_n(1 - \alpha_ny)^{-1}$$

$$=$$

$$\begin{split} -\alpha_{1}(1+\alpha_{1}y+\alpha^{2}y^{2}+....)-\alpha_{2}(1+\alpha_{2}y+\alpha_{2}^{2}y^{2}+....)-\\ &.....-\alpha_{n}(1+\alpha_{n}y+\alpha_{n}^{2}y^{2}+....)\\ &=-S_{1}-S_{2}y-S_{3}y^{2}-.....-S_{r+1}y^{r}-... \end{split}$$

Cross - multiplying, we get

$$P_1 + 2P_2y + 3P_3y^2 + \dots + nP_ny^{n-1} = -(1 + P_1y + P_2y^2 + \dots + P_ny^n)$$

$$[S_1 + S_2 y + + S_{r+1} y^r +]$$

Equating coefficients of like powers of y, we see that

$$P_1 = -S_1 \implies S_1 + 1.P_1 = 0$$

 $2P_2 = -S_2 - S_1P_1 \implies S_2 + S_1P_1 + 2P_2 = 0$
 $3p_3 = -S_3 - S_2P_1 - S_1P_2 \implies S_3 + S_2P_1 + S_1P_2 + 3P_3 = 0$, and so on.

If $r \le n$, equating coefficients of y^{r-1} on both sides,

$$rP_r = -S_r - S_{r-1}P_1 - S_{r-2}P_2 - \dots - S_1P_{r-1}$$

3. Solve the equation $15x^3 - 23x^2 + 9x - 1 = 0$ whose roots are in harmonic progression.

9

School of Distance Education, University of Calicut

Solution:

[Recall that if a, b, c are in harmonic progression, then $^{1}/_{a}$, $^{1}/_{b}$, $^{1}/_{c}$ are in arithmetic progression and hence $b = \frac{2ac}{a+c}$]

Let α, β, γ be the roots of the given polynomial.

Since α , β , γ are in harmonic progression, $\beta = \frac{2\alpha\gamma}{\alpha + \gamma}$

$$\Rightarrow \alpha \beta + \beta \gamma = 2\alpha \gamma$$

Substitute in (1), $2\alpha\gamma + \alpha\gamma = \frac{.9}{15} \implies 3\alpha\gamma = \frac{.9}{15}$

$$\Rightarrow \alpha \gamma = \frac{3}{15}$$
.

Substitute in (2), we obtain $\frac{3}{15}\beta = \frac{1}{15}$

 $\Rightarrow \beta = \frac{1}{3}$ is a root of the given polynomial.

Proceeding as in the above problem, we find that the roots are $\frac{1}{3}$, 1, $\frac{1}{5}$.

4. Show that the roots of the equation $ax^3 + bx^2 + cx + d = 0$ are in geometric progression, then $c^3a = b^3d$.

Solution:

Suppose the roots are $\frac{k}{r}$, k, kr

Then
$$\frac{k}{r}k.kr = \frac{-d}{a}$$

i.e., $k^3 = \frac{-d}{a}$

Since k is a root, it satisfies the polynomial equation,

$$ak^3 + bk^2 + ck + d = 0$$

$$a\left(\frac{-d}{a}\right) + bk^2 + ck + d = 0$$

10

School of Distance Education, University of Calicut

$$\Rightarrow bk^{2} + ck = 0 \Rightarrow bk^{2} = -ck$$

$$\Rightarrow (bk^{2})^{3} = (-ck)^{3} \text{ i.e., } b^{3}k^{6} = -c^{3}k^{3}$$

$$\Rightarrow b^{3}\frac{d^{2}}{a^{2}} = -c^{3}\left(\frac{-d}{a}\right)$$

$$\Rightarrow \frac{b^{3}d}{a} = c^{3} \Rightarrow b^{3}d = c^{3}a.$$

1.2. Relation between the Roots and Coefficients of a Polynomial Equation

Consider the polynomial function $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$, $a_0 \neq 0$

Let $\alpha_1, \alpha_2, \dots, \alpha_n$ be the roots of f(x) = 0.

Then we can write $f(x) = a_o(x - \alpha_1)(x - \alpha_2)....(x - \alpha_n)$

Equating the two expressions for f(x), we obtain:

$$a_o x^n + a_1 x^{n-1} + \dots + a_n = a_o (x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n)$$

Dividing both sides by a_0 ,

$$x^{n} + \left(\frac{a_{1}}{a_{o}}\right)x^{n-1} + \dots + \left(\frac{a_{n}}{a_{o}}\right) = (x - \alpha_{1})(x - \alpha_{2}) \dots (x - \alpha_{n})$$
$$= x^{n} - S_{1}x^{n-1} + S_{2}x^{n-2} - \dots + (-1)^{n}S_{n}$$

where S_r stands for the sum of the products of the roots $\alpha_1,...,\alpha_n$ taken r at a time.

Comparing the coefficients on both sides, we see that

$$S_1 = \frac{-a_1}{a_o}, \quad S_2 = \frac{a_2}{a_o}, \dots \quad S_n = (-1)^n \frac{a_n}{a_o}.$$