Chapter 4

THE GREEDY METHOD

4.1 THE GENERAL METHOD

The greedy method is perhaps the most straightforward design technique we
consider in this text, and what’s more it can be applied to a wide variety of
problems. Most, though not all, of these problems have n inputs and require
us to obtain a subset that satisfies some constraints. Any subset that satis-
fies these constraints is called a feasible solution. We need to find a feasible
solution that either maximizes or minimizes a given objective function. A
feasible solution that does this is called an optimal solution. There is usu-
ally an obvious way to determine a feasible solution but not necessarily an
optimal solution.

The greedy method suggests that one can devise an algorithm that works
in stages, considering one input at a time. At each stage, a decision is made
regarding whether a particular input is in an optimal solution. This is done
by considering the inputs in an order determined by some selection proce-
dure. If the inclusion of the next input into the partially constructed optimal
solution will result in an infeasible solution, then this input is not added to
the partial solution. Otherwise, it is added. The selection procedure itself
is basced on some optimization measure. This measure may be the objective
function. In fact, several different optimization measures may be plausible
for a given problem. Most of these, however, will result in algorithms that
generate suboptimal solutions. This version of the greedy technique is called
the subsct paradigm.

We can describe the subset paradigm abstractly, but more precisely than
above, by considering the control abstraction in Algorithm 4.1.

The function Select selects an input from a[| and removes it. The selected
input’s value is assigned to xz. Feasible is a Boolean-valued function that
determines whether x can be included into the solution vector. The function
Union combines z with the solution and updates the objective function. The

197

198 CHAPTER 4. THE GREEDY METHOD

1 Algorithm Greedy(a,n)

2 // a[l:n] contains the n inputs.

3

4 solution := (; // Initialize the solution.
5 for ::=1to ndo

6

7 x := Select(a);

8 if Feasible(solution, z) then

9 solution := Union(solution, z);
10 }

11 return solution;

12 }

Algorithm 4.1 Greedy method control abstraction for the subset paradigm

function Greedy describes the essential way that a greedy algorithm will look,
once a particular problem is chosen and the functions Select, Feasible, and
Union are properly implemented.

For problems that do not call for the selection of an optimal subset, in the
greedy method we make decisions by considering the inputs in some order.
Each decision is made using an optimization criterion that can be computed
using decisions already made. Call this version of the greedy method the
ordering paradigm. Sections 4.2, 4.3, 4.4, and 4.5 consider problems that fit
the subset paradigm, and Sections 4.6, 4.7, and 4.8 consider problems that
fit the ordering paradigm.

EXERCISE

1. Write a control abstraction for the ordering paradigm.

4.2 KNAPSACK PROBLEM

Let us try to apply the greedy method to solve the knapsack problem. We
are given n objects and a knapsack or bag. Object ¢ has a weight w; and the
knapsack has a capacity m. If a fraction z;, 0 < z; < 1, of object ¢ is placed
into the knapsack, then a profit of p;x; is earned. The objective is to obtain
a filling of the knapsack that maximizes the total profit earned. Since the
knapsack capacity is m, we require the total weight of all chosen objects to
be at most m. Formally, the problem can be stated as

4.2. KNAPSACK PROBLEM 199

maximize Z DiLi (4.1)
1<i<n
subject to Z w;T; < m (4.2)
1<i<n
and 0 <z; <1, 1<i<n (4.3)

The profits and weights are positive numbers.

A feasible solution (or filling) is any set (z1, ..., z,) satisfying (4.2) and
(4.3) above. An optimal solution is a feasible solution for which (4.1) is
maxiniized.

Example 4.1 Consider the following instance of the knapsack problem:
n = 3,m = 20,(p1,p2,p3) = (25,24,15), and (w1, ws, w3) = (18,15,10).
Four feasible solutions are:

(w1, z2,73) dWiT;) Pty
1 (1/2,1/3,1/4) 165 24.25
2. (1,2/15,0) 20 28.2
3. (0,2/3,1) 20 31
4 (0.1,1/2) 20 31.5

Of these four feasible solutions, solution 4 yields the maximum profit. As
we shall soon see, this solution is optimal for the given problem instance. O

Lemma 4.1 In case the sum of all the weights is < m, then z; = 1, 1 <
i < n is an optimal solution. O

So let us assume the sum of weights exceeds m. Now all the z;’s cannot
be 1. Another observation to make is:

Lemma 4.2 All optimal solutions will fill the knapsack exactly. O

Lemma 4.2 is true because we can always increase the contribution of
some object i by a fractional amount until the total weight is exactly m.

Note that the knapsack problem calls for selecting a subset of the ob-
jects and hence fits the subset paradigm. In addition to selecting a subset,
the knapsack problem also involves the selection of an x; for each object.
Several simple greedy strategies to obtain feasible solutions whose sums are
identically m suggest themselves. First, we can try to fill the knapsack by in-
cluding next the object with largest profit. If an object under consideration
doesn’t fit, then a fraction of it is included to fill the knapsack. Thus each
time an object is included (except possibly when the last object is included)

200 CHAPTER 4. THE GREEDY METHOD

into the knapsack, we obtain the largest possible increase in profit value.
Note that if only a fraction of the last object is included, then it may be
possible to get a bigger increase by using a different object. For example, if
we have two units of space left and two objects with (p; = 4, w; = 4) and
(pj = 3,w; = 2) remaining, then using j is better than using half of i. Let
us use this selection strategy on the data of Example 4.1.

Object one has the largest profit value (p; = 25). So it is placed into the
knapsack first. Then z1 = 1 and a profit of 25 is earned. Only 2 units of
knapsack capacity are left. Object two has the next largest profit (p2 = 24).
However, wo = 15 and it doesn’t fit into the knapsack. Using xzo = 2/15 fills
the knapsack exactly with part of object 2 and the value of the resulting
solution is 28.2. This is solution 2 and it is readily seen to be suboptimal.
The method used to obtain this solution is termed a greedy method because
at each step (except possibly the last one) we chose to introduce that object
which would increase the objective function value the most. However, this
greedy method did not yield an optimal solution. Note that even if we change
the above strategy so that in the last step the objective function increases
by as much as possible, an optimal solution is not obtained for Example 4.1.

We can formulate at least two other greedy approaches attempting to
obtain optimal solutions. From the preceding example, we note that consid-
ering objects in order of nonincreasing profit values does not yield an optimal
solution because even though the objective function value takes on large in-
creases at each step, the number of steps is few as the knapsack capacity is
used up at a rapid rate. So, let us try to be greedy with capacity and use it
up as slowly as possible. This requires us to consider the objects in order of
nondecreasing weights w;. Using Example 4.1, solution 3 results. This too
is suboptimal. This time, even though capacity is used slowly, profits aren’t
coming in rapidly enough.

Thus, our next attempt is an algorithm that strives to achieve a balance
between the rate at which profit increases and the rate at which capacity is
used. At each step we include that object which has the maximum profit
per unit of capacity used. This means that objects are considered in order
of the ratio p;/w;. Solution 4 of Example 4.1 is produced by this strategy. If
the objects have already been sorted into nonincreasing order of p;/w;, then
function GreedyKnapsack (Algorithm 4.2) obtains solutions corresponding to
this strategy. Note that solutions corresponding to the first two strategies
can be obtained using this algorithm if the objects are initially in the appro-
priate order. Disregarding the time to initially sort the objects, each of the
three strategies outlined above requires only O(n) time.

We have seen that when one applies the greedy method to the solution
of the knapsack problem, there are at least three different measures one can
attempt to optimize when determining which object to include next. These
measures are total profit, capacity used, and the ratio of accumulated profit
to capacity used. Once an optimization measure has been chosen, the greedy

4.3. TREE VERTEX SPLITTING 203

2. [0/1 Knapsack] Consider the knapsack problem discussed in this sec-
tion. We add the requirement that z; =1 or z; = 0, 1 <7 < n; that
is, an object is either included or not included into the knapsack. We
wish to solve the problem

n
max E PiL;
1

n
subject toz w;r; <m
1

and z; =0o0rl, 1 <i<n

Onme greedy strategy is to consider the objects in order of nonincreasing
density p;/w; and add the object into the knapsack if it.fits. Show that
this strategy doesn’t necessarily yield an optimal solution.

4.3 TREE VERTEX SPLITTING

Consider a directed binary tree each edge of which is labeled with a real
number (called its weight). Trees with edge weights are called weighted
trees. A weighted tree can be used, for example, to model a distribution
network in which electric signals or commodities such as oil are transmitted.
Nodes 1n the tree correspond to receiving stations and edges correspond to
transmission lines. It is conceivable that in the process of transmission some
loss occurs (drop in voltage in the case of electric signals or drop in pressure
in the case of oil). Each edge in the tree is labeled with the loss that occurs
in traversing that edge. The network may not be able to tolerate losses
beyond a certain level. In places where the loss exceeds the tolerance level,
boosters have to be placed. Given a network and a loss tolerance level, the
Tree Vertez Splitting Problem (TVSP) is to determine an optimal placement
of boosters. It is assumed that the boosters can only be placed in the nodes
of the tree.

The TVSP can be specified more precisely as follows: Let T = (V, E, w)
be a weighted directed tree, where V is the vertex set, F is the edge set, and
w is the weight function for the edges. In particular, w(i, j) is the weight of
the edge (1,7) € E. The weight w(7,) is undefined for any (z,7) ¢ E. A
source vertex is a vertex with in-degree zero, and a sink vertex is a vertex
with out-degree zero. For any path P in the tree, its delay, d(P), is defined
to be the sum of the weights on that path. The delay of the tree T, d(T), is
the maximum of all the path delays.

Let T'/X be the forest that results when each vertex u in X is split into
two nodes u' and «° such that all the edges (u,j) € E ({(j,u) € E) are

204 CHAPTER 4. THE GREEDY METHOD

@

Figure 4.1 A tree before and after splitting the node 3

replaced by edges of the form (u?, j) ({(j,u%)). In other words, outbound
edges from u now leave from «° and inbound edges to u now enter at u’.
Figure 4.1 shows a tree before and after splitting the node 3. A node that
gets split corresponds to a booster station. The TVSP is to identify a set
X C V of minimum cardinality for which d(T/X) < 4§, for some specified
tolerance limit d. Note that the TVSP has a solution only if the maximum
edge weight is < 4. Also note that the TVSP naturally fits the subset
paradigm.

Given a weighted tree T(V, F, w) and a tolerance limit d, any subset X of
V is a feasible solution if d(T'/X) < 4. Given an X, we can compute d(7T'/X)
in O(|V]) time. A trivial way of solving the TVSP is to compute d(T/X)
for each possible subset X of V. But there are 2!V! such subsets! A better
algorithm can be obtained using the greedy method.

For the TVSP, the quantity that is optimized (minimized) is the number
of nodes in X. A greedy approach to solving this problem is to compute for
each node v € V, the maximum delay d(u) from u to any other node in its
subtree. If u has a parent v such that d(u) + w(v,u) > 4, then the node
u gets split and d(u) is set to zero. Computation proceeds from the leaves
toward the root.

In the tree of Figure 4.2, let § = 5. For each of the leaf nodes 7,8,5,9,
and 10 the delay is zero. The delay for any node is computed only after the
delays for its children have been determined. Let u be any node and C(u)
be the set of all children of w. Then d(u) is given by

d(u) = vrer&}q(‘){d(v) + w(u,v)}

Using the above formula, for the tree of Figure 4.2, d(4) = 4. Since
d(4) + w(2,4) = 6 > 4, node 4 gets split. We set d(4) = 0. Now d(2) can be

4.3. TREE VERTEX SPLITTING 205

Figure 4.2 An example tree

computed and is equal to 2. Since d(2) + w(1,2) exceeds §, node 2 gets split
and d(2) is set to zero. Then d(6) is equal to 3. Also, since d(6)+w(3,6) > 4,
node 6 has to be split. Set d(6) to zero. Now d(3) is computed as 3. Finally,
d(1) is computed as 5.

Figure 4.3 shows the final tree that results after splitting the nodes 2,4,
and 6. This algorithm is described in Algorithm 4.3, which is invoked as
TVS(root,), root being the root of the tree. The order in which TVS visits
(i.e., computes the delay values of) the nodes of the tree is called the post
order and is studied again in Chapter 6.

()
& (5)
Wy O

Figure 4.3 The final tree after splitting the nodes 2, 4, and 6

206 CHAPTER 4. THE GREEDY METHOD

Algorithm TVS(T, ¢)
// Determine and output the nodes to be split.
// w() is the weighting function for the edges.

if (T # 0) then

d[T] := 05
for each child v of T do

LIS i W

TVS(v,6);
d[T) = max{d[T], dlo] + w(T,)}

if ((T is not the root) and
(d[T] + w(parent(T),T) > J)) then

write (T); d[T] := 0;
}

= b e e e e b e
CO-TITDDUTERWN=O
Sy

Algorithm 4.3 The tree vertex splitting algorithm

Algorithm TVS takes ©(n) time, where n is the number of nodes in the
tree. This can be seen as follows: When TVS is called on any node T, only
a constant number of operations are performed (excluding the time taken
for the recursive calls). Also, TVS is called only once on each node T in the
tree.

Algorithm 4.4 is a revised version of Algorithm 4.3 for the special case
of directed binary trees. A sequential representation of the tree (see Section
2.2) has been employed. The tree is stored in the array tree[| with the root
at tree[l]. Edge weights are stored in the array weight[|. If tree[i] has a tree
node, the weight of the incoming edge from its parent is stored in weight|i].
The delay of node ¢ is stored in d[i:]. The array d[| is initialized to zero
at the beginning. Entries in the arrays tree[| and weight|] corresponding
to nonexistent nodes will be zero. As an example, for the tree of Figure
4.2, tree[| will be set to {1,2,3,0,4,5,6,0,0,7,8,0,0,9,10} starting at cell
1. Also, weight[| will be set to {0,4,2,0,2,1,3,0,0,1,4,0, 0,2,3} at the
beginning, starting from cell 1. The algorithm is invoked as TVS(1,). Now
we show that TVS (Algorithm 4.3) will always split a minimal number of
nodes.

4.3. TREE VERTEX SPLITTING 207

1 Algorithm TVS(i,4)

2 // Determine and output a minimum cardinality split set.
3 // The tree is realized using the sequential representation.
4 // Root is at tree[l]. N is the largest number such that

5 // tree[N] has a tree node.

6

7 if (treefi] # 0) then // If the tree is not empty

8 if (2¢ > N) then d[i] :==0; // i is a leaf.

9 else

10 {

11 TVS(2i,6);

12 d[i] := max(d[i], d[2t] + weight[2i]);

13 if (224+1 < N) then

14 {

15 TVS(2i + 1, 6);

16 d[i] := max(d[t], d[2i + 1] + weight[2i + 1]);
17

18 }

19 if ((treefi] # 1) and (d[¢] + weight[i] > §)) then
20 {

21 write (tree[i]); d[i] := 03

22 }

Algorithm 4.4 TVS for the special case of binary trees

Theorem 4.2 Algorithm TVS outputs a minimum cardinality set U such
that d(T'/U) < 4 on any tree T, provided no edge of T has weight > é.

Proof: The proof is by induction on the number of nodes in the tree. If the
tree has a single node, the theorem is true. Assume the theorem for all trees
of size < n. We prove it for trees of size n + 1 also.

Let T be any tree of size n+ 1 and let U be the set of nodes split by TVS.
Also let W be a minimum cardinality set such that d(T/W) < §. We have
to show that |U| < |W|. If |U| = 0, this is true. Otherwise, let z be the first
vertex split by TVS. Let T, be the subtree rooted at z. Let T” be the tree
obtained from T by deleting T, except for z. Note that W has to have at
least one node, say y, from T,. Let W/ = W — {y}. If there is a W* such
that |W*| < |W'| and d(T'/W*) < 6, then since d(T/(W* +{z})) <&, W is
not a minimum cardinality split set for T. Thus, W’ has to be a minimum
cardinality split set such that d(T"/W’') < 4.

208 CHAPTER 4. THE GREEDY METHOD

If algorithm TVS is run on tree T”, the set of split nodes output is U —{z}.
Since T" has < n nodes, U — {z} is a minimum cardinality split set for 7.

This in turn means that |W’| > |U| — 1. In other words, [W| > |U|. O
EXERCISES
1. For the tree of Figure 4.2 solve the TVSP when (a) § = 4 and (b)
6 = 6.

2. Rewrite TVS (Algorithm 4.3) for general trees. Make use of pointers.

4.4 JOB SEQUENCING WITH DEADLINES

We are given a set of n jobs. Associated with job 7 is an integer deadline
d; > 0 and a profit p; > 0. For any job ¢ the profit p; is earned iff the job is
completed by its deadline. To complete a job, one has to process the job on
a machine for one unit of time. Only one machine is available for processing
jobs. A feasible solution for this problem is a subset J of jobs such that each
job in this subset can be completed by its deadline. The value of a feasible
solution J is the sum of the profits of the jobs in J, or >~ ; p;. An optimal
solution is a feasible solution with maximum value. Here again, since the
problem involves the identification of a subset, it fits the subset paradigm.

Example 4.2 Let n = 4, (p1,p2, p3, pa) = (100, 10, 15,27) and (dy, dz, d3, ds)
(2,1,2,1). The feasible solutions and their values are:

feasible processing

solution sequence value
1, 2) 2,1 110
3) 1,3o0r 3,1 115
4,1 127
2,3 25
4,3 42
1 100
2 10
3 15
4 27

LRI W =

Solution 3 is optimal. In this solution only jobs 1 and 4 are processed and
the value is 127. These jobs must be processed in the order job 4 followed
by job 1. Thus the processing of job 4 begins at time zero and that of job 1
is completed at time 2. O

4.4. JOB SEQUENCING WITH DEADLINES 209

To formulate a greedy algorithm to obtain an optimal solution, we must
formulate an optimization measure to determine how the next job is chosen.
As a first attempt we can choose the objective function 3, ; p; as our op-
timization measure. Using this measure, the next job to include is the one
that increases) ;- ; p; the most, subject to the constraint that the resulting
J is a feasible solution. This requires us to consider jobs in nonincreasing
order of the p;’s. Let us apply this criterion to the data of Example 4.2. We
begin with J =0 and >, ; p; = 0. Job 1 is added to J as it has the largest
profit and J = {1} is a feasible solution. Next, job 4 is considered. The
solution J = {1,4} is also feasible. Next, job 3 is considered and discarded
as J = {1,3,4} is not feasible. Finally, job 2 is considered for inclusion into
J. It is discarded as J = {1,2,4} is not feasible. Hence, we are left with
the solution J = {1,4} with value 127. This is the optimal solution for the
given problem instance. Theorem 4.4 proves that the greedy algorithm just
described always obtains an optimal solution to this sequencing problem.

Before attempting the proof, let us see how we can determine whether
a given J is a feasible solution. One obvious way is to try out all possible
permutations of the jobs in J and check whether the jobs in J can be pro-
cessed in any one of these permutations (sequences) without violating the
deadlines. For a given permutation o = 11,49,13,...,%;, this is easy to do,
since the earliest time job i,,1 < ¢ < k, will be completed is g. If ¢ > d;_,
then using o, at least job ¢, will not be completed by its deadline. However,
if |J| = i, this requires checking i! permutations. Actually, the feasibility
of a set J can be determined by checking only one permutation of the jobs
in J. This permutation is any one of the permutations in which jobs are
ordered in nondecreasing order of deadlines.

Theorem 4.3 Let J be a set of k jobs and o = i1,49,...,i; a permutation
of jobs in J such that d;;, <d;, <--- <d;, . Then J is a feasible solution iff
the jobs in J can be processed in the order o without violating any deadline.

Proof: Clearly, if the jobs in J can be processed in the order o without
violating any deadline, then J is a feasible solution. So, we have only to
show that if J is feasible, then o represents a possible order in which the
jobs can be processed. If J is feasible, then there exists o' = ry,7o,..., 7%
such that dr, > ¢, 1 < ¢ < k. Assume ¢’ # 0. Then let a be the least index
such that r, # i,. Let r, = i,. Clearly, b > a. In ¢’ we can interchange
re and ry. Since d,, > d,,, the resulting permutation o” = s1,59,..., 5
represents an order in which the jobs can be processed without violating
a deadline. Continuing in this way, ¢’ can be transformed into o without
violating any deadline. Hence, the theorem is proved. O

Theorem 4.3 is true even if the jobs have different processing times ¢; > 0
(see the exercises).

210 CHAPTER 4. THE GREEDY METHOD

Theorem 4.4 The greedy method described above always obtains an opti-
mal solution to the job sequencing problem.

Proof: Let (p;,d;),1 < i < n, define any instance of the job sequencing
problem. Let I be the set of jobs selected by the greedy method. Let J
be the set of jobs in an optimal solution. We now show that both I and J
have the same profit values and so I is also optimal. We can assume I # J
as otherwise we have nothing to prove. Note that if J C I, then J cannot
be optimal. Also, the case I C J is ruled out by the greedy method. So,
there exist jobs @ and b such that a € I, a € J, be J, and b & I. Let a be
a highest-profit job such that a € I and a & J. It follows from the greedy
method that p, > py for all jobs b that are in J but not in I. To see this,
note that if p, > p,, then the greedy method would consider job b before job
a and include it into I.

Now, consider feasible schedules S; and S; for I and J respectively. Let
¢ be a job such that : € I and 7 € J. Let 7 be scheduled from ¢ to t + 1 in
Srand ¢ tot' +1in Sj. If t < ¢/, then we can interchange the job (if any)
scheduled in [#,#' + 1] in Sy with 4. If no job is scheduled in [#',# + 1] in I,
then 7 is moved to [t',#' +1]. The resulting schedule is also feasible. If t' < ¢,
then a similar transformation can be made in S;. In this way, we can obtain
schedules S} and S’; with the property that all jobs common to I and J are
scheduled at the same time. Consider the interval [t4,t, + 1] in S} in which
the job a (defined above) is scheduled. Let b be the job (if any) scheduled
in S’ in this interval. From the choice of a,p, > pp. Scheduling a from ¢,
to t, + 1 in S} and discarding job b gives us a feasible schedule for job set
J' = J— {b} U{a}. Clearly, J' has a profit value no less than that of J and
differs from I in one less job than J does.

By repeatedly using the transformation just described, J can be trans-
formed into I with no decrease in profit value. So I must be optimal. O

A high-level description of the greedy algorithm just discussed appears
as Algorithm 4.5. This algorithm constructs an optimal set J of jobs that
can be processed by their due times. The selected jobs can be processed in
the order given by Theorem 4.3.

Now, let us see how to represent the set J and how to carry out the test
of lines 7 and 8 in Algorithm 4.5. Theorem 4.3 tells us how to determine
whether all jobs in J U {i} can be completed by their deadlines. We can
avoid sorting the jobs in J each time by keeping the jobs in J ordered by
deadlines. We can use an array d[1 : n] to store the deadlines of the jobs
in the order of their p-values. The set J itself can be represented by a one-
dimensional array J[1 : k] such that J[r], 1 < r < k are the jobs in J and
d[J[1]] <d[J[2]] £ --- < d[J[k]]. To test whether JU{:} is feasible, we have
just to insert ¢ into J preserving the deadline ordering and then verify that
d[J[r]] £r,1 <r <k+1. The insertion of ¢ into J is simplified by the use
of a fictitious job 0 with d[0] = 0 and J[0] = 0. Note also that if job 7 is
to be inserted at position ¢, then only the positions of jobs J[g|, J[¢ + 1],

4.4. JOB SEQUENCING WITH DEADLINES 211

Algorithm GreedyJob(d, J,n)
// J is a set of jobs that can be completed by their deadlines.

J:={1};
for i := 2 to n do

if (all jobs in J U {7} can be completed
by their deadlines) then J := J U {i};

H QOO0 ULk LN —

Algorithm 4.5 High-level description of job sequencing algorithin

., J[k] are changed after the insertion. Hence, it is necessary to verify
only that these jobs (and also job 7) do not violate their deadlines following
the insertion. The algorithm that results from this discussion is function
JS (Algorithm 4.6). The algorithm assumes that the jobs are already sorted
such that p; > py > --- > pp. Further it assuines that n > 1 and the deadline
d[i] of job ¢ is at least 1. Note that no job with d[i] < 1 can ever be finished
by its deadline. Theorem 4.5 proves that JS is a correct implementation of
the greedy strategy.

Theorem 4.5 Function JS is a correct implementation of the greedy-based
method described above.

Proof: Since d[i] > 1, the job with the largest p; will always be in the
greedy solution. As the jobs are in nonincreasing order of the p;'s, line
8 in Algorithm 4.6 includes the job with largest p;. The for loop of line
10 considers the remaining jobs in the order required by the greedy method
deseribed earlier. At all times, the set of jobs already included in the solution
is maintained in J. If J[¢], 1 < i < k, is the set already included, then J is
such that d[J[i]] < d[J[i +1]], 1 < i < k. This allows for easy application
of the feasibility test of Theorem 4.3, When job i is being considered, the
while loop of line 15 determines where in J this job has to be inserted. The
use of a fictitious job 0 (line 7) allows easy insertion into position 1. Let w
be such that d[J[w]] < d[i] and d[J[q]] > d[i], w < ¢ < k. If job 7 1s included
into J, then jobs J[q], w < q¢ < k, have to be moved one position up in J
(line 19). From Theorem 4.3, it follows that such a move retains feasibility
of J iff d[J[q]] # g, w < ¢ < k. This condition is verified in line 15. In
addition, ¢ can be inserted at position w + 1 iff d[i] > w. This is verified in
line 16 (note r» = w on exit from the while loop if d[J[q]] # ¢, w < ¢ < k).
The correctness of JS follows from these observations. O

212 CHAPTER 4. THE GREEDY METHOD

1 Algorithm JS(d, j,n)

2 //d[i]] >1,1< i< nare the deadlines, n > 1. The jobs

3 // are ordered such that p[1] > p[2] >--- > p[]. J[i]

4 // is the ith job in the optimal Solutlon 1 <<k,

5 // Also, at termination d[J[i]] < d[J[i + 1], 1 <i < k

6

7 d[0] := J[0] := 0; // Initialize.

8 J1]:=1;// Include job 1.

9 k:=1;

10 for +:=2 to n do

11 {

12 // Consider jobs in nonincreasing order of p[i]. Find
13 // position for i and check feasibility of insertion.

14 7= k;

15 while ((d[J [7"]] > d[i]) and (d[J[r]] # 7)) dor:=r—1;
16 if ((d[J[r]] < d[i]) and (d[i] > r)) then

17

18 // Insert ¢ into JJ].

19 for g:=k to (r+1) step —1do J[g+ 1] := J[q];
20 Jr+1l:=45k:=k+1;

21

22

23 return k;

24 }

Algorithm 4.6 Greedy algorithm for sequencing unit time jobs with dead-
lines and profits

For JS there are two possible parameters in terms of which its complexity
can be measured. We can use n, the number of jobs, and s, the number of
jobs included in the solution J. The while loop of line 15 in Algorithm 4.6 is
iterated at most k times. Each iteration takes ©(1) time. If the conditional
of line 16 is true, then lines 19 and 20 are executed. These lines require
©(k — r) time to insert job i. Hence, the total time for each iteration of
the for loop of line 10 is ©(k). This loop is iterated n — 1 times. If s is
the final value of k, that is, s is the number of jobs in the final solution,
then the total time needed by algorithm JS is ©(sn). Since s < n, the
worst-case time, as a function of n alone is ©(n?). If we consider the job
set p =d; =n—1i+1, 1 <i < n, then algorithm JS takes ©(n?) time
to determine J. Hence, the worst-case computing time for JS is ©(n?). In
addition to the space needed for d, JS needs ©(s) amount of space for J.

4.4. JOB SEQUENCING WITH DEADLINES 213

Note that the profit values are not needed by JS. It is sufficient to know that
Pi 2 Pit1, 1 <1 <n.

The computing time of JS can be reduced from O(n?) to nearly O(n)
by using the disjoint set union and find algorithms (see Section 2.5) and a
different method to determine the feasibility of a partial solution. If J is a
feasible subset of jobs, then we can determine the processing times for each
of the jobs using the rule: if job ¢ hasn’t been assigned a processing time,
then assign it to the slot [« — 1,«], where a is the largest integer r such
that 1 < r < d; and the slot [@ — 1,q] is free. This rule simply delays the
processing of job ¢ as much as possible. Consequently, when J is being built
up job by job, jobs already in J do not have to be moved from their assigned
slots to accommodate the new job. If for the new job being considered there
is no « as defined above, then it cannot be included in J. The proof of the
validity of this statement is left as an exercise.

Example 4.3 Let n = 5,(p1,...,p5) = (20,15,10,5,1) and (dy,...,ds)
= (2,2,1,3,3). Using the above feasibility rule, we have

J assigned slots job considered action profit
0 none 1 assign to [1, 2] 0
{1} 1, 2] 2 assign to [0, 1] 20
{1, 2} [0, 1], [1, 2] 3 cannot fit; reject 35
{1, 2} [0, 1], [1, 2] 4 assign to [2, 3] 35
{1,2,4} [0,1],[1, 2], [2, 3] 5 reject 40
The optimal solution is J = {1,2,4} with a profit of 40. O

Since there are only n jobs and each job takes one unit of time, it is
necessary only to consider the time slots [1 — 1,i], 1 < i < b, such that
b=min {n,max {d;}}. One way to implement the above scheduling rule is
to partition the time slots [¢ — 1, 4], 1 < ¢ < b, into sets. We use ¢ to represent
the time slots [¢ — 1,4]. For any slot 7, let n; be the largest integer such that
n; < 7 and slot n; is free. To avoid end conditions, we introduce a fictitious
slot [—1,0] which is always free. Two slots ¢ and j are in the same set iff
n; = n;. Clearly, if < and j, ¢ < j, are in the same set, then4,i+1,0+2,...,j
are in the same set. Associated with each set k of slots is a value f(k). Then
f(k) = n; for all slots 7 in set k. Using the set representation of Section 2.5,
each set is represented as a tree. The root node identifies the set. The
function f is defined only for root nodes. Initially, all slots are free and we
have b+ 1 sets corresponding to the b+ 1 slots [¢ — 1,i], 0 < i < b. At this
time f(i) =14, 0 < i < b. We use p(i) to link slot i into its set tree. With
the conventions for the union and find algorithms of Section 2.5, p(i) = —1,
0 < i < b, initially. If a job with deadline d is to be scheduled, then we need
to find the root of the tree containing the slot min{n,d}. If this root is j,

214 CHAPTER 4. THE GREEDY METHOD

then f(j) is the nearest free slot, provided f(j) # 0. Having used this slot,
the set with root j should be combined with the set containing slot f(j)— 1.

Example 4.4 The trees defined by the p(i)’s for the first three iterations

in Example 4.3 are shown in Figure 4.4. O

trees coni(i)ctl)ere daction

J f 0 1 2 3 4 5 1d,=2 select
@ b & O D D D
p©) p(1) p2) pB p@ pO)

{1} f 0 1 3 4 5 2,d,=2 select
D) D D D
p(0) D p(3) p@) p()

p(2)
{1,2} f(1)=0 f(3)=3 f(4)=4 f(5)=5 3,d;=1 reject
D D

p3) p@® pS)

Figure 4.4 Fast job scheduling

The fast algorithm appears as FJS (Algorithm 4.7). Its computing time
is readily observed to be O(na(2n,n)) (recall that «(2n,n) is the inverse
of Ackermann’s function defined in Section 2.5). It needs an additional 2n
words of space for f and p.

4.4. JOB SEQUENCING WITH DEADLINES 215

1 Algorithm FJS(d,n,b,j)

2 // Find an optimal solution J[1 : k]. It is assumed that
3 // pll] >pl2] > - > p[n] and that b = min{n, max;(d[z])}.
4

5 // Initially there are b + 1 single node trees.

6 for i := 0 to b do f[i] :=1;

7 k :=0; // Initialize.

8 for ::=1to n do

9 { // Use greedy rule.

10 g := CollapsingFind(min(n, d[i]));

11 if (f[g] # 0) then

12

13 k:=k+1; Jk] :=i; // Select job i.

14 m := CollapsingFind(f[g] — 1);

15 WeightedUnion(m, ¢);

16 flg] :== flm]; // q may be new root.

17

18

19 }

Algorithm 4.7 Faster algorithm for job sequencing

EXERCISES

1. You are given a set of n jobs. Associated with each job i is a processing
time ¢; and a deadline d; by which it must be completed. A feasible
schedule is a permutation of the jobs such that if the jobs are processed
in that order, then each job finishes by its deadline. Define a greedy
schedule to be one in which the jobs are processed in nondecreasing
order of deadlines. Show that if there exists a feasible schedule, then
all greedy schedules are feasible.

2. [Optimal assignment] Assume there are n workers and n jobs. Let v;;
be the value of assigning worker i to job j. An assignment of workers to
jobs corresponds to the assignment of 0 or 1 to the variables z;;, 1 <,
j < n. Then z;; =1 means worker 1 is assigned to job j, and z;; = 0
means that worker ¢ is not assigned to job j. A valid assignment is
one in which each worker is assigned to exactly one job and exactly
one worker is assigned to any one job. The value of an assignment is

226 225 VijTij-

216 CHAPTER 4. THE GREEDY METHOD

For example, assume there are three workers w,, we, and ws and three
jobs j1,jo, and j3. Let the values of assignment be vy = 11, vys = 5,
U3 = 8, Vo1 = 3, Vo9 — 7, V93 — 15, U3l = 8, Usg — 12, and v33 = 9.
Then, a valid assignment is £12 = 1, 93 = 1, and 237 = 1. The rest of
the z;;'s are zeros. The value of this assignment is 5 + 15 + 8 = 28.

An optimal assignment is a valid assignment of maximum value. Write
algorithms for two different greedy assignment schemes. One of these
assigns a worker to the best possible job. The other assigns to a job the
best possible worker. Show that neither of these schemes is guaranteed
to yield optimal assignments. Is either scheme always better than the
other? Assume v;; > 0.

3. (a) What is the solution generated by the function JS when n =
77 (p17p27"'7p7) - (37 57 207]‘87]‘767 30)7 and (d17d27"'7d7) -
(1,3,4,3,2,1,2)7

(b) Show that Theorem 4.3 is true even if jobs have different process-
ing requirements. Associated with job i is a profit p; > 0, a time
requirement ¢; > 0, and a deadline d; > ¢;.

(¢) Show that for the situation of part (a), the greedy method of this
section doesn’t necessarily yield an optimal solution.

4. (a) For the job sequencing problem of this section, show that the
subset J represents a feasible solution iff the jobs in J can be
processed according to the rule: if job 7 in J hasn’t been assigned
a processing time, then assign it to the slot [— 1, @], where « is
the least integer r such that 1 < r < d; and the slot [— 1,¢] is
free.

(b) For the problem instance of Exercise 3(a) draw the trees and give
the values of f(i),0 < i < n, after each iteration of the for loop
of line 8 of Algorithm 4.7.

4.5 MINIMUM-COST SPANNING TREES

Definition 4.1 Let G = (V, E) be an undirected connected graph. A sub-
graph t = (V. E') of G is a spanning tree of G iff t is a tree. O

Example 4.5 Figure 4.5 shows the complete graph on four nodes together
with three of its spanning trees. O

Spanning trees have many applications. For example, they can be used
to obtain an independent set of circuit equations for an electric network.
First, a spanning tree for the electric network is obtained. Let B be the
set of network edges not in the spanning tree. Adding an edge from B to

4.5. MINIMUM-COST SPANNING TREES 217

0o IS ol
N

Figure 4.5 An undirected graph and three of its spanning trees

the spanning tree creates a cycle. Kirchoff’s second law is used on each
cycle to obtain a circuit equation. The cycles obtained in this way are
independent (i.e., none of these cycles can be obtained by taking a linear
combination of the remaining cycles) as each contains an edge from B that
is not contained in any other cycle. Hence, the circuit equations so obtained
are also independent. In fact, it can be shown that the cycles obtained by
introducing the edges of B one at a time into the resulting spanning tree
form a cycle basis, and so all other cycles in the graph can be constructed
by taking a linear combination of the cycles in the basis.

Another application of spanning trees arises from the property that a
spanning tree is a minimal subgraph G’ of G such that V(G') = V(G) and G’
is connected. (A minimal subgraph is one with the fewest number of edges.)
Any connected graph with n vertices must have at least n — 1 edges and all
connected graphs with n — 1 edges are trees. If the nodes of G represent
cities and the edges represent possible communication links connecting two
cities, then the minimum number of links needed to connect the n cities is
n — 1. The spanning trees of G represent all feasible choices.

In practical situations, the edges have weights assigned to them. These
weights may represent the cost of construction, the length of the link, and
so on. Given such a weighted graph, one would then wish to select cities to
have minimum total cost or minimum total length. In either case the links
selected have to form a tree (assuming all weights are positive). If this is not
so, then the selection of links contains a cycle. Removal of any one of the
links on this cycle results in a link selection of less cost connecting all cities.
We are therefore interested in finding a spanning tree of G with minimum
cost. (The cost of a spanning tree is the sum of the costs of the edges in
that tree.) Figure 4.6 shows a graph and one of its minimum-cost spanning
trees. Since the identification of a minimum-cost spanning tree involves the
selection of a subset of the edges, this problem fits the subset paradigm.

218 CHAPTER 4. THE GREEDY METHOD

Figure 4.6 A graph and its minimum cost spanning tree

4.5.1 Prim’s Algorithm

A greedy method to obtain a minimum-cost spanning tree builds this tree
edge by edge. The next edge to include is chosen according to some optimiza-
tion criterion. The simplest such criterion is to choose an edge that results
in a minimum increase in the sum of the costs of the edges so far included.
There are two possible ways to interpret this criterion. In the first, the set
of edges so far selected form a tree. Thus, if A is the set of edges selected
so far, then A forms a tree. The next edge (u,v) to be included in A is a
minimum-cost edge not in A with the property that A U {(u,v)} is also a
tree. Exercise 2 shows that this selection criterion results in a minimum-cost
spanning tree. The corresponding algorithm is known as Prim’s algorithm.

Example 4.6 Figure 4.7 shows the working of Prim’s method on the graph
of Figure 4.6(a). The spanning tree obtained is shown in Figure 4.6(b) and
has a cost of 99. a

Having seen how Prim’s method works, let us obtain a pseudocode algo-
rithm to find a minimum-cost spanning tree using this method. The algo-
rithm will start with a tree that includes only a minimum-cost edge of G.
Then, edges are added to this tree one by one. The next edge (i,j) to be
added is such that i is a vertex already included in the tree, j is a vertex not
yet included, and the cost of (i,7), cost[i,j], is minimum among all edges
(k,1) such that vertex k is in the tree and vertex [is not in the tree. To
determine this edge (i, j) efficiently, we associate with each vertex j not yet
included in the tree a value near[j]. The value near[j] is a vertex in the tree
such that cost[j,near[]] is minimum among all choices for near[j]. We de-
fine near[j] = 0 for all vertices j that are already in the tree. The next edge

4.5. MINIMUM-COST SPANNING TREES 219

® D 3 ONEURNE @3
25\ 25",
5 5
e 9 B30
(a) (b) (©)

,\ D ON
* A T
p /\(\ .
s D3 ® © 3 6

A2

25) 25 A2 25 12
5 O 5
22 \@ 24 224

(d) ©) t))

Figure 4.7 Stages in Prim’s algorithm

to include is defined by the vertex j such that near[j] # 0 (5 not already in
the tree) and cost[j, near(j]] is minimum.

In function Prim (Algorithm 4.8), line 9 selects a minimum-cost edge.
Lines 10 to 15 initialize the variables so as to represent a tree comprising
only the edge (k,1). In the for loop of line 16 the remainder of the spanning
tree is built up edge by edge. Lines 18 and 19 select (j, near[j]) as the next
edge to include. Lines 23 to 25 update near] .

The time required by algorithm Prim is O(n?), where n is the number of
vertices in the graph G. To see this, note that line 9 takes O(|E|) time and
line 10 takes ©(1) time. The for loop of line 12 takes ©(n) time. Lines 18
and 19 and the for loop of line 23 require O(n) time. So, each iteration of
the for loop of line 16 takes O(n) time. The total time for the for loop of
line 16 is therefore O(n?). Hence, Prim runs in O(n?) time.

220 CHAPTER 4. THE GREEDY METHOD

If we store the nodes not yet included in the tree as a red-black tree (see
Section 2.4.2), lines 18 and 19 take O(logn) time. Note that a red-black
tree supports the following operations in O(logn) time: insert, delete (an
arbitrary element), find-min, and search (for an arbitrary element). The
for loop of line 23 has to examine only the nodes adjacent to j. Thus its
overall frequency is O(|E|). Updating in lines 24 and 25 also takes O(logn)
time (since an update can be done using a delete and an insertion into the
red-black tree). Thus the overall run time is O((n + |E|) log n).

The algorithm can be speeded a bit by making the observation that a
minimum-cost spanning tree includes for each vertex v a minimum-cost edge
incident to v. To see this, suppose t is a minimum-cost spanning tree for G =
(V,E). Let v be any vertex in ¢t. Let (v, w) be an edge with minimum cost
among all edges incident to v. Assume that (v,w) ¢ E(t) and cost[v,w] <
cost|v, z] for all edges (v,z) € E(t). The inclusion of (v,w) into ¢ creates
a unique cycle. This cycle must include an edge (v,z), # w. Removing
(v,z) from E(t)U{(v,w)} breaks this cycle without disconnecting the graph
(V.E(t)U{(v,w)}). Hence, (V, E(t) U{(v,w)} —{(v,2)}) is also a spanning
tree. Since cost[v,w] < cost[v, z], this spanning tree has lower cost than ¢.
This contradicts the assumption that ¢ is a minimum-cost spanning tree of
G. So, t includes minimum-cost edges as stated above.

From this observation it follows that we can start the algorithm with a
tree consisting of any arbitrary vertex and no edge. Then edges can be added
one by one. The changes needed are to lines 9 to 17. These lines can be
replaced by the lines

9 mincost := 0;

10 for i := 2 to n do near[i] := 1;
1r // Vertex 1 is initially in ¢.
12’ near|[1] := 0

13-16° for i:=1ton—-1do

17 { // Find n — 1 edges for ¢.

4.5.2 Kruskal’s Algorithm

There is a second possible interpretation of the optimization criteria men-
tioned earlier in which the edges of the graph are considered in nondecreasing
order of cost. This interpretation is that the set ¢ of edges so far selected for
the spanning tree be such that it is possible to complete t into a tree. Thus
t may not be a tree at all stages in the algorithm. In fact, it will generally
only be a forest since the set of edges ¢ can be completed into a tree iff there
are no cycles in . We show in Theorem 4.6 that this interpretation of the
greedy method also results in a minimum-cost spanning tree. This method
is due to Kruskal.

4.5. MINIMUM-COST SPANNING TREES 221

1 Algorithm Prim(E, cost,n,t)

2 // E is the set of edges in G. cost[l : n,1:n] is the cost

3 // adjacency matrix of an n vertex graph such that cost|[i,] is
4 // either a positive real number or oo if no edge (¢, j) exists.

5 // A minimum spanning tree is computed and stored as a set of
6 // edges in the array t[1 :n —1,1:2]. (¢[i,1],¢[¢,2]) is an edge in
7 // the minimum-cost spanning tree. The final cost is returned.
8

9 Let (k,1) be an edge of minimum cost in E}

10 mincost := costlk,];

11 t[1,1] == k; t[1,2] := {5

12 for i :=1to n do // Initialize near.

13 if (costli,l] < costli, k]) then near[i] := I3

14 else near[i] := k;

15 near[k] := near|l] := 03

16 for i:=2ton—1do

17 { // Find n — 2 additional edges for ¢.

18 Let j be an index such that near[j] # 0 and

19 cost[7, near[j]] is minimum;

20 t{i, 1] :== j; t[i, 2] := near(jl;

21 mincost := mincost + cost[j, near|[j]];

22 near[j] := 03

23 for k£ := 1 to n do // Update near| |.

24 if ((near[k] # 0) and (cost[k,near[k]] > cost[k, j]))
25 then nearlk] := j;

26 }

27 return mincost;

28 }

Algorithm 4.8 Prim’s minimum-cost spanning tree algorithmn

222 CHAPTER 4. THE GREEDY METHOD

Example 4.7 Consider the graph of Figure 4.6(a). We begin with no edges
selected. Figure 4.8(a) shows the current graph with no edges selected. Edge
(1,6) is the first edge considered. It is included in the spanning tree being
built. This yields the graph of Figure 4.8(b). Next, the edge (3,4) is selected
and included in the tree (Figure 4.8(c)). The next edge to be considered is
(2,7). Its inclusion in the tree being built does not create a cycle, so we get
the graph of Figure 4.8(d). Edge (2,3) is considered next and included in
the tree Figure 4.8(e). Of the edges not yet considered, (7,4) has the least
cost. It is considered next. Its inclusion in the tree results in a cycle, so this
edge is discarded. Edge (5,4) is the next edge to be added to the tree being
built. This results in the configuration of Figure 4.8(f). The next edge to be
considered is the edge (7,5). It is discarded, as its inclusion creates a cycle.
Finally, edge (6,5) is considered and included in the tree being built. This
completes the spanning tree. The resulting tree (Figure 4.6(b)) has cost 99.

O

For clarity, Kruskal’s method is written out more formally in Algorithm
4.9. Initially E is the set of all edges in G. The only functions we wish
to perform on this set are (1) determine an edge with minimum cost (line
4) and (2) delete this edge (line 5). Both these functions can be performed
efficiently if the edges in E are maintained as a sorted sequential list. It is
not essential to sort all the edges so long as the next edge for line 4 can be
determined easily. If the edges are maintained as a minheap, then the next
edge to consider can be obtained in O(log|E|) time. The construction of the
heap itself takes O(|E|) time.

To be able to perform step 6 efficiently, the vertices in G should be
grouped together in such a way that one can easily determine whether the
vertices v and w are already connected by the earlier selection of edges. If
they are, then the edge (v, w) is to be discarded. If they are not, then (v, w)
is to be added to ¢. One possible grouping is to place all vertices in the same
connected component of ¢ into a set (all connected components of ¢ will also
be trees). Then, two vertices v and w are connected in ¢ iff they are in the
same set. For example, when the edge (2,6) is to be considered, the sets are
{1,2},{3,4,6}, and {5}. Vertices 2 and 6 are in different sets so these sets
are combined to give {1,2,3,4,6} and {56}. The next edge to be considered
is (1,4). Since vertices 1 and 4 are in the same set, the edge is rejected. The
edge (3,5) connects vertices in different sets and results in the final span-
ning tree. Using the set representation and the union and find algorithms
of Section 2.5, we can obtain an efficient (almost linear) implementation of
line 6. The computing time is, therefore, determined by the time for lines 4
and 5, which in the worst case is O(|E|log|E|).

If the representations discussed above are used, then the pseudocode of
Algorithm 4.10 results. In line 6 an initial heap of edges is constructed. In
line 7 each vertex is assigned to a distinct set (and hence to a distinct tree).
The set t is the set of edges to be included in the minimum-cost spanning

4.5. MINIMUM-COST SPANNING TREES 223

(@ (b) (©)

o o)
2 2 2
10 10 10

14 14/ \16 14/ \16
@/ ff SING ﬁ/@ GIRE
ol 5 @”

(d)) ®

Figure 4.8 Stages in Kruskal’s algorithm

tree and 4 is the number of edges in ¢. The set ¢ can be represented as a
sequential list using a two-dimensional array ¢[1 : n—1,1 : 2]. Edge (u,v) can
be added to t by the assignments t[i, 1] := w; and ¢[i, 2] := v;. In the while
loop of line 10, edges are removed from the heap one by one in nondecreasing
order of cost. Line 14 determines the sets containing u and v. If j # k, then
vertices u and v are in different sets (and so in different trees) and edge
(u,v) is included into t. The sets containing « and v are combined (line 20).
If u = v, the edge (u,v) is discarded as its inclusion into ¢ would create a
cycle. Line 23 determines whether a spanning tree was found. It follows
that ¢ # n — 1 iff the graph G is not connected. One can verify that the
computing time is O(|E|log |E|), where E is the edge set of G.

Theorem 4.6 Kruskal’s algorithm generates a minimum-cost spanning tree
for every connected undirected graph G.

224 CHAPTER 4. THE GREEDY METHOD
1 t:=0
2 while ((¢ has less than n — 1 edges) and (E # () do
3 A
4 Choose an edge (v, w) from E of lowest cost;
5 Delete (v, w) from Ej
6 if (v, w) does not create a cycle in ¢ then add (v,w) to t;
7 else discard (v, w);
8 1}

Algorithm 4.9 Early form of minimum-cost spanning tree algorithm due

to Kruskal
1 Algorithm Kruskal(E, cost, n,t)
2 // E is the set of edges in G. G has n vertices. cost[u,v] is the
3 // cost of edge (u,v). t is the set of edges in the minimum-cost
4 // spanning tree. The final cost is returned.
5
6 Construct a heap out of the edge costs using Heapify;
7 for i := 1 to n do parent[i] :== ~1;
8 // Each vertex is in a different set.
9 i := 035 mincost := 0.0;
10 while ((i <n — 1) and (heap not empty)) do
11
12 Delete a minimum cost edge (u,v) from the heap
13 and reheapify using Adjust;
14 J = Find(u); k := Find(v);
15 if (j # k) then
16
17 i=1i+1;
18 t[i, 1] := w3 t[i, 2] := v
19 mincost := mincost + costlu, v];
20 Union(j, k)3
21 }
22
23 if (i # n — 1) then write ("No spanning tree");
24 else return mincost;
25 }

Algorithm 4.10 Kruskal’s algorithm

4.5. MINIMUM-COST SPANNING TREES 225

Proof: Let G be any undirected connected graph. Let ¢ be the spanning tree
for G generated by Kruskal’s algorithm. Let ¢’ be a minimum-cost spanning
tree for G. We show that both ¢ and ¢’ have the same cost.

Let E(t) and E(t') respectively be the edges in ¢t and t'. If n is the number
of vertices in G, then both ¢ and ¢ have n — 1 edges. If E(t) = E(t'), then
t is clearly of minimum cost. If E(t) # E(t'), then let ¢ be a minimum-cost
edge such that ¢ € E(t) and ¢ € E(t'). Clearly, such a g must exist. The

inclusion of ¢ into ' creates a unique cycle (Exercise 5). Let q,ej,ea,..., e
be this unique cycle. At least one of the ¢;’s, 1 < ¢ < k, is not in E(t) as
otherwise ¢ would also contain the cycle g, ey, ez,...,e;. Let e; be an edge

on this cycle such that e; € F(t). If e; is of lower cost than ¢, then Kruskal’s
algorithm will consider e; before ¢ and include e; into t. To see this, note
that all edges in E(t) of cost less than the cost of ¢ are also in E(t') and do
not form a cycle with e;. So cost(e;) > cost(q).

Now, reconsider the graph with edge set E(#') U {q}. Removal of any
edge on the cycle g, e, es,..., e, will leave behind a tree ¢ (Exercise 5). In
particular, if we delete the edge ¢;, then the resulting tree ¢ will have a
cost no more than the cost of t' (as cost(e;) > cost(e)). Hence, t" is also a
minimuin-cost tree.

By repeatedly using the transformation described above, tree t' can be
transformed into the spanning tree ¢ without any increase in cost. Hence, ¢
is a minimum-cost spanning tree. ad

4.5.3 An Optimal Randomized Algorithm (x)

Any algorithm for finding the minimum-cost spanning tree of a given graph
G(V, E) will have to spend Q(|V| + |E|) time in the worst case, since it
has to examine each node and each edge at least once before determining
the correct answer. A randomized Las Vegas algorithm that runs in time
O(|V|+ |E|) can be devised as follows: (1) Randomly sample m edges from
G (for some suitable m). (2) Let G’ be the induced subgraph; that is, G’
has V as its node set and the sampled edges in its edge set. The subgraph
G’ need not be connected. Recursively find a minimum-cost spanning tree
for each component of G’. Let F' be the resultant minimum-cost spanning
forest of G'. (3) Using F', eliminate certain edges (called the F'-heavy edges)
of G that cannot possibly be in a minimum-cost spanning tree. Let G” be
the graph that results from G after elimination of the F-heavy edges. (4)
Recursively find a minimum-cost spanning tree for G”. This will also be a
minimum-cost spanning tree for G.

Steps 1 to 3 are useful in reducing the number of edges in G. The al-
gorithim can be speeded up further if we can reduce the number of nodes
in the input graph as well. Such a node elimination can be effected using
the Borivka steps. In a Boruvka step, for each node, an incident edge with
minimum weight is chosen. For example in Figure 4.9(a), the edge (1,3) is

226 CHAPTER 4. THE GREEDY METHOD

chosen for node 1, the edge (6,7) is chosen for node 7, and so on. All the
chosen edges are shown with thick lines. The connected components of the
induced graph are found. In the example of Figure 4.9(a), the nodes 1, 2,
and 3 form one component, the nodes 4 and 5 form a second component,
and the nodes 6 and 7 form another component. Replace each component
with a single node. The component with nodes 1, 2, and 3 is replaced with
the node a. The other two components are replaced with the nodes b and c,
respectively. Edges within the individual components are thrown away. The
resultant graph is shown in Figure 4.9(b). In this graph keep only an edge
of minimum weight between any two nodes. Delete any isolated nodes.

Since an edge is chosen for every node, the number of nodes after one
Boruvka step reduces by a factor of at least two. A minimum-cost span-
ning tree for the reduced graph can be extended easily to get a minimum-
cost spanning tree for the original graph. If E’ is the set of edges in the
minimum-cost spanning tree of the reduced graph, we simply include into
E' the edges chosen in the Boruvka step to obtain the minimum-cost span-
ning tree edges for the original graph. In the example of Figure 4.9, a
minimum-cost spanning tree for (c) will consist of the edges (a,b) and (b, c).
Thus a minimum-cost spanning tree for the graph of (a) will have the edges:
(1,3),(3,2),(4,5),(6,7),(3,4), and (2,6). More details of the algorithms are

given below.

Definition 4.2 Let F be a forest that forms a subgraph of a given weighted
graph G(V, E). If u and v are any two nodes in F', let F'(u,v) denote the path
(if any) connecting u and v in F' and let Fcost(u,v) denote the maximum
weight of any edge in the path F'(u,v). If there is no path between u and
v in F, Fcost(u,v) is taken to be co. Any edge (z,y) of G is said to be
F-heavy if cost[z,y] > Fcost(z,y) and F-light otherwise. O

Note that all the edges of F' are F-light. Also, any F-heavy edge cannot
belong to a minimum-cost spanning tree of G. The proof of this is left as
an exercise. The randomized algorithm applies two Boruvka steps to reduce
the number of nodes in the input graph. Next, it samples the edges of G and
processes them to eliminate a constant fraction of them. A minimum-cost
spanning tree for the resultant reduced graph is recursively computed. From
this tree, a spanning tree for GG is obtained. A detailed description of the
algorithm appears as Algorithm 4.11.

Lemma 4.3 states that Step 4 can be completed in time O(|V] + |E|).
The proof of this can be found in the references supplied at the end of this
chapter. Step 1 takes O(|V|+|E|) time and step 2 takes O(|E|) time. Step 6
takes O(|E|) time as well. The time taken in all the recursive calls in steps 3
and 5 can be shown to be O(|V|+|E|). For a proof, see the references at the
end of the chapter. A crucial fact that is used in the proof is that both the
number of nodes and the number of edges are reduced by a constant factor,
with high probability, in each level of recursion.

4.5. MINIMUM-COST SPANNING TREES 227

(b) (©)

Figure 4.9 A Boruvka step

Lemma 4.3 Let G(V, E) be any weighted graph and let F' be a subgraph
of G that formus a forest. Then, all the F-heavy edges of G can be identified

in time O(|V| + | E)). O
Theorem 4.7 A minimum-weight spanning tree for any given weighted
graph can be computed in time O(|V| + |E|). O
EXERCISES

1. Compute a minimum cost spanning tree for the graph of Figure 4.10
using (a) Primn’s algorithm and (b) Kruskal’s algorithm.

2. Prove that Prim’s method of this section generates minimum-cost
spanning trees.

228

CHAPTER 4. THE GREEDY METHOD

Step 1. Apply two Boruvka steps. At the end, the number of
nodes will have decreased by a factor at least 4. Let the resultant

graph be G(V, E).

Step 2. Form a subgraph G/(V', E') of G, where each edge of G
is chosen randomly to be in E’ with probability % The expected
\E

number of edges in E' is 5.

Step 3. Recursively find a minimum-cost spanning forest F' for
G

Step 4. Eliminate all the F-heavy edges from G. With high

probability, at least a constant fraction of the edges of G will be
eliminated. Let G” be the resultant graph.

Step 5. Compute a minimum-cost spanning tree (call it T")
for G" recursively. The tree T" will also be a minimum-cost

spanning tree for G.

Step 6. Return the edges of T” together with the edges chosen in
the Boruvka steps of step 1. These are the edges of a minimum-
cost spanning tree for G.

Algorithm 4.11 An optimal randomized algorithm

3.

4.

5.

(a) Rewrite Prim’s algorithm under the assumption that the graphs

are represented by adjacency lists.

(b) Program and run the above version of Prim’s algorithm against
Algorithm 4.9. Compare the two on a representative set of graphs.

(c) Analyze precisely the computing time and space requirements of

your new version of Prim’s algorithm using adjacency lists.

Program and run Kruskal’s algorithm, described in Algorithm 4.10.
You will have to modify functions Heapify and Adjust of Chapter 2. Use
the same test data you devised to test Prim’s algorithm in Exercise 3.

(a) Show that if ¢ is a spanning tree for the undirected graph G, then
the addition of an edge q, ¢ ¢ E(t) and g € E(G), to t creates a

unique cycle.

4.6. OPTIMAL STORAGE ON TAPES 229

Figure 4.10 Graph for Exercise 1

(b) Show that if any of the edges on this unique cycle is deleted from
E(t) U{q}, then the remaining edges form a spanning tree of G.

6. In Figure 4.9, find a minimum-cost spanning tree for the graph of part
(c) and extend the tree to obtain a minimum cost spanning tree for the
graph of part (a). Verify the correctness of your answer by applying
either Prim’s algorithm or Kruskal’s algorithm on the graph of part

(a).
7. Let G(V, E) be any weighted connected graph.

(a) If C is any cycle of G, then show that the heaviest edge of C
cannot belong to a minimum-cost spanning tree of G.

(b) Assume that F' is a forest that is a subgraph of G. Show that any
F-heavy edge of G cannot belong to a minimum-cost spanning
tree of G.

8. By considering the complete graph with n vertices, show that the num-
ber of spanning trees in an n vertex graph can be greater than 2" ~!—2.

4.6 OPTIMAL STORAGE ON TAPES

There are n programs that are to be stored on a computer tape of length
I. Associated with each program i is a length /;,1 < ¢ < n. Clearly, all
programs can be stored on the tape if and only if the sum of the lengths of

230 CHAPTER 4. THE GREEDY METHOD

the programs is at most . We assume that whenever a program is to be
retrieved from this tape, the tape is initially positioned at the front. Hence,
if the programs are stored in the order I = iy,1o,...,%,, the time ¢; needed
to retrieve program i; is proportional to >>;cy<;li,. If all programs are
retrieved equally often, then the expected or mean retrieval time (MRT) is
(1/n) ¥ 1<j<ntj- In the optimal storage on tape problem, we are required
to find a permutation for the n programs so that when they are stored
on the tape in this order the MRT is minimized. This problem fits the
ordering paradigm. Minimizing the MRT is equivalent to minimizing d(I) =
21<j<n 21<k<; big-

Example 4.8 Let n = 3 and (I1,ls,l3) = (5,10,3). There are n! = 6
possible orderings. These orderings and their respective d values are:

ordering I d(I)
1,2,3 5+5+104+5+10+3 = 38
1,3,2 5+5+3+5+3+10 = 31
2,1,3 10+104+5+10+5+3 = 43
2,3,1 0+10+3+10+3+5 = 41
3,1,2 3+3+5+3+54+10 = 29
3,2,1 3+3+104+3+104+5 = 34
The optimal ordering is 3,1, 2. |

A greedy approach to building the required permutation would choose
the next program on the basis of some optimization measure. One possible
measure would be the d value of the permutation constructed so far. The
next program to be stored on the tape would be one that minimizes the
increase in d. If we have already constructed the permutation 1,io,...,1%,,
then appending program j gives the permutation iy,%9,...,%,,%-4+1 = j. This
increases the d value by > 1.« l;, +1;. Since Y} <, l;, is fixed and in-
dependent of j, we trivially observe that the increase in d is minimized if
the next program chosen is the one with the least length from among the
remaining programs.

The greedy algorithm resulting from the above discussion is so simple
that we won’t bother to write it out. The greedy method simply requires us
to store the programs in nondecreasing order of their lengths. This ordering
can be carried out in O(nlogn) time using an efficient sorting algorithm
(e.g., heap sort from Chapter 2). For the programs of Example 4.8, note
that the permutation that yields an optimal solution is the one in which the
programs are in nondecreasing order of their lengths. Theorem 4.8 shows
that the MRT is minimized when programs are stored in this order.

4.6. OPTIMAL STORAGE ON TAPES 231

Theorem 4.8 If [<[y < --- < [, then the ordering i; = 5,1 < 7 < n,
minimizes

over all possible permutations of the ;.

Proof: Let I =iy,1i9,...,1i, be any permutation of the index set {1,2,...,n}.
Then
n k n
dI) ="l => (n—k+ 1l
k=1j=1 k=1

If there exist a and b such that a < b and [;, > [;,, then interchanging i,
and i, results in a permutation I’ with

d(I) = [S"(n—k+ Dl | +(n—a+ D, +(n—b+ 1),
A':E
Kb

Subtracting d(I') from d(I), we obtain

d([) — d([’) = (n —a+ 1)(lz'a - lib) + (’IL —b+ 1)(lib — lia)
= (()b~(1)(li(L —lib)
>

Hence, no permutation that is not in nondecreasing order of the [;’s can
have minimum d. It is easy to see that all permutations in nondecreasing
order of the [;’s have the same d value. Hence, the ordering defined by
i; = J,1 < j < n, minimizes the d value. O

The tape storage problem can be extended to several tapes. If there are
m > 1 tapes, Ty,..., T, 1, then the programs are to be distributed over
these tapes. For each tape a storage permutation is to be provided. If I;
is the storage permutation for the subset of programs on tape j, then d(Ijg
is as defined earlier. The total retrieval time (I'D) is Y o< j<m—1 d(Ij). The
objective is to store the programs in such a way as to minimize T D.

The obvious generalization of the solution for the one-tape case is to
consider the programs in nondecreasing order of /;’s. The program currently

232 CHAPTER 4. THE GREEDY METHOD

Algorithm Store(n, m)
// n is the number of programs and m the number of tapes.

j:=0; // Next tape to store on
for i :=1ton do

write ("append program", i,
"to permutation for tape", j);
j:=({ +1) mod my
0
1}

— = OG0~ Ui W —

Algorithm 4.12 Assigning programs to tapes

being considered is placed on the tape that results in the minimum increase
in T'D. This tape will be the one with the least amount of tape used so
far. If there is more than one tape with this property, then the one with
the smallest index can be used. If the jobs are initially ordered so that I; <
I < --- <y, then the first m programs are assigned to tapes Tg, ..., Tm_1
respectively. The next m programs will be assigned to tapes Tg,...,Tm—1
respectively. The general rule is that program ¢ is stored on tape Tj mod m-
On any given tape the programs are stored in nondecreasing order of their
lengths. Algorithm 4.12 presents this rule in pseudocode. It assumes that
the programs are ordered as above. It has a computing time of ©(n) and
does not need to know the program lengths. Theorem 4.9 proves that the
resulting storage pattern is optimal.

Theorem 4.9 If I; < [, < --. < [, then Algorithm 4.12 generates an
optimal storage pattern for m tapes.

Proof: In any storage pattern for m tapes, let r; be one greater than the
number of programs following program i on its tape. Then the total retrieval
time T'D is given by

In any given storage pattern, for any given n, there can be at most m pro-
grams for which 7; = j. From Theorem 4.8 it follows that T'D is minimized
if the m longest programs have r; = 1, the next m longest programs have

4.6. OPTIMAL STORAGE ON TAPES 233

r; = 2, and so on. When programs are ordered by length, that is, {; <[, <
-+« < lp, then this minimization criteria is satisfied if r; = [(n — i+ 1)/m)].
Observe that Algorithm 4.12 results in a storage pattern with these r;’s. O

The proof of Theorem 4.9 shows that there are many storage patterns
that minimize TD. If we compute r; = [(n — 4+ 1)/m] for each program i,
then so long as all programs with the same r; are stored on different tapes
and have r; — 1 programs following them, T'D is the same. If n is a multiple
of m, then there are at least (m!)”/ ™ storage patterns that minimize T'D.
Algorithm 4.12 produces one of these.

EXERCISES

1. Find an optimal placement for 13 programs on three tapes Ty, T}, and
T5, where the programs are of lengths 12,5,8,32,7,5,18, 26,4, 3,11, 10,
and 6.

2. Show that replacing the code of Algorithin 4.12 by

for i :=1to n do
write ("append program", i, "to permutation for
tape", (i — 1) mod m);

does not aftfect the output.

3. Let P1, Py, ..., P, be aset of n programs that are to be stored on a tape
of length [. Program P; requires a; amount of tape. If Y a; <[, then
clearly all the programs can be stored on the tape. So, assume > a; > [.
The problem is to select a maximum subset @ of the programs for
storage on the tape. (A maximum subset is one with the maximum
number of programs in it). A greedy algorithm for this problem would
build the subset @ by including programs in nondecreasing order of a;.

(a) Assume the P; are ordered such that a) < as < --- < a,. Write
a function for the above strategy. Your function should output
an array s[1 : n] such that s[f] = 1 if P, is in @ and si] = 0
otherwise.

(b) Show that this strategy always finds a maximum subset () such
that ZP;‘EQ a; <.

(¢) Let @ be the subset obtained using the above greedy strategy.
How small can the tape utilization ratio (3_p.cq ai)/l get?

(d) Suppose the objective now is to determine a subset of programs
that maximizes the tape utilization ratio. A greedy approach

234

CHAPTER 4. THE GREEDY METHOD

would be to consider programs in nonincreasing order of a;. If
there is enough space left on the tape for P;, then it is included in
(. Assume the programs are ordered so that a; > as > -+ > a,.
Write a function incorporating this strategy. What is its time and
space complexity?

(e) Show that the strategy of part (d) doesn’t necessarily yield a
subset that maximizes (3_pcgai)/l. How small can this ratio
get? Prove your bound.

4. Assume n programs of lengths ly,ls,...,1, are to be stored on a tape.

Program i is to be retrieved with frequency f;. If the programs are
stored in the order ¢1,1i9,...,i,, the expected retrieval time (ERT) is

[Z(fij S,)} /Y fi
J k=1

(a) Show that storing the programs in nondecreasing order of I; does
not necessarily minimize the ERT.

(b) Show that storing the programs in nonincreasing order of f; does
not necessarily minimize the ERT.

(¢) Show that the ERT is minimized when the programs are stored
in nonincreasing order of f;/l;.

Consider the tape storage problem of this section. Assume that two
tapes T1 and T2, are available and we wish to distribute n given
programs of lengths {y,[s,...,0, onto these two tapes in such a manner
that the maximum retrieval time is minimized. That is, if A and B are
the sets of programs on the tapes T'1 and T2 respectively, then we wish
to choose A and B such that max { Y ;c4li, > ;epli } is minimized. A
possible greedy approach to obtaining A and B would be to start with
A and B initially empty. Then consider the programs one at a time.
The program currently being considered is assigned to set A if 3 ;- 4 l;
=min { Y ;cali,>cpli }; otherwise it is assigned to B. Show that
this does not guarantee optimal solutions even if [< [y < --. < [,
Show that the same is true if we require iy > 1o > -+ > [,.

4.7 OPTIMAL MERGE PATTERNS

In Section 3.4 we saw that two sorted files containing n and m records
respectively could be merged together to obtain one sorted file in time O(n+
m). When more than two sorted files are to be merged together, the merge
can be accomplished by repeatedly merging sorted files in pairs. Thus, if

4.7. OPTIMAL MERGE PATTERNS 235

files z,, 2, z3, and z4 are to be merged, we could first merge z; and zo
to get a file y;. Then we could merge y; and z3 to get yo. Finally, we
could merge y» and z4 to get the desired sorted file. Alternatively, we could
first merge z; and xy getting y;, then merge z3 and x4 and get ys, and
finally merge y; and yo and get the desired sorted file. Given n sorted files,
there are many ways in which to pairwise merge them into a single sorted
file. Different pairings require differing amounts of computing time. The
problem we address ourselves to now is that of determining an optimal way
(one requiring the fewest comparisons) to pairwise merge n sorted files. Since
this problem calls for an ordering among the pairs to be merged, it fits the
ordering paradigm.

Example 4.9 The files 2, 25, and z3 are three sorted files of length 30, 20,
and 10 records each. Merging x, and z» requires 50 record moves. Merging
the result with z3 requires another 60 moves. The total number of record
moves required to merge the three files this way is 110. If, instead, we first
merge x9 and 3 (taking 30 moves) and then z; (taking 60 moves), the total
record moves made is only 90. Hence, the second merge pattern is faster
than the first. ad

A greedy attempt to obtain an optimal merge pattern is easy to formulate.
Since merging an n-record file and an m-record file requires possibly n +
m record moves, the obvious choice for a selection criterion is: at each
step merge the two smallest size files together. Thus, if we have five files
(x1,...,z5) with sizes (20, 30, 10,5, 30), our greedy rule would generate the
following merge pattern: merge x4 and x3 to get 21 (]z1] = 15), merge z; and
x1 to get zo (Jz2| = 35), merge z9 and x5 to get 23 (23] = 60), and merge
7o and z3 to get the answer z4. The total number of record moves is 205.
One can verify that this is an optimal merge pattern for the given problem
instance.

The merge pattern such as the one just described will be referred to
as a two-way merge pattern (each merge step involves the merging of two
files). The two-way merge patterns can be represented by binary merge
trees. Figure 4.11 shows a binary rerge tree representing the optimal merge
pattern obtained for the above five files. The leaf nodes are drawn as squares
and represent the given five files. These nodes are called external nodes. The
remaining nodes are drawn as circles and are called internal nodes. Each
internal node has exactly two children, and it represents the file obtained
by merging the files represented by its two children. The number in each
node is the length (i.e., the number of records) of the file represented by that
node.

The external node z4 is at a distance of 3 from the root node z4 (a node
at level i is at a distance of 4 — 1 from the root). Hence, the records of file
x4 are moved three times, once to get 21, once again to get zo, and finally
one more time to get z4. If d; i1s the distance from the root to the external

236 CHAPTER 4. THE GREEDY METHOD

X 4 X3

Figure 4.11 Binary merge tree representing a merge pattern

node for file z; and g;, the length of z; is then the total number of record
moves for this binary merge tree is

n
> dig;
i=1

This sum is called the weighted ezxternal path length of the tree.

An optimal two-way merge pattern corresponds to a binary merge tree
with minimum weighted external path length. The function Tree of Algo-
rithm 4.13 uses the greedy rule stated earlier to obtain a two-way merge
tree for n files. The algorithm has as input a list list of n trees. Each node
in a tree has three fields, lchild, rchild, and weight. Initially, each tree in
list has exactly one node. This node is an external node and has [child and
rchild fields zero whereas weight is the length of one of the n files to be
merged. During the course of the algorithm, for any tree in list with root
node ¢, t — weight is the length of the merged file it represents (t — weight
equals the sum of the lengths of the external nodes in tree ¢). Function Tree
uses two functions, Least(list) and Insert(list,t). Least(list) finds a tree in
list whose root has least weight and returns a pointer to this tree. This tree
is removed from [ist. Insert(list,t) inserts the tree with root ¢ into list. The-
orem 4.10 shows that Tree (Algorithm 4.13) generates an optimal two-way
merge tree.

4.7. OPTIMAL MERGE PATTERNS 237

treenode = record {
treenode * [child; treenode x rchild,
integer weight;

}

1 Algorithm Tree(n)

2 // list is a global list of n single node

3 // binary trees as described above.

4

5 fori:=1ton—-1do

6 {

7 pt ;= new treenode; // Get a new tree node.

8 (pt — lchild) := Least(list); // Merge two trees with
9 (pt — rchild) := Least(list); // smallest lengths.

10 (pt — weight) := ((pt — lchild) — weight)

11 +((pt — rchild) — weight);

12 Insert(list, pt);

13

14 return Least(list); // Tree left in list is the merge tree.
15 }

Algorithm 4.13 Algorithm to generate a two-way merge tree

Example 4.10 Let us see how algorithm Tree works when [ist initially rep-
resents six files with lengths (2,3,5,7,9,13). Figure 4.12 shows list at the
end of each iteration of the for loop. The binary merge tree that results at
the end of the algorithm can be used to determine which files are merged.
Merging is performed on those files which are lowest (have the greatest
depth) in the tree.

The main for loop in Algorithm 4.13 is executed n — 1 times. If list
is kept in nondecreasing order according to the weight value in the roots,
then Least(list) requires only O(1) time and Insert(list,t) can be done in
O(n) time. Hence the total time taken is O(n?). In case list is represented
as a minheap in which the root value is less than or equal to the values of
its children (Section 2.4), then Least(list) and Insert(list,t) can be done in
O(logn) time. In this case the computing time for Tree is O(nlogn). Some
speedup may be obtained by combining the Insert of line 12 with the Least
of line 9.

238 CHAPTER 4. THE GREEDY METHOD

Theorem 4.10 If [¢st initially contains n > 1 single node trees with weight
values (q1,92,...,qn), then algorithm Tree generates an optimal two-way
merge tree for n files with these lengths.

Proof: The proof is by induction on n. For n = 1, a tree with no internal
nodes is returned and this tree is clearly optimal. For the induction hypoth-
esis, assume the algorithm generates an optimal two-way merge tree for all
(g1,92,---,qm), 1 <m < n. We show that the algorithm also generates op-
timal trees for all (q1,qo,...,q,). Without loss of generality, we can assume
that ¢ < ¢o < --- < ¢, and ¢ and ¢ are the values of the weight fields
of the trees found by algorithm Least in lines 8 and 9 during the first itera-
tion of the for loop. Now, the subtree T of Figure 4.13 is created. Let T"
be an optimal two-way merge tree for (¢1,492,...,qn). Let p be an internal
node of maximum distance from the root. If the children of p are not ¢;
and ¢o, then we can interchange the present children with ¢; and g with-
out increasing the weighted external path length of 7'. Hence, T is also a
subtree in an optimal merge tree. If we replace 7' in 77 by an external node
with weight ¢; + ¢o, then the resulting tree T is an optimal merge tree for
(g1 + 92,93, ---,Gn). From the induction hypothesis, after replacing T' by the
external node with value q; + g9, function Tree proceeds to find an optimal
merge tree for (q; + ¢2,43,...,q,). Hence, Tree generates an optimal merge
tree for (q1,q9,...,qn)- O

The greedy method to generate merge trees also works for the case of k-
ary merging. In this case the corresponding merge tree is a k-ary tree. Since
all internal nodes must have degree k, for certain values of n there is no
corresponding k-ary merge tree. For example, when k = 3, there is no k-ary
merge tree with n = 2 external nodes. Hence, it is necessary to introduce
a certain number of dummy external nodes. Each dummy node is assigned
a g¢; of zero. This dummy value does not affect the weighted external path
length of the resulting k-ary tree. Exercise 2 shows that a k-ary tree with
all internal nodes having degree k exists only when the number of external
nodes n satisfies the equality n mod(k—1) = 1. Hence, at most k£ —2 dummy
nodes have to be added. The greedy rule to generate optimal merge trees
is: at each step choose k subtrees with least length for merging. Exercise 3
proves the optimality of this rule.

Huffman Codes

Another application of binary trees with minimal weighted external path
length is to obtain an optimal set of codes for messages My, ..., My,4;. Each
code is a binary string that is used for transmission of the corresponding
message. At the receiving end the code is decoded using a decode tree.
A decode tree is a binary tree in which external nodes represent messages.

4.7. OPTIMAL MERGE PATTERNS 239

after
iteration

initial 2] 9]

SEEORRLE L
2 3

list

2 (10} 7] 9] [13
5
el

Figure 4.12 Trees in [ist of Tree for Example 4.10

240 CHAPTER 4. THE GREEDY METHOD

T

q1 q2

Figure 4.13 The simplest binary merge tree

Figure 4.14 Huffman codes

The binary bits in the code word for a message determine the branching
needed at each level of the decode tree to reach the correct external node.
For example, if we interpret a zero as a left branch and a one as a right
branch, then the decode tree of Figure 4.14 corresponds to codes 000, 001,
01, and 1 for messages M, My, M3, and M, respectively. These codes are
called Huffman codes. The cost of decoding a code word is proportional to
the number of bits in the code. This number is equal to the distance of
the corresponding external node from the root node. If g; is the relative
frequency with which message M; will be transmitted, then the expected
decode time is)1 ;<41 ¢idi, where d; is the distance of the external node
for message M; from the root node. The expected decode time is minimized
by choosing code words resulting in a decode tree with minimal weighted
external path length! Note that >, .1 ¢id; is also the expected length
of a transmitted message. Hence the code that minimizes expected decode
time also minimizes the expected length of a message.

4.8. SINGLE-SOURCE SHORTEST PATHS 241

EXERCISES

1. Find an optimal binary merge pattern for ten files whose lengths are
28,32,12,5,84,53,91,35,3, and 11.

2. (a)

Show that if all internal nodes in a tree have degree &, then the
number n of external nodes is such that n» mod (k —1) = 1.

Show that for every n such that n mod (k —1) = 1, there exists a
k-ary tree T with n external nodes (in a k-ary tree all nodes have
degree at most k). Also show that all internal nodes of T' have
degree k.

Show that if » mod (k — 1) = 1, then the greedy rule described
following Theorem 4.10 generates an optimal k-ary merge tree for
all (q1,42,---,qn)-

Draw the optimal three-way merge tree obtained using this rule
when (ql, qo. ... ,qu) = (3, 7, 8, 9, 15, 16, 18, 20, 23, 25, 28)

4. Obtain a set of optimal Huffman codes for the messages (M,..., M7)
with relative frequencies (qi,...,q7) = (4,5,7,8,10,12,20). Draw the
decode tree for this set of codes.

5. Let T be a decode tree. An optimal decode tree minimizes > ¢;d;. For
a given set of ¢’s, let D denote all the optimal decode trees. For any tree
T € D, let L(T) = max {d; } and let SL(T') = }_d;. Schwartz has shown
that there exists a tree T* € D such that L(T*) = mingep {L(T)}
and SL(T*) = minyep {SL(T)}.

(a)
(b)
()

For (¢q1,...,q8) = (1,1,2,2,4,4,4,4) obtain trees T'1 and T2 such
that L(T1) > L(T2).

Using the data of a, obtain T'1 and T2 € D such that L(T1) =
L(T2) but SL(T1) > SL(T2).

Show that if the subalgorithm Least used in algorithm Tree is such

that in case of a tie it returns the tree with least depth, then Tree
generates a tree with the properties of 1.

4.8 SINGLE-SOURCE SHORTEST PATHS

Graphs can be used to represent the highway structure of a state or country
with vertices representing cities and edges representing sections of highway.
The edges can then be assigned weights which may be either the distance
between the two cities connected by the edge or the average time to drive
along that section of highway. A motorist wishing to drive from city A to B
would be interested in answers to the following questions:

242 CHAPTER 4. THE GREEDY METHOD

Path Length
11,4 10
2) 1,4,5 25
3) 1,4,5,2 45
4) 1,3 45
(a) Graph (b) Shortest paths from 1

Figure 4.15 Graph and shortest paths from vertex 1 to all destinations

e [s there a path from A to B?

e If there is more than one path from A to B, which is the shortest path?

The problems defined by these questions are special cases of the path
problem we study in this section. The length of a path is now defined to
be the sum of the weights of the edges on that path. The starting vertex
of the path is referred to as the source, and the last vertex the destination.
The graphs are digraphs to allow for one-way streets. In the problem we
consider, we are given a directed graph G = (V, E), a weighting function
cost for the edges of G, and a source vertex vg. The problem is to determine
the shortest paths from vy to all the remaining vertices of G. It is assumed
that all the weights are positive. The shortest path between vy and some
other node v is an ordering among a subset of the edges. Hence this problem
fits the ordering paradigm.

Example 4.11 Consider the directed graph of Figure 4.15(a). The numbers
on the edges are the weights. If node 1 is the source vertex, then the shortest
path from 1 to 2 is 1,4,5,2. The length of this path is 10 + 15 + 20 = 45.
Even though there are three edges on this path, it is shorter than the path
1,2 which is of length 50. There is no path from 1 to 6. Figure 4.15(b)
lists the shortest paths from node 1 to nodes 4, 5,2, and 3, respectively. The
paths have been listed in nondecreasing order of path length. m]

To formulate a greedy-based algorithm to generate the shortest paths,
we must conceive of a multistage solution to the problem and also of an
optimization measure. One possibility is to build the shortest paths one by

4.8. SINGLE-SOURCE SHORTEST PATHS 243

one. As an optimization measure we can use the sum of the lengths of all
paths so far generated. For this measure to be minimized, each individual
path must be of minimum length. If we have already constructed ¢ shortest
paths, then using this optimization measure, the next path to be constructed
should be the next shortest minimum length path. The greedy way (and also
a systematic way) to generate the shortest paths from vy to the remaining
vertices is to generate these paths in nondecreasing order of path length.
First, a shortest path to the nearest vertex is generated. Then a shortest
path to the second nearest vertex is generated, and so on. For the graph
of Figure 4.15(a) the nearest vertex to vg = 1 is 4 (cost[1,4] = 10). The
path 1,4 is the first path generated. The second nearest vertex to node 1
is 5 and the distance between 1 and 5 is 25. The path 1,4,5 is the next
path generated. In order to generate the shortest paths in this order, we
need to be able to determine (1) the next vertex to which a shortest path
must be generated and (2) a shortest path to this vertex. Let S denote the
set of vertices (including vg) to which the shortest paths have already been
generated. For w not in S, let dist[w] be the length of the shortest path
starting from vg, going through only those vertices that are in S, and ending
at w. We observe that:

1. If the next shortest path is to vertex u, then the path begins at v,
ends at u, and goes through only those vertices that are in §. To prove
this, we must show that all the intermediate vertices on the shortest
path to u are in §. Assume there is a vertex w on this path that is not
in S. Then, the vy to u path also contains a path from vg to w that is
of length less than the vy to u path. By assumption the shortest paths
are being generated in nondecreasing order of path length, and so the
shorter path vy to w must already have been generated. Hence, there
can be no intermediate vertex that is not in S.

2. The destination of the next path generated must be that of vertex u
which has the minimum distance, dist[u], among all vertices not in S.
This follows from the definition of dist and observation 1. In case there
are several vertices not in § with the same dist, then any of these may
be selected.

3. Having selected a vertex u as in observation 2 and generated the short-
est vy to u path, vertex u becomes a member of S. At this point the
length of the shortest paths starting at vy, going though vertices only
in S, and ending at a vertex w not in S may decrease; that is, the
value of dist[w] may change. If it does change, then it must be due
to a shorter path starting at vg and going to » and then to w. The
intermediate vertices on the vy to u path and the u to w path must
all be in S. Further, the vy to v path must be the shortest such path;
otherwise dist[w] is not defined properly. Also, the u to w path can
be chosen so as not to contain any intermediate vertices. Therefore,

244 CHAPTER 4. THE GREEDY METHOD

we can conclude that if dist[w] is to change (i.e., decrease), then it is
because of a path from vy to u to w, where the path from vy to u is
the shortest such path and the path from u to w is the edge (u,w).
The length of this path is dist[u] + cost[u, w].

The above observations lead to a simple Algorithm 4.14 for the single-
source shortest path problem. This algorithm (known as Dijkstra’s algo-
rithm) only determines the lengths of the shortest paths from vy to all other
vertices in G. The generation of the paths requires a minor extension to this
algorithm and is left as an exercise. In the function ShortestPaths (Algorithm
4.14) it is assumed that the n vertices of G are numbered 1 through n. The
set S is maintained as a bit array with S[¢] = 0 if vertex ¢ is not in S and
S[i) = 1if it is. It is assumed that the graph itself is represented by its cost
adjacency matrix with cost[i, j]’s being the weight of the edge (i,7). The
weight cost|i, 7] is set to some large number, oo, in case the edge (i, j) is not
in E(G). For i = j, cost[i, j| can be set to any nonnegative number without
affecting the outcome of the algorithm.

From our earlier discussion, it is easy to see that the algorithm is correct.
The time taken by the algorithm on a graph with n vertices is O(n?). To
see this, note that the for loop of line 7 in Algorithm 4.14 takes ©(n) time.
The for loop of line 12 is executed n — 2 times. Each execution of this loop
requires O(n) time at lines 15 and 16 to select the next vertex and again
at the for loop of line 18 to update dist. So the total time for this loop is
O(n?). In case a list ¢ of vertices currently not in s is maintained, then the
number of nodes on this list would at any time be n — num. This would
speed up lines 15 and 16 and the for loop of line 18, but the asymptotic
time would remain O(n?). This and other variations of the algorithm are
explored in the exercises.

Any shortest path algorithm must examine each edge in the graph at
least once since any of the edges could be in a shortest path. Hence, the
minimum possible time for such an algorithm would be (| E|). Since cost
adjacency matrices were used to represent the graph, it takes O(n?) time
just to determine which edges are in G, and so any shortest path algorithm
using this representation must take €(n?) time. For this representation then,
algorithm ShortestPaths is optimal to within a constant factor. If a change
to adjacency lists is made, the overall frequency of the for loop of line 18 can
be brought down to O(|E|) (since dist can change only for vertices adjacent
from u). If V — S is maintained as a red-black tree (see Section 2.4.2), each
execution of lines 15 and 16 takes O(logn) time. Note that a red-black
tree supports the following operations in O(logn) time: insert, delete (an
arbitrary element), find-min, and search (for an arbitrary element). Each
update in line 21 takes O(logn) time as well (since an update can be done
using a delete and an insertion into the red-black tree). Thus the overall run
time is O((n + |E|) log n).

4.8. SINGLE-SOURCE SHORTEST PATHS 245

1 Algorithm ShortestPaths(v, cost, dist, n)

2 // dist[j], 1 < j <mn,is set to the length of the shortest
3 // path from vertex v to vertex j in a digraph G with n
4 // vertices. dist[v] is set to zero. G is represented by its
5 /] cost adjacency matrix cost[l : n,1 : n].

6

7 for ::=1 to n do

8 { // Initialize S.

9 S[t] := false; dist[i] := cost[v, i];

10

11 S[v] := true; dist[v] := 0.0; // Put v in S.

12 for num:=2ton—1do

13 {

14 // Determine n — 1 paths from v.

15 Choose v from among those vertices not

16 in S such that dist[u] is minimum;

17 S[u] :=true; // Put win S.

18 for (each w adjacent to u with S[w] = false) do
19 // Update distances.

20 if (dist[w] > dist[u] + cost[u,w])) then

21 dist{w] := dist[u] + cost[u, w];

22

23}

Algorithm 4.14 Greedy algorithm to generate shortest paths

Example 4.12 Consider the eight vertex digraph of Figure 4.16(a) with
cost adjacency matrix as in Figure 4.16(b). The values of dist and the
vertices selected at each iteration of the for loop of line 12 in Algorithm 4.14
for finding all the shortest paths from Boston are shown in Figure 4.17. To
begin with, § contains only Boston. In the first iteration of the for loop
(that is, for num = 2), the city u that is not in S and whose dist[u] is
minimum is identified to be New York. New York enters the set S. Also the
dist[] values of Chicago, Miami, and New Orleans get altered since there are
shorter paths to these cities via New York. In the next iteration of the for
loop, the city that enters S is Miami since it has the smallest dist[] value
from among all the nodes not in S. None of the dist[| values are altered.
The algorithm continues in a similar fashion and terminates when only seven
of the eight vertices are in S. By the definition of dist, the distance of the
last vertex, in this case Los Angeles, is correct as the shortest path from
Boston to Los Angeles can go through only the remaining six vertices. O

246 CHAPTER 4. THE GREEDY METHOD

Boston

Chicago 1500
« 250
New York

900

San Francisc%

by
300 enver
1000 1700

1
Los Angeles New Orleans
Miami
(a) Digraph
1 2 3 4 5 6 7 8
1 [o0]
2 300 0
3 100 800 0
4 1200 0
5 1500 0 250
6 1000 0 900 1400
7 0 1000
8 1700 0

(b) Length-adjacency matrix

Figure 4.16 Figures for Example 4.12

One can easily verify that the edges on the shortest paths from a ver-
tex v to all remaining vertices in a connected undirected graph G form a
spanning tree of G. This spanning tree is called a shortest-path spanning
tree. Clearly, this spanning tree may be different for different root vertices
v. Figure 4.18 shows a graph G, its minimum-cost spanning tree, and a
shortest-path spanning tree from vertex 1.

4.8. SINGLE-SOURCE SHORTEST PATHS 247

i Distance
Iteration ' § Vertex LA SF DEN CHI BOST NY MilA NO
selected ‘ (1] 2] [3] (4] 51 (6] (7] (8]
Initial = -- — r +o0 +oo +oo 1500 0 250 +o0 oo |
1| {5} 6 oo 400 400 1250 0 250 1150 1650
2 1 {56) 7 400 400 oo 1250 0 250 1150 1650
3. {567} ‘ 4 +o0 +eo 2450 1250 0 250 1150 1650
4 | {5,6,7.4} 8 3350 +oo 2450 1250 0 250 1150 1650
5 {56,748} f 3 3350 3250 2450 1250 0 250 1150 1650
6 {5,6,74.8,3} 2 3350 3250 2450 1250 0 250 1150 1650
6,7,4,8,3,2
| {5,6,7, } ’ i

Figure 4.17 Action of ShortestPaths

EXERCISES

1. Use algorithin ShortestPaths to obtain in nondecreasing order the lengths
of the shortest paths from vertex 1 to all remaining vertices in the di-
graph of Figure 4.19.

2. Using the directed graph of Figure 4.20 explain why ShortestPaths will
not work properly. What is the shortest path between vertices v; and
vy 7

3. Rewrite algorithm ShortestPaths under the following assumptions:

(a) G is represented by its adjacency lists. The head nodes are
HEAD(1),..., HEAD(n) and each list node has three fields: VER-
TEX, COST, and LINK. COST is the length of the corresponding

edge and n the number of vertices in G.

(b) Instead of representing S, the set of vertices to which the shortest
paths have already been found, the set T = V(G) — S is repre-
sented using a linked list. What can you say about the computing
time of your new algorithm relative to that of ShortestPaths?

4. Modify algorithm ShortestPaths so that it obtains the shortest paths
in addition to the lengths of these paths. What is the computing time
of your algorithm?

248 CHAPTER 4. THE GREEDY METHOD

(c) Shortest path spanning tree from vertex 1.

Figure 4.18 Graphs and spanning trees

Figure 4.19 Directed graph

4.9. REFERENCES AND READINGS 249

Figure 4.20 Another directed graph

4.9 REFERENCES AND READINGS

The linear time algorithm in Section 4.3 for the tree vertex splitting problem
can be found in “Vertex upgrading problems for VLSI,” by D. Paik, Ph.D.
thesis, Department of Computer Science, University of Minnesota, October
1991.

The two greedy methods for obtaining minimum-cost spanning trees are
due to R. C. Prim and J. B. Kruskal, respectively.

An O(eloglogv) time spanning tree algorithm has been given by A. C.
Yao.

The optimal randomized algorithm for minimum-cost spanning trees pre-
sented in this chapter appears in “A randomized linear-time algorithm for
finding minimum spanning trees,” by P. N. Klein and R. E. Tarjan, in Pro-
ceedings of the 26th Annual Symposium on Theory of Computing, 1994, pp.
9-15. See also “A randomized linear-time algorithm to find minimum span-
ning trees,” by D. R. Karger, P. N. Klein, and R. E. Tarjan, Journal of the
ACM 42, no. 2 (1995): 321-328.

Proof of Lemma, 4.3 can be found in “Verification and sensitivity analysis
of minimum spanning trees in linear time,” by B. Dixon, M. Rauch, and R. E.
Tarjan, STAM Journal on Computing 21 (1992): 1184-1192; and in “A simple
minimum spanning tree verification algorithm,” by V. King, Proceedings of
the Workshop on Algorithms and Data Structures, 1995.

A very nearly linear time algorithm for minimum-cost spanning trees ap-
pears in “Efficient algorithms for finding minimum spanning trees in undi-
rected and directed graphs,” by H. N. Gabow, Z. Galil, T. Spencer, and
R. E. Tarjan, Combinatorica 6 (1986): 109-122.

250 CHAPTER 4. THE GREEDY METHOD

A linear time algorithm for minimum-cost spanning trees on a stronger
model where the edge weights can be manipulated in their binary form is
given in “Trans-dichotomous algorithms for minimum spanning trees and
shortest paths,” by M. Fredman and D. E. Willard, in Proceedings of the
31st Annual Symposium on Foundations of Computer Science, 1990, pp.
719-725.

The greedy method developed here to optimally store programs on tapes
was first devised for a machine scheduling problem. In this problem n jobs
have to be scheduled on m processors. Job i takes ¢; amount of time. The
time at which a job finishes is the sum of the job times for all jobs preced-
ing and including job i. The average finish time corresponds to the mean
access time for programs on tapes. The (m!)™/™ schedules referred to in
Theorem 4.9 are known as SPT (shortest processing time) schedules. The
rule to generate SPT schedules as well as the rule of Exercise 4 (Section 4.6)
are due to W. E. Smith.

The greedy algorithm for generating optimal merge trees is due to D.
Huffman.

For a given set {q1,...,q,} there are many sets of Huffman codes mini-
mizing > ¢;d;. From amongst these code sets there is one that has minimum
> d; and minimum max {d;}. An algorithm to obtain this code set was
given by E. S. Schwartz.

The shortest-path algorithm of the text is due to E. W. Dijkstra.

For planar graphs, the shortest-path problem can be solved in linear time
as has been shown in “Faster shortest-path algorithms for planar graphs,”
by P. Klein, S. Rao, and M. Rauch, in Proceedings of the ACM Symposium
on Theory of Computing, 1994.

The relationship between greedy methods and matroids is discussed in
Combinatorial Optimization, by E. Lawler, Holt, Rinehart and Winston,
1976.

4.10 ADDITIONAL EXERCISES

1. [Coin changing] Let A, = {a1,a2,...,a,} be a finite set of distinct
coin types (for example, a; = 50¢, az = 25¢, a3z = 10¢, and so on.) We
can assume each a; is an integer and a; > a9 > -+ > a,. Each type is
available in unlimited quantity. The coin-changing problem is to make
up an exact amount C using a minimum total number of coins. C is
an integer > 0.

4.10. ADDITIONAL EXERCISES 251

(a) Show that if a,, # 1, then there exists a finite set of coin types and
a C for which there is no solution to the coin-changing problem.

(b) Show that there is always a solution when a, = 1.

(¢) When a, = 1, a greedy solution to the problem makes change
by using the coin types in the order aq,a9,...,a,. When coin
type a; is being considered, as many coins of this type as possible
are given. Write an algorithm based on this strategy. Show that
this algorithm doesn’t necessarily generate solutions that use the
minimum total number of coins.

(d) Show that if A, = {k"1 k"2 ... k%) for some k > 1, then the
greedy method of part (c) always yields solutions with a minimum
number of coins.

2. [Set cover] You are given a family S of m sets S;,1 < i < m. Denote
by |A| the size of set A. Let |S;| = ji; that is, S; = {s1,52,...,5;}.
A subset T = {11,15,..., T} of § is a family of sets such that for
each 1,1 < i <k, T; = S, for some r,1 < r < m. The subset T is
a cover of S iff UT; = US;. The size of T, |T|, is the number of sets
in 7. A minimum cover of § is a cover of smallest size. Consider
the following greedy strategy: build T' iteratively, at the kth iteration
T ={T1,...,Tx_1}, now add to T a set S; from S that contains the
largest number of elements not already in 7", and stop when UT; = US;.

(a) Assume that US; = {1,2,...,n} and m < n. Using the strategy
outlined above, write an algorithim to obtain set covers. How
much time and space does your algorithm require?

(b) Show that the greedy strategy above doesn’t necessarily obtain a
minimum set cover.

(¢) Suppose now that a minimuin cover is defined to be one for which

5% | ITi| is minimum. Does the above strategy always find a
minimum cover?

3. [Node cover] Let G = (V, E) be an undirected graph. A node cover of
G is asubset U of the vertex set V such that every edge in E is incident
to at least one vertex in U. A minimum node cover is one with the
fewest number of vertices. Consider the following greedy algorithm for
this problem:

252

CHAPTER 4. THE GREEDY METHOD

Algorithm Cover(V, E)

U .= 0
repeat

Let ¢ be a vertex from V of maximum degree;
Add ¢ to U; Eliminate ¢ from V;
E := E — {(z,y) such that x = q or y = q};

} until (E =0); // U is the node cover.

=000 =1 U kW —

0}

Does this algorithm always generate a minimum node cover?

[Traveling salesperson] Let G be a directed graph with n vertices. Let
length(u,v) be the length of the edge (u,v). A path starting at a given
vertex vg, going through every other vertex exactly once, and finally
returning to vy is called a tour. The length of a tour is the sum of the
lengths of the edges on the path defining the tour. We are concerned
with finding a tour of minimum length. A greedy way to construct
such a tour is: let (P, v) represent the path so far constructed; it starts
at vg and ends at v. Initially P is empty and v = vy, if all vertices in G
are on P, then include the edge (v,v¢) and stop; otherwise include an
edge (v,w) of minimum length among all edges from v to a vertex w
not on P. Show that this greedy method doesn’t necessarily generate
a minimum-length tour.

Chapter 5

DYNAMIC
PROGRAMMING

5.1 THE GENERAL METHOD

Dynamic programming is an algorithm design method that can be used
when the solution to a problem can be viewed as the result of a sequence of
decisions. In earlier chapters we saw many problems that can be viewed this
way. Here are some examples:

Example 5.1 [Knapsack] The solution to the knapsack problem (Section
4.2) can be viewed as the result of a sequence of decisions. We have to
decide the values of x;,1 <12 < n. First we make a decision on z1, then on
T2, then on z3, and so on. An optimal sequence of decisions maximizes the
objective function Y p;z;. (It also satisfies the constraints > w;z; < m and
0<z; < 1.) O

Example 5.2 [Optimal merge patterns] This problem was discussed in Sec-
tion 4.7. An optimal merge pattern tells us which pair of files should be
merged at each step. As a decision sequence, the problem calls for us to de-
cide which pair of files should be merged first, which pair second, which pair
third, and so on. An optimal sequence of decisions is a least-cost sequence.

O

Example 5.3 [Shortest path] One way to find a shortest path from vertex
1 to vertex j in a directed graph G is to decide which vertex should be the
second vertex, which the third, which the fourth, and so on, until vertex j
is reached. An optimal sequence of decisions is one that results in a path of
least length. O

253

254 CHAPTER 5. DYNAMIC PROGRAMMING

For some of the problems that may be viewed in this way, an optimal
sequence of decisions can be found by making the decisions one at a time
and never making an erroneous decision. This is true for all problems solvable
by the greedy method. For many other problems, it is not possible to make
stepwise decisions (based only on local information) in such a manner that
the sequence of decisions made is optimal.

Example 5.4 [Shortest path] Suppose we wish to find a shortest path from
vertex i to vertex j. Let A; be the vertices adjacent from vertex ¢. Which of
the vertices in A; should be the second vertex on the path? There is no way
to make a decision at this time and guarantee that future decisions leading
to an optimal sequence can be made. If on the other hand we wish to find
a shortest path from vertex i to all other vertices in GG, then at each step, a
correct decision can be made (see Section 4.8). g

One way to solve problems for which it is not possible to make a sequence
of stepwise decisions leading to an optimal decision sequence is to try all pos-
sible decision sequences. We could enumerate all decision sequences and then
pick out the best. But the time and space requirements may be prohibitive.
Dynamic programming often drastically reduces the amount of enumeration
by avoiding the enumeration of some decision sequences that cannot possibly
be optimal. In dynamic programming an optimal sequence of decisions is
obtained by making explicit appeal to the principle of optimality.

Definition 5.1 [Principle of optimality] The principle of optimality states
that an optimal sequence of decisions has the property that whatever the
initial state and decision are, the remaining decisions must constitute an
optimal decision sequence with regard to the state resulting from the first
decision. a

Thus, the essential difference between the greedy method and dynamic
programming is that in the greedy method only one decision sequence is
ever generated. In dynamic programming, many decision sequences may be
generated. However, sequences containing suboptimal subsequences cannot
be optimal (if the principle of optimality holds) and so will not (as far as
possible) be generated.

Example 5.5 [Shortest path] Consider the shortest-path problem of Exam-
ple 5.3. Assume that i, 1,9, ...,4,j is a shortest path from 7 to j. Starting
with the initial vertex 7, a decision has been made to go to vertex i;. Fol-
lowing this decision, the problem state is defined by vertex i; and we need
to find a path from 7; to j. It is clear that the sequence 41,19, .. ,%k,j must
constitute a shortest ¢; to j path. If not, let ¢1,71,72,...,74,j be a shortest
i1 to j path. Then 4,41,71,--+,7rq,j s an ¢ to j path that is shorter than the
path 7,41,19,...,1k,j. Therefore the principle of optimality applies for this
problem. O

5.1. THE GENERAL METHOD 255

Example 5.6 [0/1 knapsack] The 0/1 knapsack problem is similar to the
knapsack problem of Section 4.2 except that the x;’s are restricted to have
a value of either 0 or 1. Using KNAP(!, j,y) to represent the problem

maximize <, < ; piT;
subject t0 3, ;< wiz; <Y (5.1)
z;=00r 1, 1 <1<y

the knapsack problem is KNAP(1,n,m). Let y1,¥2,...,yn be an optimal

sequence of 0/1 values for zy,x9,...,z,, respectively. If y; = 0, then
Y2,Y3, - . ., Y, must constitute an optimal sequence for the problem KNAP(2,
n, m). If it does not, then yi,ys,...,y, is not an optimal sequence for

KNAP(1,n,m). If y; = 1, then ys,...,y, must be an optimal sequence
for the problem KNAP(2,n,m — wy). If it isn’t, then there is another 0/1
sequence 29, 23, ..., 2y such that o, e, wizs <m —wy and > ocicp, iz >
S o<i<n Pi¥i- Hence, the sequence yq,29,23,...,2, is a sequence for (5.1)
with greater value. Again the principle of optimality applies. O

Let Sy be the initial problem state. Assume that n decisionsd;, 1 <i < n,
have to be made. Let D; = {r1,72,...,7;} be the set of possible decision
values for d;. Let S; be the problem state following the choice of decision
r;, 1 <4 < j. Let I'; be an optimal sequence of decisions with respect to the
problem state S;. Then, when the principle of optimality holds, an optimal
sequence of decisions with respect to Sy is the best of the decision sequences
rivriv 1 < 1 < .7

Example 5.7 [Shortest path] Let A; be the set of vertices adjacent to vertex
1. For each vertex k € A;, let I'y be a shortest path from & to j. Then, a
shortest ¢ to j path is the shortest of the paths {i,T'x|k € A;}. O

Example 5.8 [0/1 knapsack] Let g;(y) be the value of an optimal solution
to KNAP(j + 1,n,y). Clearly, go(m) is the value of an optimal solution to
KNAP(1,n,m). The possible decisions for z; are 0 and 1 (D; = {0,1}).
From the principle of optimality it follows that

go(m) = max {gi(m), g1(m —wi) +p1} (5.2)
O

While the principle of optimality has been stated only with respect to
the initial state and decision, it can be applied equally well to intermediate
states and decisions. The next two examples show how this can be done.

Example 5.9 [Shortest path] Let k be an intermediate vertex on a shortest
1 to j path 4,4q,%2,...,k,p1,p2,---,J- The paths ¢,41,...,k and k,p1,....7J
must, respectively, be shortest ¢ to k and k to j paths. a

256 CHAPTER 5. DYNAMIC PROGRAMMING

Example 5.10 [0/1 knapsack] Let yi,ys,...,yn be an optimal solution to
KNAP(1,n,m). Then, for each j, 1 < j < n, y1,...,y;, and yj41,...,yn
must be optimal solutions to the problems KNAP(1, 7, 2o1<i<y w;y;) and
KNAP(j +1,n,m— 37, <;<; wiy;) respectively. This observation allows us to
generalize (5.2) to

gi(y) = max {gi+1(y), git1(y — wit1) + pi+1} (5.3)
O

The recursive application of the optimality principle results in a recur-
rence equation of type (5.3). Dynamic programming algorithms solve this
recurrence to obtain a solution to the given problem instance. The recur-
rence (5.3) can be solved using the knowledge g,(y) = 0 for all y > 0 and
gn(y) = —oo for y < 0. From g,(y), one can obtain g,—1(y) using (5.3) with
i = n — 1. Then, using g, 1(y), one can obtain g,_2(y). Repeating in this
way, one can determine 91(y) and finally go(m) using (5.3) with ¢ = 0.

Example 5.11 [0/1 knapsack] Consider the case in which n = 3, w; =
2,wy =3, w3 =4, p1 = 1,p2 = 2,p3 = 5, and m = 6. We have to compute
90(6). The value of go(6) = max {g1(6), g1(4) + 1}.

In turn, ¢,(6) = max {g2(6), g2(3)+2}. But g2(6) = max {g5(6), g3(2)+
5} = max {0,5} = 5. Also, ¢2(3) = max {g3(3), ¢3(3 — 4) 5} =
max {0,~oc} = 0. Thus, ¢;(6) = max {5,2} = 5.

Similarly, g1(4) = max {g2(4), g2(4 — 3) +2}. But g»(4) = max {gs(4),
g3(4—4) + 5} = max {0,5} = 5. The value of go(1) = max {g3(1), g3(1 —
4) + 5} = max {0,—oc} = 0. Thus, g1(4) = max {5,0} =5.

Therefore, go(6) = max {5,5+ 1} = 6. O

Example 5.12 [Shortest path] Let P; be the set of vertices adjacent to ver-
tex j (that is, k € P; iff (k,j) € E(G)i For each k € P;, let 'y, be a shortest
7 to k path. The principle of optimality holds and a shortest ¢ to j path is
the shortest of the paths {I'y, jlk € P;}.

To obtain this formulation, we started at vertex j and looked at the last
decision made. The last decision was to use one of the edges (k,j), k € P;.
In a sense, we are looking backward on the 7 to j path. O

Example 5.13 [0/1 knapsack] Looking backward on the sequence of deci-
sions x1,Zs,---,Zn, we see that

fily) = max {f;_1(y), fi—1(y —wj) +ps} (5.4)

where f;(y) is the value of an optimal solution to KNAP(1, j,v).

5.2. MULTISTAGE GRAPHS 257

The value of an optimal solution to KNAP(1,n,m) is f,(m). Equation 5.4
can be solved by beginning with fo(y) = 0 for all y, y > 0, and fo(y) = —o0,
for all ¢, y < 0. From this, fi, f2,..., fn can be successively obtained. O

The solution method outlined in Examples 5.12 and 5.13 may indicate
that one has to look at all possible decision sequences to obtain an optimal
decision sequence using dynamic programming. This is not the case. Be-
cause of the use of the principle of optimality, decision sequences containing
subsequences that are suboptimal are not considered. Although the total
number of different decision sequences is exponential in the number of deci-
sions (if there are d choices for each of the n decisions to be made then there
are d" possible decision sequences), dynamic programming algorithms often
have a polynomial complexity.

Another important feature of the dynamic programming approach is that
optimal solutions to subproblems are retained so as to avoid recomputing
their values. The use of these tabulated values makes it natural to recast
the recursive equations into an iterative algorithm. Most of the dynamic
programming algorithms in this chapter are expressed in this way.

The remaining sections of this chapter apply dynamic programming to a
variety of problems. These examples should help you understand the method
better and also realize the advantage of dynamic programming over explicitly
enumerating all decision sequences.

EXERCISES

1. The principle of optimality does not hold for every problem whose
solution can be viewed as the result of a sequence of decisions. Find
two problems for which the principle does not hold. Explain why the
principle does not hold for these problems.

2. For the graph of Figure 5.1, find the shortest path between the nodes
1 and 2. Use the recurrence relations derived in Examples 5.10 and
5.13.

5.2 MULTISTAGE GRAPHS

A multistage graph G = (V, E) is a directed graph in which the vertices are
partitioned into k > 2 disjoint sets V;, 1 <14 < k. In addition, if (u,v) is an
edge in E, then u € V; and v € V4 for some 4,1 < i < k. The sets V; and
Vi are such that |Vi| = |Vi| = 1. Let s and ¢, respectively, be the vertices in
Vi and Vi. The vertex s is the source, and ¢ the sink. Let c(i, j) be the cost
of edge (i,7). The cost of a path from s to ¢ is the sum of the costs of the
edges on the path. The multistage graph problem is to find a minimum-cost

258 CHAPTER 5. DYNAMIC PROGRAMMING

Figure 5.1 Graph for Exercise 2 (Section 5.1)

path from s to t. Each set V; defines a stage in the graph. Because of the
constraints on F, every path from s to ¢ starts in stage 1, goes to stage 2,
then to stage 3, then to stage 4, and so on, and eventually terminates in
stage k. Figure 5.2 shows a five-stage graph. A minimum-cost s to ¢ path is
indicated by the broken edges.

Many problems can be formulated as multistage graph problems. We give
only one example. Consider a resource allocation problem in which n units
of resource are to be allocated to r projects. If j, 0 < j < n, units of the
resource are allocated to project i, then the resulting net profit is N(4,7).
The problem is to allocate the resource to the r projects in such a way as to
maximize total net profit. This problem can be formulated as an r+ 1 stage
graph problem as follows. Stage i, 1 <4 < r, represents project :. There are
n+1 vertices V(¢,7), 0 < j < n, associated with stage 7, 2 <4 < r. Stages 1
and r+ 1 each have one vertex, V(1,0) = s and V(r+1,n) = t, respectively.
Vertex V(i,7), 2 < i < r, represents the state in which a total of j units
of resource have been allocated to projects 1,2,...,4 — 1. The edges in G
are of the form (V(i,5),V (i 4+ 1,1)) for all j <l and 1 <4 < r. The edge
(V(i,7),V(i+ 1,1), j <1, is assigned a weight or cost of N(i,! — j) and
corresponds to allocating [— 7 units of resource to project ¢, 1 <¢ <. In
addition, G has edges of the type (V(r.j),V(r + 1,n)). Each such edge is
assigned a weight of maxg<p<n—;j{N(r,p)}. The resulting graph for a three-
project problem with n =4 is shown in Figure 5.3. Tt should be easy to see
that an optimal allocation of resources is defined by a maximum cost s to
t path. This is easily converted into a minimum-cost problem by changing
the sign of all the edge costs.

5.2. MULTISTAGE GRAPHS 259

|4 1 Vz V3 V4 V5

Figure 5.2 Five-stage graph

A dynamic programming formulation for a k-stage graph problem is ob-
tained by first noticing that every s to t path is the result of a sequence
of k — 2 decisions. The ¢th decision involves determining which vertex in
Vit1, 1 <i <k —2, is to be on the path. It is easy to see that the principle
of optimality holds. Let p(7, j) be a minimum-cost path from vertex j in V;
to vertex t. Let cost(7,) be the cost of this path. Then, using the forward
approach, we obtain

cost(i, j) = ln&in {c(4,1) + cost(i + 1,1)} (5.5)
€v;
<j,l>éré
Since, cost(k — 1,7) = ¢(4,t) if (j,t) € E and cost(k — 1,5) = oo if
(7,t)¢E, (5.5) may be solved for cost(1,s) by first computing cost(k — 2, j)
for all j € Vi_o, then cost(k— 3,7) for all j € Vi_3, and so on, and finally
cost(1, s). Trying this out on the graph of Figure 5.2, we obtain

cost(3,6) = min {6+ cost(4,9),5 + cost(4,10)}
= 7

cost(3,7) = min {4+ cost(4,9),3 + cost(4,10)}
= 5

260 CHAPTER 5. DYNAMIC PROGRAMMING

V(2,0 V3,0
(2,0 N2.0) (3,0

s=V(1,0) t=V(4,4)

V(2,4) V(3,4)
X =max{N@G3,0),N3,1}
Y=max{N3,0),N(3,1),N(3,2)}

Figure 5.3 Four-stage graph corresponding to a three-project problem

5.2, MULTISTAGE GRAPHS 261

cost(3,8) = T

cost(2,2) = min {4+ cost(3,6),2 + cost(3,7),1 + cost(3,8)}
= 7

cost(2,3) = 9

cost(2,4) = 18

cost(2,5) = 15

cost(1,1) min {9 + cost(2,2),7 + cost(2,3),3 + cost(2,4),

2+ cost(2,5)}
= 16

Note that in the calculation of cost(2,2), we have reused the values of
cost(3,6), cost(3,7), and cost(3,8) and so avoided their recomputation. A
minimum cost s to ¢ path has a cost of 16. This path can be determined
easily if we record the decision made at each state (vertex). Let d(,j) be
the value of [(where ! is a node) that minimizes c(j,1) + cost(i + 1,1) (see
Equation 5.5). For Figure 5.2 we obtain

d(3,6) = 10; d(3,7) = 10: d(3,8) = 10;
d2,2) = 77 d(2,3) = 6 d(2,4) = 8 d(25) = 8
a(1,1) = 2

Let the minimum-cost path be s = 1, v9,v3,...,vg_1,t. It is easy to see
that vo = d(1,1) = 2,v3 = d(2,d(1,1)) = 7, and v4 = d(3,d(2, d(1,1))) =
d(3,7) = 10.

Before writing an algorithm to solve (5.5) for a general k-stage graph, let
us impose an ordering on the vertices in V. This ordering makes it easier
to write the algorithm. We require that the n vertices in V' are indexed 1
through n. Indices are assigned in order of stages. First, s is assigned index
1, then vertices in V5 are assigned indices, then vertices from V3, and so on.
Vertex ¢ has index n. Hence, indices assigned to vertices in V11 are bigger
than those assigned to vertices in V; (see Figure 5.2). As a result of this
indexing scheme, cost and d can be computed in the order n—1,n—2,...,1.
The first subscript in cost, p, and d only identifies the stage number and is
omitted in the algorithm. The resulting algorithm, in pseudocode, is FGraph
(Algorithm 5.1).

The complexity analysis of the function FGraph is fairly straightforward.
If G is represented by its adjacency lists, then r in line 9 of Algorithm 5.1
can be found in time proportional to the degree of vertex j. Hence, if G has
|E| edges, then the time for the for loop of line 7 is O(|V| + |E|). The time
for the for loop of line 16 is ©(k). Hence, the total time is O(|]V |+ |E|). In
addition to the space needed for the input, space is needed for cost[], d[|,
and pl].

262 CHAPTER 5. DYNAMIC PROGRAMMING

1 Algorithm FGraph(G,k,n,p)

2 // The input is a k-stage graph G = (V, E) with n vertices
3 // indexed in order of stages. F is a set of edges and c[t, j]
4 // is the cost of (i,7). p[l: k] is a minimum-cost path.

5

6 cost[n] := 0.0;

7 for j:=n—1to 1 step —-1do

8 { // Compute cost[j].

9 Let r be a vertex such that (j,7) is an edge

10 of G and ¢[j, 7] + cost[r] is minimum;

11 cost(j] == ¢[j,r] + cost[r];

12 d[j] :==r;

13

14 // Find a minimum-cost path.

15 pll)=1; plk] == n;

16) for j:=2 to k —1 do p[j] :=d[p[j — 1];

17

Algorithm 5.1 Multistage graph pseudocode corresponding to the forward
approach

The multistage graph problem can also be solved using the backward
approach. Let bp(i,j) be a minimum-cost path from vertex s to a vertex j
in V;. Let bcost(i, j) be the cost of bp(i, j). From the backward approach we
obtain

beost(i,7) = ,n‘l,in {beost(i — 1,1) + c(l,7)} (5.6)
€ev;_
(l,j)e}z“
Since beost(2,7) = ¢(1,7) if (1,5) € E and becost(2,5) = oo if (1,5)¢FE,
bcost(i,j) can be computed using (5.6) by first computing bcost for ¢ = 3,
then for 7 = 4, and so on. For the graph of Figure 5.2, we obtain

bcost(3,6) = min {bcost(2,2) + ¢(2,6),bcost(2,3) + ¢(3,6)}
min {9 +4,7+ 2}

=9
beost(3,7) = 11
beost(3,8) = 10

bcost(4,9) = 15

5.2. MULTISTAGE GRAPHS 263

bcost(4,10) = 14
becost(4,11) = 16
bcost(5,12) = 16

The corresponding algorithm, in pseudocode, to obtain a minimum-cost
s — t path is BGraph (Algorithm 5.2). The first subscript on bcost, p, and
d are omitted for the same reasons as before. This algorithm has the same
complexity as FGraph provided G is now represented by its inverse adjacency
lists (i.e., for each vertex v we have a list of vertices w such that (w,v) € E).

1 Algorithm BGraph(G, k,n,p)

2 // Same function as FGraph

3

4 beost[1] := 0.0;

5 for j :=2 to n do

6 { // Compute beost[j].

7 Let r be such that (r,j) is an edge of
8 G and bcost[r] + c[r, j] is minimum;
9 beost[g] := beost[r] + c[r, j;

10 d[j] =3

11

12 // Find a minimum-cost path.

13 pl1] := 15 p[k] := n;

14 for j:=k —1 to 2 do p[j] :=d[p[j + 1]];
15 }

Algorithm 5.2 Multistage graph pseudocode corresponding to backward
approach

It should be easy to see that both FGraph and BGraph work correctly even

on a more generalized version of multistage graphs. In this generalization,
the graph is permitted to have edges (u,v) such that v € Vi,v € V}, and
1 < 7.
Note: In the pseudocodes FGraph and BGraph, bcost(i,7) is set to oo for
any (i,7) € E. When programming these pseudocodes, one could use the
maximum allowable floating point number for co. If the weight of any such
edge is added to some other costs, a floating point overflow might occur.
Care should be taken to avoid such overflows.

264 CHAPTER 5. DYNAMIC PROGRAMMING

EXERCISES

1. Find a minimum-cost path from s to ¢ in the multistage graph of
Figure 5.4. Do this first using the forward approach and then using
the backward approach.

Figure 5.4 Multistage graph for Exercise 1

2. Refine Algorithm 5.1 into a program. Assume that G is represented
by its adjacency lists. Test the correctness of your code using suitable
graphs.

3. Program Algorithm 5.1. Assume that G is an array G[1 : e, 1 : 3].
Each edge (i, j), i < j, of G is stored in GJg|, for some g and G[g, 1] =
i, Glg,2] = j, and GJg, 3] = cost of edge (i,7). Assume that G|g,1] <
Glg+ 1,1] for 1 < g < e, where e is the number of edges in the
multistage graph. Test the correctness of your function using suitable
multistage graphs. What is the time complexity of your function?

4. Program Algorithm 5.2 for the multistage graph problem using the
backward approach. Assume that the graph is represented using in-
verse adjacency lists. Test its correctness. What is its complexity?

5. Do Exercise 4 using the graph representation of Exercise 3. This time,
however, assume that Glg,2] < Glg+ 1,2] for 1 < ¢ <e.

6. Extend the discussion of this section to directed acyclic graphs (dags).
Suppose the vertices of a dag are numbered so that all edges have the
form (7,7), 1 < j. What changes, if any, need to be made to Algorithm
5.1 to find the length of the longest path from vertex 1 to vertex n?

5.3. ALL-PAIRS SHORTEST PATHS 265

7. [W. Miller] Show that BGraphl computes shortest paths for directed
acyclic graphs represented by adjacency lists (instead of inverse adja-
cency lists as in BGraph).

Algorithm BGraphl(G,n)

beost[1] := 0.0;
for j := 2 to n do beost[j] := oo;
for j:=1ton—-1do
for each r such that (j,r) is an edge of G do
beost[r] := min(bcost[r], becost]j] + clj,7]);

CO~JO Uk o —

}

Note: There is a possibility of a floating point overflow in this function.
In such cases the program should be suitably modified.

5.3 ALL-PAIRS SHORTEST PATHS

Let G = (V,E) be a directed graph with n vertices. Let cost be a cost
adjacency matrix for G such that cost(i,7) = 0, 1 < 4 < n. Then cost(i, j)
is the length (or cost) of edge (i,7) if (i,j) € E(G) and cost(i,j) = oo if
i # j and (i,j) € E(G). The all-pairs shortest-path problem is to determine
a matrix A such that A(7,j) is the length of a shortest path from i to j.
The matrix A can be obtained by solving n single-source problems using
the algorithm ShortestPaths of Section 4.8. Since each application of this
procedure requires O(n?) time, the matrix A can be obtained in O(n?) time.
We obtain an alternate O(n®) solution to this problem using the principle
of optimality. Our alternate solution requires a weaker restriction on edge
costs than required by ShortestPaths. Rather than require cost(i,j) > 0,
for every edge (i,7), we only require that G have no cycles with negative
length. Note that if we allow G to contain a cycle of negative length, then
the shortest path between any two vertices on this cycle has length —oc.

Let us examine a shortest ¢ to j path in G, ¢ # 5. This path originates
at vertex i and goes through some intermediate vertices (possibly none) and
terminates at vertex j. We can assume that this path contains no cycles
for if there is a cycle, then this can be deleted without increasing the path
length (no cycle has negative length). If £ is an intermediate vertex on this
shortest path, then the subpaths from 7 to £ and from & to 7 must be shortest
paths from i to k and k& to j, respectively. Otherwise, the 7 to 7 path is not
of minimum length. So, the principle of optimality holds. This alerts us to
the prospect of using dynamic programming. If k is the intermediate vertex
with highest index, then the ¢ to & path is a shortest 7 to & path in G going
through no vertex with index greater than k — 1. Similarly the k£ to j path
is a shortest k£ to j path in G going through no vertex of index greater than

266 CHAPTER 5. DYNAMIC PROGRAMMING

k — 1. We can regard the construction of a shortest ¢ to j path as first
requiring a decision as to which is the highest indexed intermediate vertex
k. Once this decision has been made, we need to find two shortest paths,
one from 7 to k and the other from k to j. Neither of these may go through a
vertex with index greater than k£ — 1. Using A*(i, j) to represent the length
of a shortest path from 7 to 5 going through no vertex of index greater than
k, we obtain

A(4,§) = min {1?]321”{,4’“*1(1', k) + A* 1k, §)}, cost(i, §)} (5.7)

Clearly, A%(i,j) = cost(i,j), 1 < i < mn, 1 < j < n. We can obtain
a recurrence for A¥(i,) using an argument similar to that used before. A
shortest path from ¢ to 7 going through no vertex higher than k either goes
through vertex k or it does not. If it does, A*(i,j) = A*~1(3, k) + AF~L(k, j).
If it does not, then no intermediate vertex has index greater than k—1. Hence
Ak(i, §) = AF=1(3, 7). Combining, we get

AR,) = min {4716, 5), AFTN6R) + AFTNE,)Y, E>1 0 (5.8)

The following example shows that (5.8) is not true for graphs with cycles of
negative length.

Example 5.14 Figure 5.5 shows a digraph together with its matrix A°. For
this graph A?(1,3) # min{A'(1,3), A'(1,2) + A!(2,3)} = 2. Instead we see
that A%(1,3) = —oo. The length of the path

1,2,1,2,1,2,...,1,2,3

can be made arbitrarily small. This is so because of the presence of the cycle
1 2 1 which has a length of —1. i

Recurrence (5.8) can be solved for A" by first computing A!, then A?
then A2, and so on. Since there is no vertex in G with index greater than n,
A(i,j) = A™(i,7). Function AllPaths computes A™(¢,j). The computation
is done inplace so the superscript on A is not needed. The reason this
computation can be carried out in-place is that A¥(i,k) = A*~!(i,k) and
AF(k, 5) = A*=1(k, j). Hence, when A* is formed, the kth column and row do
not change. Consequently, when A* (i, j) is computed in line 11 of Algorithm
5.3, A(i, k) = AF=1(4, k) = A¥(i, k) and A(k,j) = A*~1(k,7) = A¥(k,7). So,
the old values on which the new values are based do not change on this
iteration.

5.3. ALL-PAIRS SHORTEST PATHS 267

-2
———— 01 o
o 1
ORN OO 20

Figure 5.5 Graph with negative cycle

0 Algorithm AllPaths(cost, A,n)

1 /] cost[l :n,1:n]is the cost adjacency matrix of a graph with
2 // n vertices; Ali, j] is the cost of a shortest path from vertex
3 // ito vertex j. cost[i,i] = 0.0, for 1 <7 < n.

11

5 for ::=1to ndo

6 for j:=1to n do

7 Ali,] := costli, jl; // Copy cost into A.

8 for k:=1to ndo

9 for i :=1to ndo

10 for j:=1to n do

i; } A[lvj] = min(A[ivj]v A[’Lv k] + A[k:,]]);

Algorithm 5.3 Function to compute lengths of shortest paths

268 CHAPTER 5. DYNAMIC PROGRAMMING

Example 5.15 The graph of Figure 5.6(a) has the cost matrix of Fig-
ure 5.6(b). The initial A matrix, A, plus its values after 3 iterations
AW A@ and A®) are given in Figure 5.6. m|

A1 2 3 A1 2 3
110 4 11 110 4 11
2,16 0 2 216 0 2
313 e 0 33 7 0
(a) Example digraph (b) A° (c)A!
A1 2 3 A1 2 3
110 4 6 110 4 6
2,6 0 2 215 0 2
313 7 0 33 7 0
(d)A? (e) A’

Figure 5.6 Directed graph and associated matrices

Let M = max {cost(i,7)|(i,7) € E(G)}. It is easy to see that A™(ij) <
(n — 1)M. From the working of AllPaths, it is clear that if (i,j) ¢ F(G)
and i # j, then we can initialize cost(i,j) to any number greater than
(n — 1)M (rather than the maximum allowable floating point number). If,
at termination, A(7,j) > (n — 1)M, then there is no directed path from i to
j in G. Even for this choice of 0o, care should be taken to avoid any floating
point overflows.

The time needed by AllPaths (Algorithm 5.3) is especially easy to deter-
mine because the looping is independent of the data in the matrix A. Line
11 is iterated n3 times, and so the time for AllPaths is ©(n3). An exercise
examines the extensions needed to obtain the i to j paths with these lengths.
Some speedup can be obtained by noticing that the innermost for loop need
be executed only when A(i, k) and A(k,j) are not equal to oo.

5.3. ALL-PAIRS SHORTEST PATHS 269

EXERCISES

1. (a) Does the recurrence (5.8) hold for the graph of Figure 5.77 Why?

Figure 5.7 Graph for Exercise 1

(b) Why does Equation 5.8 not hold for graphs with cycles of negative
length?

2. Modify the function AllPaths so that a shortest path is output for each
pair of vertices (7, j). What are the time and space complexities of the
new algorithm?

3. Let A be the adjacency matrix of a directed graph G. Define the
transitive closure A" of A to be a matrix with the property A*(4,5) = 1
iff G has a directed path, containing at least one edge, from vertex ¢
to vertex j. At (4,7) = 0 otherwise. The reflexive transitive closure A*
is a matrix with the property A*(i,j) = 1 iff G has a path, containing
zero or more edges, from 7 to j. A*(i,j) = 0 otherwise.

(a) Obtain A" and A* for the directed graph of Figure 5.8.

e 3

Figure 5.8 Graph for Exercise 3

(b) Let A%(i,j) = 1 iff there is a path with zero or more edges from i
to j going through no vertex of index greater than k. Define A°
in terms of the adjacency matrix A.

270 CHAPTER 5. DYNAMIC PROGRAMMING

(c) Obtain a recurrence between A* and A*~! similar to (5.8). Use
the logical operators or and and rather than min and +.

(d) Write an algorithm, using the recurrence of part (c), to find A*.
Your algorithm can use only O(n?) space. What is its time com-
plexity?

(e) Show that AT = A x A*, where matrix multiplication is defined
as AT (i,7) = VR_,(A(i,k) A A*(k,7)). The operation V is the
logical or operation, and A the logical and operation. Hence A™
may be computed from A*.

5.4 SINGLE-SOURCE SHORTEST PATHS:
GENERAL WEIGHTS

We now consider the single-source shortest path problem discussed in Section
4.8 when some or all of the edges of the directed graph G may have negative
length. ShortestPaths (Algorithm 4.14) does not necessarily give the correct
results on such graphs. To see this, consider the graph of Figure 5.9. Let
v = 1 be the source vertex. Referring back to Algorithm 4.14, since n = 3,
the loop of lines 12 to 22 is iterated just once. Also v = 3 in lines 15 and
16, and so no changes are made to dist[]. The algorithm terminates with
dist[2] = 7 and dist[3] = 5. The shortest path from 1 to 3 is 1,2,3. This
path has length 2, which is less than the computed value of dist[3].

Figure 5.9 Directed graph with a negative-length edge

When negative edge lengths are permitted, we require that the graph
have no cycles of negative length. This is necessary to ensure that shortest
paths consist of a finite number of edges. For example, in the graph of Figure
5.5, the length of the shortest path from vertex 1 to vertex 3 is —oo. The
length of the path

1,2,1,2,1,2,---,1,2,3

can be made arbitrarily small as was shown in Example 5.14.

When there are no cycles of negative length, there is a shortest path
between any two vertices of an n-vertex graph that has at most n — 1 edges

5.4. SINGLE-SOURCE SHORTEST PATHS: GENERAL WEIGHTS 271

on it. To see this, note that a path that has more than n — 1 edges must
repeat at least one vertex and hence must contain a cycle. Elimination of
the cycles from the path results in another path with the same source and
destination. This path is cycle-free and has a length that is no more than
that of the original path, as the length of the eliminated cycles was at least
zero. We can use this observation on the maximum number of edges on a
cycle-free shortest path to obtain an algorithm to determine a shortest path
from a source vertex to all remaining vertices in the graph. As in the case
of ShortestPaths (Algorithm 4.14), we compute only the length, dist[u], of
the shortest path from the source vertex v to u. An exercise examines the
extension needed to construct the shortest paths.

Let dist[u] be the length of a shortest path from the source vertex v
to vertex u under the constraint that the shortest path contains at most ¢
edges. Then, dist![u] = cost[v,u], 1 < u < n. As noted earlier, when there
are no cycles of negative length, we can limit our search for shortest paths
to paths with at most n — 1 edges. Hence, dist" ![u] is the length of an
unrestricted shortest path from v to .

Our goal then is to compute dist™ ![u] for all u. This can be done us-
ing the dynamic programming methodology. First, we make the following
observations:

1. If the shortest path from » to uw with at most k, £ > 1, edges has no
more than k& — 1 edges, then dist*[u] = distk=1[u].

2. If the shortest path from v to u with at most k&, & > 1, edges has
exactly k£ edges, then it is made up of a shortest path from v to some
vertex j followed by the edge (j,u). The path from v to j has k — 1
edges, and its length is dist*~1[j]. All vertices ¢ such that the edge
(7,u) is in the graph are candidates for j. Since we are interested in a
shortest path, the 7 that minimizes dist*~1[i] 4 cost[i,u] is the correct
value for ;.

These observations result in the following recurrence for dist:

dist*[u] = min {dist* '[u], min {dist* [i] + cost[i,u]}}
)

This recurrence can be used to compute dist® from dist*=1, for k = 2.3,...,
n — 1.

Example 5.16 Figure 5.10 gives a seven-vertex graph, together with the
arrays dist®, k = 1,...,6. These arrays were computed using the equation
just given. For instance, dist*[1] = 0 for all k since 1 is the source node.
Also, dist![2] = 6,dist[3] = 5, and dist![4] = 5, since there are edges from

272 CHAPTER 5. DYNAMIC PROGRAMMING

1 to these nodes. The distance dist![] is oo for the nodes 5,6, and 7 since
there are no edges to these from 1.

dist?[2)] min {dist'[2], min; dist![i] + cost[i, 2]}
min {6,0+6,5— 2,5+ 00,00 4+ 00,00 + 00,00 + 00} = 3

Here the terms 0+ 6,5 — 2,5 + 00, 00 + 00, 00 + 00, and oo + 0o correspond
to a choice of 1 = 1,3,4,5,6, and 7, respectively. The rest of the entries are

computed in an analogous manner. u
dist*[1..7]
ki1 2 3 45 6 7
1|0 6 5 5 00 00 o
210 3 3 55 4 o
3101 3 5 2 4 7
410 1 3 5 0 4 5
5001 3 5 0 4 3
6|0 1 350 4 3
(a) A directed graph (b) dist*

Figure 5.10 Shortest paths with negative edge lengths

An exercise shows that if we use the same memory location dist[u] for
dist*[u], k = 1,...,n — 1, then the final value of dist[u] is still dist"~![u].
Using this fact and the recurrence for dist shown above, we arrive at the
pseudocode of Algorithm 5.4 to compute the length of the shortest path
from vertex v to each other vertex of the graph. This algorithm is referred
to as the Bellman and Ford algorithm.

Each iteration of the for loop of lines 7 to 12 takes O(n?) time if adja-
cency matrices are used and O(e) time if adjacency lists are used. Here e
is the number of edges in the graph. The overall complexity is O(n3) when
adjacency matrices are used and O(ne) when adjacency lists are used. The
observed complexity of the shortest-path algorithm can be reduced by not-
ing that if none of the dist values change on one iteration of the for loop
of lines 7 to 12, then none will change on successive iterations. So, this
loop can be rewritten to terminate either after n — 1 iterations or after the

5.4. SINGLE-SOURCE SHORTEST PATHS: GENERAL WEIGHTS 273

1 Algorithm BellmanFord(v, cost, dist,n)

2 // Single-source/all-destinations shortest

3 // paths with negative edge costs

4

5 for i := 1 to n do // Initialize dist.

6 dist[i] := cost[v,];

7 for k:=2ton—1do

8 for each u such that u # v and v has

9 at least one incoming edge do
10 for each (i,u) in the graph do

11 if dist[u] > dist[i] + cost[i, u] then
12 distu] := dist[i] + cost[i, u;
13 }

Algorithm 5.4 Bellman and Ford algorithim to compute shortest paths

first iteration in which no dist values are changed, whichever occurs first.
Another possibility is to maintain a queue of vertices ¢ whose dist values
changed on the previous iteration of the for loop. These are the only values
for ¢ that need to be considered in line 10 during the next iteration. When
a queue of these values is maintained, we can rewrite the loop of lines 7 to
12 so that on each iteration, a vertex ¢ is removed from the queue, and the
dist values of all vertices adjacent from ¢ are updated as in lines 11 and 12.
Vertices whose dist values decrease as a result of this are added to the end
of the queue unless they are already on it. The loop terminates when the
queue becomes empty. These two strategies to improve the performance of
BellmanFord are considered in the exercises. Other strategies for improving
performance are discussed in References and Readings. i

EXERCISES

1. Find the shortest paths from node 1 to every other node in the graph
of Figure 5.11 using the Bellman and Ford algorithm.

2. Prove the correctness of BellmanFord (Algorithm 5.4). Note that this
algorithm does not faithfully implement the computation of the recur-
rence for dist®. In fact, for k < n—1, the dist values following iteration
k of the for loop of lines 7 to 12 may not be dist®.

3. Transform BellmanFord into a program. Assume that graphs are repre-
sented using adjacency lists in which each node has an additional field

274

CHAPTER 5. DYNAMIC PROGRAMMING

Figure 5.11 Graph for Exercise 1

called cost that gives the length of the edge represented by that node.
As a result of this, there is no cost adjacency matrix. Generate some
test graphs and test the correctness of your program.

Rewrite the algorithm BellmanFord so that the loop of lines 7 to 12
terminates either after n — 1 iterations or after the first iteration in
which no dist values are changed, whichever occurs first.

Rewrite BellmanFord by replacing the loop of lines 7 to 12 with code
that uses a queue of vertices that may potentially result in a reduction
of other dist vertices. This queue initially contains all vertices that are
adjacent from the source vertex v. On each successive iteration of the
new loop, a vertex ¢ is removed from the queue (unless the queue is
empty), and the dist values to vertices adjacent from 7 are updated as
in lines 11 and 12 of Algorithm 5.4. When the dist value of a vertex
is reduced because of this, it is added to the queue unless it is already
on the queue.

(a) Prove that the new algorithm produces the same results as the
original one.

(b) Show that the complexity of the new algorithm is no more than
that of the original one.

. Compare the run-time performance of the Bellman and Ford algo-

rithms of the preceding two exercises and that of Algorithm 5.4. For
this, generate test graphs that will expose the relative performances of
the three algorithms.

5.5. OPTIMAL BINARY SEARCH TREES (x) 275

7. Modify algorithm BellmanFord so that it obtains the shortest paths, in
addition to the lengths of these paths. What is the computing time of
your algorithm?

5.5 OPTIMAL BINARY SEARCH TREES (%)

(for) (for
- N - \

o ;’wiiil@ (do) ;<
(it) (i) (while)
) / (b)
Cit)
(a)

Figure 5.12 Two possible binary search trees

Given a fixed set of identifiers, we wish to create a binary search tree
(see Section 2.3) organization. We may expect different binary search trees
for the same identifier set to have different performance characteristics. The
tree of Figure 5.12(a), in the worst case, requires four comparisons to find
an identifier, whereas the tree of Figure 5.12(b) requires only three. On the
average the two trees need 12/5 and 11/5 comparisons, respectively. For
example, in the case of tree (a), it takes 1,2,2 3, and 4 comparisons, respec-
tively, to find the identifiers for, do, while, int, and if. Thus the average
number of comparisons is JERES S pE 12 " This calculation assumes that
each identifier is searched for with equal probability and that no unsuccessful
searches (i.e., searches for identifiers not in the tree) are made.

In a general situation, we can expect different identifiers to be searched
for with different frequencies (or probabilities). In addition, we can expect
unsuccessful searches also to be made. Let us assume that the given set
of identifiers is {a;,az,...,an} with a; < a2 < --- < a,. Let p(¢) be the
probability with which we search for a;. Let ¢(¢) be the probability that
the identifier being searched for is such that a; < z < a;11, 0 < i < n
(assume ag = —oo and ap+1 = +00). Then, > <;<, ¢(i) is the probability of

276 CHAPTER 5. DYNAMIC PROGRAMMING

an unsuccessful search. Clearly, >, <, P(1) + > o<i<n ¢(¢) = 1. Given this
data, we wish to construct an optimal binary search tree for {a1,az,...,an}-
First, of course, we must be precise about what we mean by an optimal
binary search tree.

In obtaining a cost function for binary search trees, it is useful to add a
fictitious node in place of every empty subtree in the search tree. Such nodes,
called external nodes, are drawn square in Figure 5.13. All other nodes are
internal nodes. If a binary search tree represents n identifiers, then there
will be exactly n internal nodes and n + 1 (fictitious) external nodes. Every
internal node represents a point where a successful search may terminate.
Every external node represents a point where an unsuccessful search may
terminate.

Figure 5.13 Binary search trees of Figure 5.12 with external nodes added

If a successful search terminates at an internal node at level [, then [iter-
ations of the while loop of Algorithm 2.5 are needed. Hence, the expected
cost contribution from the internal node for a; is p(¢) * level(a;).

Unsuccessful searches terminate with ¢t = 0 (i.e., at an external node) in
algorithm |Search (Algorithm 2.5). The identifiers not in the binary search
tree can be partitioned into n + 1 equivalence classes F;,0 < ¢ < n. The
class Fy contains all identifiers z such that z < a;. The class E; contains
all identifiers x such that a; < z < a;;,1, 1 < ¢ < n. The class E,, contains
all identifiers z, = > an. It is easy to see that for all identifiers in the same
class E;, the search terminates at the same external node. For identifiers in
different E; the search terminates at different external nodes. If the failure

5.5. OPTIMAL BINARY SEARCH TREES (x) 277

node for E; is at level [, then only [— 1 iterations of the while loop are
made. Hence, the cost contribution of this node is g(i) * (level(F;) — 1).

The preceding discussion leads to the following formula for the expected
cost of a binary search tree:

> pli) xlevel(a)) + > q(i) * (level(B;) — 1) (5.9)
1<i<n 0<i<n
We define an optimal binary search tree for the identifier set {a1, as,...,a,}

to be a binary search tree for which (5.9) is minimum.

Example 5.17 The possible binary search trees for the identifier set (a;,
ag,a3) = (do, if, while) are given if Figure 5.14. With equal probabilities
p(1) = q(¢r) = 1/7 for all ¢, we have

cost(tree a) = 15/7 cost(tree b) = 13/7

cost(tree c) = 15/7 cost(treed) = 15/7

cost(tree e) = 15/7
As expected, tree b is optimal. With p(1) = .5, p(2) = .1, p(3) = .05,
q(0) = .15, ¢(1) = .1, ¢(2) = .05 and ¢(3) = .05 we have

cost(tree a) = 2.65 cost(treeb) = 1.9

cost(treec) = 1.5 cost(tree d) = 2.05

cost(tree e) 1.6

For instance, cost(tree a) can be computed as follows. The contribution
from successful searches is 3x0.5+2+%0.1+0.05 = 1.75 and the contribution
from unsuccessful searches is 3 * 0.15 + 3 * 0.1 + 2% 0.05 + 0.05 = 0.90. All
the other costs can also be calculated in a similar manner. Tree ¢ is optimal
with this assignment of p’s and ¢’s. O

To apply dynamic programming to the problem of obtaining an optimal
binary search tree, we need to view the construction of such a tree as the
result of a sequence of decisions and then observe that the principle of op-
timality holds when applied to the problem state resulting from a decision.
A possible approach to this would be to make a decision as to which of the
a;’s should be assigned to the root node of the tree. If we choose aj, then
it is clear that the internal nodes for a1, a9,...,ax_1 as well as the external
nodes for the classes Fy, F1, ..., Ex_1 will lie in the left subtree [of the root.
The remaining nodes will be in the right subtree r. Define

cost(l) = Z p(7) * level(a;) + Z * (level(E;) — 1)
1<i<k 0<i<k

278 CHAPTER 5. DYNAMIC PROGRAMMING

(©) (d) (e)

Figure 5.14 Possible binary search trees for the identifier set {do, if,
while}

5.5. OPTIMAL BINARY SEARCH TREES (+) 279

and
cost(r Z p(7) * level(a;) + Z * (level(E;) — 1)
k<i<n k<i<n

In both cases the level is measured by regarding the root of the respective
subtree to be at level 1.

@)
AN

Figure 5.15 An optimal binary search tree with root ag

Using w(4,j) to represent the sum ¢(7) + Zl i+1(q(D) + p(1)), we obtain
the following as the expected cost of the search tree (Figure 5.15):

p(k) + cost(l) + cost(r) + w(0,k — 1) + w(k,n) (5.10)

If the tree is optimal, then (5.10) must be minimum. Hence, cost(l)
must be minimum over all binary search trees containing a1, asg, ...,a;_1 and
Ey,Ey,..., Ex_y. Similarly cost(r) must be minimum. If we use c(i, j) to
represent the cost of an optimal binary search tree ¢;; containing a; 11, ..., a;
and E;, ..., E;, then for the tree to be optimal, we must have cost(l) =
¢(0,k — 1) and cost(r) = ¢(k,n). In addition, & must be chosen such that

p(k) +¢(0,k — 1) + c(k,n) + w(0,k — 1) + w(k, n)

is minimum. Hence, for ¢(0,n) we obtain

c(0,n) = 121}6121”{0 0,k — 1)+ c(k,n) + p(k) + w(0,k — 1) + w(k,n)} (5.11)

We can generalize (5.11) to obtain for any ¢(i, j)

C(Zaj) = lg}clg]{c(k— 1) +C(k7]) +p(k) + w(z,k - 1) + w(k7])}

280 CHAPTER 5. DYNAMIC PROGRAMMING

c(i,j) = ig}cigj{c(i, k—1)+c(k,5)} +w(i,j) (5.12)

Equation 5.12 can be solved for ¢(0,n) by first computing all ¢(3, j) such
that j — ¢ = 1 (note ¢(i,7) = 0 and w(z,i) = ¢q(i), 0 < i < n). Next we
can compute all ¢(7, j) such that j — ¢ = 2, then all ¢(4,5) with j —¢ = 3,
and so on. If during this computation we record the root (i, j) of each tree
ti;, then an optimal binary search tree can be constructed from these (i, j).
Note that r(i,5) is the value of k£ that minimizes (5.12).

Example 5.18 Let n = 4 and (a1, a2,a3,a4) = (do, if, int, while). Let
p(l:4) =(3,3,1,1) and ¢(0: 4) = (2,3,1,1,1). The p’s and ¢’s have been
multiplied by 16 for convenience. Initially, we have w(i,i) = ¢(i),c(i,7) =0
and r(i,i) = 0,0 <3 < 4. Using Equation 5.12 and the observation w(i,j) =
p(3) + a(j) + W, — 1), we get

w(0, 1) p(1) +¢(1) + w(0,0) =8

c(0,1) = w(0,1) + min{c(0,0) +¢(1,1)} = 8
r(0,1) = 1

w(l,2) = p(2)+q(2)+w(l,1) = 7

c(1,2) = w(l,2) +min {c(1,1) +¢(2,2)} = 7
r(0,2) = 2

w(2,3) = pB3)+4q3)+w(2,2) = 3

¢(2,3) = w(2,3)+min {c(2,2) +¢(3,3)} = 3
r(2,3) = 3

w(3,4) = p(4)+q4)+w(3,3) = 3

c(3,4) = w(3,4) + min {c(3,3) +c(4,4)} = 3
r(3,4) 4

Knowing w(i,7 4+ 1) and ¢(i,i + 1), 0 < i < 4, we can again use Equation
5.12 to compute w(i,i+2), ¢(i,+2), and (4,74 2), 0 < i < 3. This process
can be repeated until w(0,4), ¢(0,4), and r(0,4) are obtained. The table
of Figure 5.16 shows the results of this computation. The box in row i and
column j shows the values of w(j,j+1), ¢(j,7 +1) and (3, j +1) respectively.
The computation is carried out by row from row 0 to row 4. From the table
we see that ¢(0,4) = 32 is the minimum cost of a binary search tree for
(a1,a2,a3,a4). The root of tree ty4 is az. Hence, the left subtree is tp; and
the right subtree to4. Tree ty; has root a1 and subtrees too and £11. Tree fo4
has root ag; its left subtree is 99 and its right subtree t34. Thus, with the
data in the table it is possible to reconstruct to4. Figure 5.17 shows fp4. O

5.5. OPTIMAL BINARY SEARCH TREES (*) 281

0 1 2 3 4
wo =2 | wi =3 wn=1|wy=1 wy=1
0 C00=O C11=O C22=O C33=O C44=O
roo=0 | rin=0|rn= riz=0 | ry =0
wor =8 | wpp=7 | wy =3 wys=
1 C01=8 C12=7 C23:3 C34=3

7'01:1 r12=2 r23=3 r34=4

Wo2 = 12 Wiz = 9 Woyq :5
2 C02=19 C13=12 C24=8
rp= 1r3= 2| ru=3

W03=14 W14=11
3 C03:25 Cyq 19
r3= 2| rig= 2

W04—l6
4 C04=32
Yoga = 2

Figure 5.16 Computation of ¢(0,4), w(0,4), and (0, 4)
}/ifk

(do) (int
(@hi@

Figure 5.17 Optimal search tree for Example 5.18

282 CHAPTER 5. DYNAMIC PROGRAMMING

The above example illustrates how Equation 5.12 can be used to deter-
mine the ¢’s and r’s and also how to reconstruct ¢y, knowing the r’s. Let us
examine the complexity of this procedure to evaluate the ¢’s and r’s. The
evaluation procedure described in the above example requires us to compute
c(i,j) for (j —i) = 1,2,...,n in that order. When j — i = m, there are
n—m+ 1 ¢(i,7)’s to compute. The computation of each of these ¢(i,5)’s
requires us to find the minimum of m quantities (see Equation 5.12). Hence,
each such ¢(7,j) can be computed in time O(m). The total time for all
c(i,7)’s with j —i = m is therefore O(nm — m?). The total time to evaluate
all the ¢(7, j)’s and r(i,j)’s is therefore

Z (nm — m?) = O(n?)

1<m<n

We can do better than this using a result due to D. E. Knuth which shows
that the optimal £ in Equation 5.12 can be found by limiting the search to
the range r(¢,j — 1) < k < r(i + 1,7). In this case the computing time
becomes O(n?) (see the exercises). The function OBST (Algorithm 5.5) uses
this result to obtain the values of w(i, j), r(¢,7), and ¢(i,5), 0 < i < j < mn,
in O(n?) time. The tree to, can be constructed from the values of r(i,) in
O(n) time. The algorithm for this is left as an exercise.

EXERCISES

1. Use function OBST (Algorithm 5.5) to compute w(7,j), r(i,5), and
c(i,7), 0 < i < j < 4, for the identifier set (ai1,as,a3,a4) = (cout,
float, if, while) with p(1) = 1/20, p(2) = 1/5, p(3) = 1/10, p(4) =
1/20, ¢(0) = 1/5, q(1) = 1/10, q(2) = 1/5, q(3) = 1/20, and q(4) =
1/20. Using the r(i, j)’s, construct the optimal binary search tree.

2. (a) Show that the computing time of function OBST (Algorithm 5.5)
is O(n?).

(b) Write an algorithm to construct the optimal binary search tree
given the roots r(¢,7),0 <14 < j < n. Show that this can be done
in time O(n).

3. Since often only the approximate values of the p’s and ¢’s are known, it
is perhaps just as meaningful to find a binary search tree that is nearly
optimal. That is, its cost, Equation 5.9, is almost minimal for the
given p’s and ¢’s. This exercise explores an O(nlogn) algorithm that
results in nearly optimal binary search trees. The search tree heuristic
we use is

5.5. OPTIMAL BINARY SEARCH TREES (x) 283

1 Algorithm OBST(p,q,n)

2 // Given n distinct identifiers a1 < a3 < -+ < a,, and probabilities
3 //pli], 1 <i<n,and ¢[i], 0 <i<n, this algorithm computes
4 // the cost c[i, j] of optimal binary search trees ¢;; for identifiers
5 // ai+1,...,a;. It also computes [z, 5], the root of ¢;;.

6 // wli,j] is the weight of ¢;;.

7 A

8 for ;:=0ton—1do

9 {

10 // Initialize.

11 wli,1] := q[i]; r[s,4] := 05 c[i, 1] := 0.0

12 // Optimal trees with one node

13 wlt,i + 1] := q[i] + q[i + 1] + p[i + 1];

14 rli, i+ 1] =1+ 15

15 cfi, i + 1] := q[]+q[z‘+1]+p[z‘+1];

16 }

17 wn, n] := q[nl; rin,n] := 05 ¢[n,n] := 0.0;

18 for m :=2 to n do // Find optimal trees with m nodes.
19 for i :=0ton—-mdo

20 {

21 Ji=1+m;

22 wli, g] == wli, j — 1] + p[j] + qls];

23 // Solve 5.12 using Knuth’s result.

24 k := Find(c,7,1,75);

25 // A value of { in the range rli,j—1] <1

26 // <r[i+1,7] that minimizes c[I —1]+ [,];
27 cli, j] = [z 31+ ik — 1] + clk. s

28 jl=

29

30 write (c[0,n], w[0,n], r[0,n]);

31 }

1 Algorithm Find(c,7,1,7)

2

3 AN = 003

4 for m:=r[i,j — 1] to r[i+ 1, j] do

5 if (c[i,m — 1] + ¢[m, j]) < min then

6

7 min = cfi,m — 1] + ¢[m, j|; | := m;

8

9 return /;

10 }

Algorithm 5.5 Finding a minimum-cost binary search tree

284 CHAPTER 5. DYNAMIC PROGRAMMING

Choose the root k such that |w(0,k — 1) — w(k,n)| is as
small as possible. Repeat this procedure to find the left and
right subtrees of the root.

(a) Using this heuristic, obtain the resulting binary search tree for
the data of Exercise 1. What is its cost?

(b) Write an algorithm implementing the above heuristic. Your algo-
rithm should have time complexity O(nlogn).

5.6 STRING EDITING

We are given two strings X = z1,22,...,2, and Y = y1,99,...,Ym, where
z;, 1 <4 <n,and y;, 1 <j < m, are members of a finite set of symbols
known as the alphabet. We want to transform X into Y using a sequence
of edit operations on X. The permissible edit operations are insert, delete,
and change (a symbol of X into another), and there is a cost associated with
performing each. The cost of a sequence of operations is the sum of the costs
of the individual operations in the sequence. The problem of string editing
is to identify a minimum-cost sequence of edit operations that will transform
X into Y.

Let D(z;) be the cost of deleting the symbol z; from X, I(y;) be the cost
of inserting the symbol y; into X, and C(z;,y;) be the cost of changing the
symbol z; of X into y;.

Example 5.19 Consider the sequences X = z1,x2, 3,%4,2Z5 = a,a,b,a,b
and Y = y1,y2,y3,y4 = b,a,b,b. Let the cost associated with each insertion
and deletion be 1 (for any symbol). Also let the cost of changing any symbol
to any other symbol be 2. One possible way of transforming X into Y is
delete each z;,1 < ¢ < 5, and insert each y;,1 < j < 4. The total cost of
this edit sequence is 9. Another possible edit sequence is delete 1 and 9
and insert y4 at the end of string X. The total cost is only 3.]

A solution to the string editing problem consists of a sequence of decisions,
one for each edit operation. Let £ be a minimum-cost edit sequence for
transforming X into Y. The first operation, O, in £ is delete, insert, or
change. If &’ = £ — {0} and X' is the result of applying O on X, then &’
should be a minimum-cost edit sequence that transforms X’ into Y. Thus
the principle of optimality holds for this problem. A dynamic programming
solution for this problem can be obtained as follows. Define cost(1, j) to be
the minimum cost of any edit sequence for transforming x1,x2,...,x; into
Y1,Y2,...,y; (for 0 < i < nand 0 <j <m). Compute cost(i,j) for each ¢
and j. Then cost(n,m) is the cost of an optimal edit sequence.

For i = j = 0, cost(i,j) = 0, since the two sequences are identical (and
empty). Also, if j = 0 and i > 0, we can transform X into Y by a sequence of

5.6. STRING EDITING 285

deletes. Thus, cost(i,0) = cost(i—1,0)+D(z;). Similarly, ifi = 0 and 5 > 0,
we get cost(0,5) = cost(0,5 — 1) + I(y;). If i # 0and j # 0, z1,%2,...,%;
can be transformed into y1,y2,...,y; in one of three ways:

1. Transform z1,z2,...,z; 1 1nto y1,¥2,...,¥y; using a minimum-cost edit
sequence and then delete ;. The corresponding cost is cost(i — 1,7) +

2. Transform x1,%2,...,%;—| into y1,y2,...,y; 1 using a minimum-cost
edit sequence and then change the symbol z; to y;. The associated
cost is cost(i — 1,7 — 1) + C(zi, y;).

3. Transform z1, xz9,. Ce g into y1, Y2, -5 Y51 using a minimum—cos‘g e_dit
sequence and then insert y;. This corresponds to a cost of cost(i,j —

The minimum cost of any edit sequence that transforms xq,zs,...,%;
into y1,y2,...,y; (for + > 0 and 5 > 0) is the minimum of the above three
costs, according to the principle of optimality. Therefore, we arrive at the
following recurrence equation for cost(i, j):

0 1=7=0
.) cost(i—1,0)+ D(z;) j=0,1>0
cost(i,J) =4 cost(0,j — 1) + I(y;) i=0, j >0 (5.13)
cost' (i, j) i>0,j>0
where cost'(i,7) = min { cost(i — 1,7) + D(z;),
cost(i — 1,j — 1) + C(zs, y5),
cost(i,j — 1) + I(y;) }

We have to compute cost(i, j) for all possibles values of i and j (0 < i <n
and 0 < j <m). There are (n + 1)(m + 1) such values. These values can be
computed in the form of a table, M, where each row of M corresponds to a
particular value of ¢ and each column of M corresponds to a specific value
of j. M(i,5) stores the value cost(i,j). The zeroth row can be computed
first since it corresponds to performing a series of insertions. Likewise the
zeroth column can also be computed. After this, one could compute the
entries of M in row-major order, starting from the first row. Rows should
be processed in the order 1,2,...,n. Entries in any row are computed in
increasing order of column number.

The entries of M can also be computed in column-major order, starting
from the first column. Looking at Equation 5.13, we see that each entry of
M takes only O(1) time to compute. Therefore the whole algorithm takes
O(mn) time. The value cost(n,m) is the final answer we are interested in.
Having computed all the entries of M, a minimum edit sequence can be

286 CHAPTER 5. DYNAMIC PROGRAMMING

obtained by a simple backward trace from cost(n,m). This backward trace
is enabled by recording which of the three options for ¢ > 0,5 > 0 yielded
the minimum cost for each ¢ and j.

Example 5.20 Consider the string editing problem of Example 5.19. X =
a,a,b,a,band Y = b,a,b,b. Each insertion and deletion has a unit cost and
a change costs 2 units. For the cases 1 = 0,5 > 1, and j = 0,7 > 1, cost(s,)
can be computed first (Figure 5.18). Let us compute the rest of the entries
in row-major order. The next entry to be computed is cost(1,1).

cost(1,1) min {cost(0,1) + D(z1), cost(0,0) + C(z1,y1),cost(1,0) + I(y1)}
min {2,2,2} =2

Next is computed cost(1,2).

cost(1,2) = min {cost(0,2) + D(z1),cost(0,1) + C(z1,y2),cost(1,1) + I(y2)}
= min {3,1,3} =1

The rest of the entries are computed similarly. Figure 5.18 displays the
whole table. The value cost(5,4) = 3. One possible minimum-cost edit
sequence is delete x1, delete x5, and insert y4. Another possible minimum
cost edit sequence is change z1 to y2 and delete z4. O

NTo o1 2 3 4

il T T T]

o— 0 1 2 3 4

1— 1 2 1 2 3

72— 2 3 2 3 4

31— 3 2 3 2 3

4— 4 3 2 3 4

s— 5 4 3 2 3

Figure 5.18 Cost table for Example 5.20

5.7. 0/1 KNAPSACK 287

EXERCISES

1. Let X = a,a,b,a,0,b,a,b,a,a and ¥ = b,a,b,a,a,b,a,b. Find a
minimum-cost edit sequence that transforms X into Y.

2. Present a pseudocode algorithm that implements the string editing
algorithm discussed in this section. Program it and test its correctness
using suitable data.

3. Modify the above program not only to compute cost(n,m) but also to
output a minimum-cost edit sequence. What is the time complexity of
your program?

4. Given a sequence X of symbols, a subsequence of X is defined to be any
contiguous portion of X. For example, if X = x1,z9, 23, 24, T5, T2, T3
and 1, z9, x5 are subsequences of X. Given two sequences X and Y,
present an algorithin that will identify the longest subsequence that
is common to both X and Y. This problem is known as the longest
common subsequence problem. What is the time complexity of your
algorithm?

5.7 0/1 KNAPSACK

The terminology and notation used in this section is the same as that in
Section 5.1. A solution to the knapsack problem can be obtained by making
a sequence of decisions on the variables 1, x2,...,%,. A decision on variable
x; involves determining which of the values 0 or 1 is to be assigned to it. Let
us assume that decisions on the z; are made in the order z,,zn_1,...,21.
Following a decision on x,, we may be in one of two possible states: the
capacity remaining in the knapsack is m and no profit has accrued or the
capacity remaining is m — wy and a profit of p, has accrued. It is clear that
the remaining decisions z,_1,...,2; must be optimal with respect to the
problem state resulting from the decision on x,. Otherwise, z,,...,z; will
not be optimal. Hence, the principle of optimality holds.

Let f;(y) be the value of an optimal solution to KNAP(1, j,y). Since the
principle of optimality holds, we obtain

fa(m) = max {fn_1(m), fn-1(m —wy) + pn} (5.14)
For arbitrary f;(y), ¢ > 0, Equation 5.14 generalizes to

fily) = max {fi_1(y), fi-1(y — wi) + pi} (5.15)

Equation 5.15 can be solved for f,(m) by beginning with the knowledge fo(y)
= 0 for all y and f;(y) = —o0,y < 0. Then f1, fo,..., fn can be successively
computed using (5.15).

288 CHAPTER 5. DYNAMIC PROGRAMMING

When the w;’s are integer, we need to compute f;(y) for integer y, 0 <
y < m. Since f;(y) = —oo for y < 0, these function values need not be
computed explicitly. Since each f; can be computed from f;_; in ©(m) time,
it takes ©(mn) time to compute f,. When the w;’s are real numbers, f;(y) is
needed for real numbers y such that 0 < y < m. So, f; cannot be explicitly
computed for all y in this range. Even when the w;’s are integer, the explicit
©(mn) computation of f, may not be the most efficient computation. So,
we explore an alternative method for both cases.

Notice that f;(y) is an ascending step function; i.e., there are a finite
number of ¥’s, 0 = y; < y2 < --- < yg, such that f;(y1) < fi(y2) < --- <
filye)s fily) = —oo, y < yi; fily) = f(ur), ¥ = yws and fily) = filyy),
y; <y < yj+1. So, we need to compute only fi(y;), 1 < j < k. We use the
ordered set S* = {(f(y;),y;)|1 < j <k} to represent f;(y). Each member of
S'is a pair (P, W), where P = f;(y;) and W = y;. Notice that S® = {(0,0)}.
We can compute S*T! from S* by first computing

St = {(P,W)|(P —pi,W —w;) € 5} (5.16)

Now, S**! can be computed by merging the pairs in S and S} together.
Note that if S**! contains two pairs (P;, W) and (P, W) with the property
that P; < P, and W; > Wy, then the pair (P;, W;) can be discarded because
of (5.15). Discarding or purging rules such as this one are also known as
dominance rules. Dominated tuples get purged. In the above, (P, Wy)
dominates (P, W;).

Interestingly, the strategy we have come up with can also be derived by
attempting to solve the knapsack problem via a systematic examination of
the up to 2" possibilities for z;,z2,...,z,. Let S* represent the possible
states resulting from the 2* decision sequences for xq,...,x;. A state refers
to a pair (P;,W;), W; being the total weight of objects included in the
knapsack and P; being the corresponding profit. To obtain Sl we note
that the possibilities for x;+1 are z;+; = 0 or ;41 = 1. When z;1; = 0, the
resulting states are the same as for S*. When ;1 = 1, the resulting states
are obtained by adding (p;+1,w;;1) to each state in %, Call the set of these
additional states St. The S! is the same as in Equation 5.16. Now, S*"! can
be computed by merging the states in S* and S} together.

Example 5.21 Consider the knapsack instance n = 3, (wy, wq, w3) = (2,3,4),
(p1,p2,p3) = (1,2,5), and m = 6. For these data we have

S = {(0,0)};8) = {(1,2)}

S' = {(0,0),(1,2)} 5] ={(2,3),(3,5)}

S = {(0,0),(1,2),(2,3),(3,5)}; 57 = {(5,4),(6,6),(7,7),(8,9)}
S = {(0,0),(1,2),(2,3),(5,4),(6,6),(7,7),(8,9)}

5.7. 0/1 KNAPSACK 289

Note that the pair (3, 5) has been eliminated from S3 as a result of the
purging rule stated above. o

When generating the S*’s, we can also purge all pairs (P, W) with W > m
as these pairs determine the value of f,(z) only for z > m. Since the
knapsack capacity is 7n, we are not interested in the behavior of f, for z > m.
When all pairs (P;, W;) with W; > m are purged from the Ss, f,(m) is
given by the P value of the last pair in S™ (note that the S*’s are ordered
sets). Note also that by computing S™, we can find the solutions to all the
knapsack problems KNAP(1,n,z), 0 < z < m, and not just KNAP(1,n,m).
Since, we want only a solution to KNAP(1,n,m), we can dispense with the
computation of . The last pair in S™ is either the last one in S?~! or it is
(P; + pn, W; + wy,), where (P;, W;) € S"~! such that W, + w, < and W;
is maximum.

If (P1,W1) is the last tuple in S™, a set of 0/1 values for the z;’s such
that > pix; = Pl and Y w;z; = W1 can be determined by carrying out
a search through the S's. We can set z,, = 0 if (P1,W1) € S* ' 1If
(P1,W1) ¢ S* 1, then (P1 — p,, W1 —w,) € S* ! and we can set =, = 1.
This leaves us to determine how either (P1, W1) or (P1—p,, W1 -—w,) was
obtained in $"~!'. This can be done recursively.

Example 5.22 With m = 6, the value of f3(6) is given by the tuple (6, 6)
in $% (Example 5.21). The tuple (6, 6) ¢ S?, and so we must set z3 = 1.
The pair (6, 6) came from the pair (6 — p3,6 — w3) = (1,2). Hence (1, 2)
€ S2. Since (1,2) € S', we can set 2o = 0. Since (1, 2) ¢ S°, we obtain
x1 = 1. Hence an optimal solution is (z1,z2,z3) = (1,0, 1). |

We can sum up all we have said so far in the form of an informal algorithm
DKP (Algorithm 5.6). To evaluate the complexity of the algorithm, we
need to specify how the sets S* and S! are to be represented; provide an
algorithm to merge S* and S!; and specify an algorithm that will trace
through S"!,...,S! and determine a set of 0/1 values for z,..., 2.

We can use an array pair| | to represent all the pairs (P, W). The P values
are stored in pair[].p and the W values in pair| .w. Sets S°,S1,... 8§71
can be stored adjacent to each other. This requires the use of pointers b[i],
0 < i < n, where b[i] is the location of the first element in S%, 0 < i < n,
and b[n] is one more than the location of the last element in S™~1.

Example 5.23 Using the representation above, the sets S, S', and S? of
Example 5.21 appear as

290 CHAPTER 5. DYNAMIC PROGRAMMING

Algorithm DKP(p,w,n,m)
{

S0 :={(0,0)};
fori:=1ton—1do

ST = {(PW)|(P — pi,W —w;) € 5" and W < m};
S* := MergePurge(S*~1, Si71);

C 00~ S Ul Ww N

}

(PX,WX) :=last pair in sl

10 (PY,WY) := (P + p,, W' + w,) where W' is the largest W in
11 any pair in 571 such that W + w, < m;

12 // Trace back for z,,z,_1,...,21.
13 if (PX > PY) then z, := 0;

14 else z, := 1;
15 TraceBackFor(z,,—1,...,21);
16 }

Algorithm 5.6 Informal knapsack algorithm

pair[lp O 0 1 0 1 2 3

pair[lw 0 0O 2 0 2 3 5

The merging and purging of S~ and S{"l can be carried out at the same
time that S{'l is generated. Since the pairs in S°~! are in increasing order
of P and W, the pairs for S° are generated in this order. If the next pair
generated for S¢7! is (PQ,WQ), then we can merge into S* all pairs from

Si~1 with W value < WQ. The purging rule can be used to decide whether
any pairs get purged. Hence, no additional space is needed in which to store

si—1,

DKnap (Algorithm 5.7) generates S from S?~! in this way. The S%'s are
generated in the for loop of lines 7 to 42 of Algorithm 5.7. At the start
of each iteration ¢t = b[i — 1] and h is the index of the last pair in S*~!.
The variable k points to the next tuple in Si~1 that has to be merged into
S*. In line 10, the function Largest determines the largest ¢, t < q < h,

5.7. 0/1 KNAPSACK 291

for which pair[q].w + w[i] < m. This can be done by performing a binary
search. The code for this function is left as an exercise. Since u is set
such that for all W;,h > j > w, W; + w; > m, the pairs for Si—l are
(P(4) + pi, W(j) + w;), 1 <j <wu. The for loop of lines 11 to 33 generates
these pairs. Each time a pair (pp, ww) is generated, all pairs (P, W) in §*~!
with W < ww not yet purged or merged into S* are merged into S*. Note
that none of these may be purged. Lines 21 to 25 handle the case when the
next pair in S*°! has a W value equal to ww. In this case the pair with
lesser P value gets purged. In case pp > P(next — 1), then the pair (pp, ww)
gets purged. Otherwise, (pp, ww) is added to S*. The while loop of lines 31
and 32 purges all unmerged pairs in Si—1 that can be purged at this time.
Finally, following the merging of Si~! into S, there may be pairs remaining
in S°! to be merged into S’. This is taken care of in the while loop of
lines 35 to 39. Note that because of lines 31 and 32, none of these pairs
can be purged. Function TraceBack (line 43) implements the if statement
and trace-back step of the function DKP (Algorithm 5.6). This is left as an
exercise.

If |S?| is the number of pairs in S, then the array pair should have a
minimum dimension of d = 3, .,,_1 |S?|. Since it is not possible to predict
the exact space needed, it is necessary to test for next > d each time next
is incremented. Since each S%, i > 0, is obtained by merging S*~! and Sfl
and |S{7!| < |81, it follows that |S?| < 2|S*~!|. In the worst case no pairs
will get purged and

Yo 8= > =201

0<i<n—1 0<i<n—1

The time needed to generate S* from S*~' is @(|S~!|). Hence, the time
needed to compute all the $’s, 0 < i < n, is O(3 |S*!|). Since |S?| < 2¢,
the time needed to compute all the S¥s is O(2"). If the p,’s are integers,
then each pair (P, W) in S’ has an integer P and P < 2 1<j<iPj- Similarly,
if the w;’s are integers, each W is an integer and W < m. In any S the
pairs have distinct W values and also distinct PP values. Hence,

’Si| <1+ Z D
1<5<i
when the p;’s are integers and

1S <1+ min { z wj, m}
1<

292 CHAPTER 5. DYNAMIC PROGRAMMING

PW = record {float p; float w; }

1 Algorithm DKnap(p,w,z,n,m)

2

3 { // pair[] is an array of PW’s.

4 b0] := 1; pair(1].p := pair[l].w :=0.0; // S°

5 t:=1; h:=1; // Start and end of S°

6 b[1] := next := 2; // Next free spot in pair| |

7 fori:=1ton-1do

8 { // Generate S,

9 ko=t

10 u := Largest(pair,w,t, h,i,m);

11 for j:=1 to udo

12 { // Generate S; ! and merge.

13 pp = pair[j].p + pli]s ww := pair(j].w + w(i];

14 // (pp,ww) is the next element in S}~".

15 while ((k < 7) and (pair(k].w < ww)) do

16

17 pair[next].p := pair[k].p;

18 pair[next|.w := pair(k].w;

19 next :=next+ 15 k:= k+ 1;

20 }

21 i{f ((k < h) and (pair[k].w = ww)) then

22

23 if pp < pair[k].p then pp := pair[k].p;

24 k:=k+1;

25 }

26 if pp > pair[next — 1].p then

27

28 pair[next].p := pp; pair[nexrt].w = ww;

29 next :=next + 13

30 }

31 while ((k < h) and (pair|k].p < pair[next — 1].p))

32 do k:=k+1;

33

34 // Merge in remaining terms from S 1.

35 while (k < h) do

36

37 pair|next].p = pair|k].p; pai [newt].w := pair[k].w;

38 next :=next+ 13 k:=k+1

39 }

40 // Initialize for S**1.

41 t:=h+1; h:=next — 1; bfi + 1] := next;

42

43 TraceBack(p, w, pair, x, m,n);

44 }

Algorithm 5.7 Algorithm for 0/1 knapsack problem

5.7. 0/1 KNAPSACK 293

when the w;’s are integers. When both the p;’s and w;’s are integers, the
time and space complexity of DKnap (excluding the time for TraceBack)
is O(min{2", n3>,,<, pi;nm}). In this bound 37, ;., pi can be replaced

by > i<i<npi/ged (p1y....pn) and m by ged (wi,wa, ..., w,,m) (see the
exercises). The exercises indicate how TraceBack may be implemented so as
to have a space complexity O(1) and a time complexity O(n?).

Although the above analysis may seem to indicate that DKnap requires
too much computational resource to be practical for large n, in practice
many instances of this problem can be solved in a reasonable amount of
time. This happens because usually, all the p’s and w’s are integers and m
is much smaller than 2". The purging rule is effective in purging most of the
pairs that would otherwise remain in the S*’s.

Algorithm DKnap can be speeded up by the use of heuristics. Let L
be an estimate on the value of an optimal solution such that f,(m) > L.
Let PLEFT(i) = ¥, <, pj- If S contains a tuple (P, W) such that P +

PLEFT(i) < L, then (P,W) can be purged from S°. To see this, observe
that (P, W) can contribute at best the pair (P + Yici<n P W+ ici<n w)
to S77'. Since P + Yicj<nPj = P+ PLEFT(i) < L, it follows that this
pair cannot lead to a pair with value at least L and so cannot determine an
optimal solution. A simple way to estimate L such that L < f,(m) is to
consider the last pair (P,W) in S*. Then, P < f,(m). A better estimate is
obtained by adding some of the remaining objects to (P, W). Example 5.24
illustrates this. Heuristics for the knapsack problem are discussed in greater
detail in the chapter on branch-and-bound. The exercises explore a divide-
and-conquer approach to speed up DKnap so that the worst case time is

o(2n/?).

Example 5.24 Counsider the following instance of the knapsack problem:
n =6, (p17p27p37p47p57p6) = (11)1,11)2,11)3,’11)4,11)5, UJ@) = (1007 90, 20, 10, 7,
3), and m = 165. Attempting to fill the knapsack using objects in the order
1, 2, 3,4, 5, and 6, we see that objects 1, 2, 4, and 6 fit in and yield a profit
of 163 and a capacity utilization of 163. We can thus begin with L = 163 as
a value with the property L < f,(m). Since p; = w;, every pair (P,W) € 5*,
0 <17 <6 has P=W. Hence, each pair can be replaced by the singleton P
or W. PLEFT(0) = 190, PLEFT(1) = 90, PLEFT(2) = 40, PLEFT(3) =
20, PLEFT(4) = 10, PLEFT(5) = 3, and PLEFT(6) = 0. Eliminating from
each S* any singleton P such that P+ PLEFT(i) < L, we obtain

§°={0}; S} = {100}
S' ={100}; Si = {150}
5% ={150}; Sf=¢

294 CHAPTER 5. DYNAMIC PROGRAMMING

53 = {150}; S? = {160}
St ={160}; St=¢
5% = {160}

The singleton 0 is deleted from S! as 0 + PLEFT(1)< 163. The set S?
does not contain the singleton 150 + 20 = 170 as m < 170. S® does not
contain the 100 or the 120 as each is less than L — PLEFT(3). And so on.
The value fg(165) can be determined from S°. In this example, the value of
L did not change. In general, L will change if a better estimate is obtained
as a result of the computation of some S*. If the heuristic wasn’t used, then
the computation would have proceeded as

50 = {0}
s' = {0,100}
5% = {0,50, 100,150}

195)
&
I

{0, 20,50, 70, 100, 120, 150}

{0,10,20, 30, 50, 60, 70, 80, 100, 110, 120, 130, 150, 160}
$% = {0,7,10,17,20,27,30, 37,50, 57, 60, 67, 70, 77, 80, 87, 100,
107,110,117, 120, 127, 130, 137, 150, 157, 160}

19!
=
Il

The value fg(165) can now be determined from S°, using the knowledge
(p67w6) - (37 3) o

EXERCISES

1. Generate thesets S*, 0 < i < 4 (Equation 5.16), when (wq, w2, w3, wy) =
(107 157679) and (p17p27p37p4) = (2757871)

2. Write a function Largest(pair, w,t,h,1,m) that uses binary search to
determine the largest ¢, t < ¢ < h, such that pair[ql.w + w[i] < m.

3. Write a function TraceBack to determine an optimal solution z1, z2, . . .,
Zn to the knapsack problem. Assume that S* 0 < i < n, have already
been computed as in function DKnap. Knowing b(i) and b(i + 1),
you can use a binary search to determine whether (P',W') € S

Hence, the time complexity of your algorithm should be no more than
O(nmax;{log |S*}) = O(n?).

4. Give an example of a set of knapsack instances for which |S?| = 27,
0 <1 <n. Your set should include one instance for each n.

5.8. RELIABILITY DESIGN 295

5. (a) Show that if the p;’s are integers, then the size of each S, 8¢, in
the knapsack problem is no more than 1437, ., pi/gcd(pi,p2,-. .

pn), where ged(p1,p2,...,pn) 18 the greatest common divisor of
the p;’s.

(b) Show that when the w;’s are integer, then [S'| < 14+ min{}",_,_;
wj, m}/ged(w, wa, ..., w,, m).

6. (a) Using a divide-and-conquer approach coupled with the set gener-

ation approach of the text, show how to obtain an 0(2”/ 2) algo-
rithm for the 0/1 knapsack problem.

(b) Develop an algorithm that uses this approach to solve the 0/1
knapsack problem,

(c) Compare the run time and storage requirements of this approach
with those of Algorithm 5.7. Use suitable test data.

7. Consider the integer knapsack problem obtained by replacing the 0/1
constraint in (5.2) by z; > 0 and integer. Generalize f;(z) to this
problem in the obvious way.

(a) Obtain the dynamic programming recurrence relation correspond-
ing to (5.15).

(b) Show how to transform this problem into a 0/1 knapsack problem.
(Hint: Introduce new 0/1 variables for each z;. If 0 < z; < 27,
then introduce j variables, one for each bit in the binary repre-
sentation of x;.)

5.8 RELIABILITY DESIGN

In this section we look at an example of how to use dynamic programming
to solve a problem with a multiplicative optimization function. The prob-
lem is to design a system that is composed of several devices connected in
series (Figure 5.19). Let r; be the reliability of device D; (that is, r; is the
probability that device ¢ will function properly). Then, the reliability of the
entire system is Ilr;. Even if the individual devices are very reliable (the
r;’s are very close to one), the reliability of the system may not be very
good. For example, if n = 10 and r; = .99, 1 < ¢ < 10, then IIr; = .904.
Hence, it is desirable to duplicate devices. Multiple copies of the same de-
vice type are connected in parallel (Figure 5.20) through the use of switching
circuits. The switching circuits determine which devices in any given group
are functioning properly. They then make use of one such device at each
stage.

If stage ¢ contains m; copies of device D;, then the probability that all
m; have a malfunction is (1 — r;)™. Hence the reliability of stage 7 becomes

296 CHAPTER 5. DYNAMIC PROGRAMMING

oA m - o]

Figure 5.19 n devices D;, 1 <14 < n, connected in series

stage 1 stage 2 stage 3 stage n
D, Ds D,
D, D,
D, — — D, ——
D D, D5 D
1 D3 n

Figure 5.20 Multiple devices connected in parallel in each stage

1 — (1 —r;)™. Thus, if r; = .99 and m; = 2, the stage reliability becomes
29999, In any practical situation, the stage reliability is a little less than
1— (1 —r;)™ because the switching circuits themselves are not fully reliable.
Also, failures of copies of the same device may not be fully independent (e.g.,
if failure is due to design defect). Let us assume that the reliability of stage
i is given by a function ¢;(m;), 1 < n. (It is quite conceivable that ¢;(m;)
may decrease after a certain value of m;.) The reliability of the system of
stages is II1<j<n;(m;).

Our problem is to use device duplication to maximize reliability. This
maximization is to be carried out under a cost constraint. Let ¢; be the
cost of each unit of device ¢ and let ¢ be the maximum allowable cost of
the system being designed. We wish to solve the following maximization
problem:

maximize Il <;<n ¢;(m;)
subject to Z cim; < ¢ (5.17)
1<i<n

m; > 1 and integer, 1 <7< n

5.8. RELIABILITY DESIGN 297

A dynamic programming solution can be obtained in a manner similar to
that used for the knapsack problem. Since, we can assume each ¢; > (, each
m; must be in the range 1 < m; < u;, where

w; = {(C +ci— Zc_j)/CiJ
1

The upper bound u; follows from the observation that m; > 1. An optimal
solution mi,ma,...,m, is the result of a sequence of decisions, one decision
for each m;. Let f;(x) represent the maximum value of Il < j<; ¢(m;) subject
to the constraints Zl<j<7j c;mj <z and 1 <mj <uj, 1 <3 <4 Then, the
value of an optimal solution is f,(c). The last decision made requires one to
choose m,, from {1,2,3, ..., u,}. Once a value for m,, has been chosen, the
remaining decisions must be such as to use the remaining funds ¢ — ¢,m, in
an optimal way. The principal of optimality holds and

fule) = max {¢n(mn)fr1(c—cnmy)} (5.18)

1§mn§un

For any f;(x), ¢ > 1, this equation generalizes to

filz) = max {¢y(m;)fim1(z —ceymy)} (5.19)
1<m,<u;

Clearly, fo(xz) =1 for all z, 0 < z < ¢. Hence, (5.19) can be solved using
an approach similar to that used for the knapsack problem. Let S* consist
of tuples of the form (f,z), where f = f;(x). There is at most one tuple for
each different x that results from a sequence of decisions on my, msa,...,m,.
The dominance rule (f1,z1) dominates (fe, z2) iff f1 > f2 and 21 < x5 holds
for this problem too. Hence, dominated tuples can be discarded from S°.

Example 5.25 We are to design a three stage system with device types
Dy, Dy, and D3. The costs are $30, $15, and $20 respectively. The cost of
the system is to be no more than $105. The reliability of each device type is
.9, .8 and .5 respectively. We assume that if stage ¢ has m; devices of type i
in parallel, then ¢;(m;) = 1—(1—7;)™:. In terms of the notation used earlier,
¢t =30,¢0 =15,¢3 =20,¢ =105, =.9, r9 = .8, r3 = .b,u; =2,uy =3,
and uz = 3.

We use S to represent the set of all undominated tuples (f,z) that
may result from the various decision sequences for mi,mo,...,m;. Hence,
f(z) = fi(x). Beginning with S° = {(1,0)}, we can obtain each S* from S~}
by trying out all possible values for m; and combining the resulting tuples
together. Using S} to represent all tuples obtainable from S~ by choosing

m; = j, we obtain S} = {(.9, 30)} and S = {(.9, 30),(.99,60)}. The set

298 CHAPTER 5. DYNAMIC PROGRAMMING

52 = {(.72,45),(.792,75)}; S2= {(.864, 60)}. Note that the tuple (.9504, 90)
which comes from (.99, 60) has been eliminated from S7 as this leaves only
$10. This is not enough to allow m3 = 1. The set S7 = {(.8928,75)}. Com-
bining, we get 5% = {(.72,45), (.864, 60), (.8928, 75)} as the tuple (.792, 75) is
dominated by (.864, 60). The set S? = {(.36,65), (432, 80), (.4464,95)}, S5
= {(.54,85),(.648,100)}, and S5 = {(.63,105)}. Combining, we get S* =
{(.36,65), (.432, 80), (.54, 85), (.648,100)}.

The best design has a reliability of .648 and a cost of 100. Tracing back
through the S*’s, we determine that m; = 1, mg = 2, and m3 = 2. O

As in the case of the knapsack problem, a complete dynamic programming
algorithm for the reliability problem will use heuristics to reduce the size of
the S%s. There is no need to retain any tuple (f,z) in S* with z value
greater that ¢ — 3, ;. ¢; as such a tuple will not leave adequate funds
to complete the system. In addition, we can devise a simple heuristic to
determine the best reliability obtainable by completing a tuple (f,z) in S°.
If this is less than a heuristically determined lower bound on the optimal
system reliability, then (f,z) can be eliminated from S°.

EXERCISE

1. (a) Present an algorithm similar to DKnap to solve the recurrence
(5.19).

(b) What are the time and space requirements of your algorithm?

(c) Test the correctness of your algorithm using suitable test data.

5.9 THE TRAVELING SALESPERSON
PROBLEM

We have seen how to apply dynamic programming to a subset selection prob-
lem (0/1 knapsack). Now we turn our attention to a permutation problem.
Note that permutation problems usually are much harder to solve than sub-
set problems as there are n! different permutations of n objects whereas
there are only 2" different subsets of n objects (n! > 2"). Let G = (V, E)
be a directed graph with edge costs ¢;;. The variable c;; is defined such that
cij > 0 for all i and j and ¢;; = oo if (i,5) € E. Let |V| = n and assume
n > 1. A tour of G is a directed simple cycle that includes every vertex in
V. The cost of a tour is the sum of the cost of the edges on the tour. The
traveling salesperson problem is to find a tour of minimum cost.

The traveling salesperson problem finds application in a variety of situ-
ations. Suppose we have to route a postal van to pick up mail from mail

5.9. THE TRAVELING SALESPERSON PROBLEM 299

boxes located at n different sites. An n + 1 vertex graph can be used to
represent the situation. One vertex represents the post office from which the
postal van starts and to which it must return. Edge (4, j) is assigned a cost
equal to the distance from site i to site j. The route taken by the postal van
is a tour, and we are interested in finding a tour of minimum length.

As a second example, suppose we wish to use a robot arm to tighten
the nuts on some piece of machinery on an assembly line. The arm will
start from its initial position (which is over the first nut to be tightened),
successively move to each of the remaining nuts, and return to the initial
position. The path of the arm is clearly a tour on a graph in which vertices
represent the nuts. A minimum-cost tour will minimize the time needed for
the arm to complete its task (note that only the total arm movement time
is variable; the nut tightening time is independent of the tour).

Our final example is from a production environment in which several com-
modities are manufactured on the same set of machines. The manufacture
proceeds in cycles. In each production cycle, n different commodities are
produced. When the machines are changed from production of commodity
i to commodity 7, a change over cost ¢;; is incurred. It is desired to find a
sequence in which to manufacture these commodities. This sequence should
minimize the sum of change over costs (the remaining production costs are
sequence independent). Since the manufacture proceeds cyclically, it is nec-
essary to include the cost of starting the next cycle. This is just the change
over cost from the last to the first commodity. Hence, this problem can be
regarded as a traveling salesperson problem on an n vertex graph with edge
cost ¢;;'s being the changeover cost from commodity 4 to commodity j.

In the following discussion we shall, without loss of generality, regard
a tour to be a simple path that starts and ends at vertex 1. Every tour
consists of an edge (1,k) for some k € V — {1} and a path from vertex k to
vertex 1. The path from vertex k to vertex 1 goes through each vertex in
V — {1, k} exactly once. It is easy to see that if the tour is optimal, then the
path from k to 1 must be a shortest k£ to 1 path going through all vertices
in V. — {1,k}. Hence, the principle of optimality holds. Let g(i,S) be the
length of a shortest path starting at vertex 4, going through all vertices in
S, and terminating at vertex 1. The function g(1,V — {1}) is the length of
an optimal salesperson tour. From the principal of optimality it follows that

Generalizing (5.20), we obtain (for i € S)
g(i, §) = min{ci; +g(j, S — {71} (5.21)
jES

Equation 5.20 can be solved for g(1,V — {1}) if we know g(k,V —{1,k})
for all choices of k. The g values can be obtained by using (5.21). Clearly,

300 CHAPTER 5. DYNAMIC PROGRAMMING

g(i, @) = ¢;1, 1 <1 < n. Hence, we can use (5.21) to obtain g(i,S) for all S
of size 1. Then we can obtain g(7, S) for S with |S| = 2, and so on. When
|S] < n — 1, the values of < and S for which g(¢, S) is needed are such that
1#1,1¢ 85 andigsS.

Example 5.26 Consider the directed graph of Figure 5.21(a). The edge
lengths are given by matrix ¢ of Figure 5.21(b).

10 15 20
10
13 0 12

0w N wnm O
o
e

(b)

Figure 5.21 Directed graph and edge length matrix ¢

Thus ¢g(2,¢) = c21 = 5,9(3,¢) = ¢31 = 6, and g(4,¢) = c41 = 8. Using
(5.21), we obtain

9(2,{3})) = c+9B,¢) = 15 g(2,{4}) = 18
9(37 {2}) = 18 9(37 {4}) = 20
9(47 {2}) = 13 9(47 {3}) = 15
Next, we compute ¢(7,S) with [S|=2,i# 1,1 ¢ Sand i ¢ S.
9(2,{3,4}) = min {co3 +9(3,{4}),co0a + g(4,{3})} = 25
9(37 {274}) = min {032 + 9(27 {4})7 €34 + 9(47 {2})} = 25
9(4,{2,3}) = min {ca2 +9(2,{3}),ca3 + 9(3,{2})} = 23
Finally, from (5.20) we obtain
9(1,{2,3,4}) = min{ci2 + 9(2,{3,4}),c13 + 9(3,{2,4}),c14 + g(4,{2,3})}

min {35, 40, 43}
35

5.10. FLOW SHOP SCHEDULING 301

An optimal tour of the graph of Figure 5.21(a) has length 35. A tour
of this length can be constructed if we retain with each g(¢,.S) the value of
J that minimizes the right-hand side of (5.21). Let J(4,S) be this value.
Then, J(1,{2,3,4}) = 2. Thus the tour starts from 1 and goes to 2. The
remaining tour can be obtained from ¢(2, {3, 4}). So J(2, {3, 4}) = 4. Thus
the next edge is (2,4). The remaining tour is for g(4, {3}). So J(4, {3}) =
3. The optimal tour is 1, 2, 4, 3, 1. O

Let N be the number of g(4, S)’s that have to be computed before (5.20)
can be used to compute g(1,V — {1}). For each value of |S| there are n — 1
choices for i. The number of distinct sets S of size k not including 1 and ¢

n—2
is < k) Hence

N = g(n - 1) (nlf) = (n—1)2"?

k=0

An algorithm that proceeds to find an optimal tour by using (5.20) and (5.21)
will require ©(n?2") time as the computation of g(i, S) with |S| = k requires
k — 1 comparisons when solving (5.21). This is better than enumerating all
n! different tours to find the best one. The most serious drawback of this
dynamic programming solution is the space needed, O(n2"). This is too
large even for modest values of n.

EXERCISE

1. (a) Obtain a data representation for the values g(i, S) of the traveling
salesperson problem. Your representation should allow for easy
access to the value of g(i, S), given 7 and S. (i) How much space
does your representation need for an n vertex graph? (ii) How
much time is needed to retrieve or update the value of g(i, S)?

(b) Using the representation of (a), develop an algorithm correspond-
ing to the dynamic programming solution of the traveling sales-
person problem.

(c) Test the correctness of your algorithm using suitable test data.

5.10 FLOW SHOP SCHEDULING

Often the processing of a job requires the performance of several distinct
tasks. Computer programs run in a multiprogramming environment are in-
put and then executed. Following the execution, the job is queued for output

302 CHAPTER 5. DYNAMIC PROGRAMMING

and the output eventually printed. In a general flow shop we may have n
jobs each requiring m tasks T3, T5;,..., Ty, 1 < 1 < n, to be performed.
Task T}; is to be performed on processor P;, 1 < j <m . The time required
to complete task Tj; is tj;. A schedule for the n jobs is an assignment of tasks
to time intervals on the processors. Task T}; must be assigned to processor
P;. No processor may have more than one task assigned to it in any time
interval. Additionally, for any job i the processing of task Tj;, j > 1, cannot
be started until task T;_1; has been completed.

Example 5.27 Two jobs have to be scheduled on three processors. The
task times are given by the matrix J

2 0
J = 3 3
5 2
Two possible schedules for the jobs are shown in Figure 5.22. O
time 0 2 5 6 10 12
P, T, | 1
|
Py Ty T Ty !
P T3 T
(a)
time 0 2 3 5 6 11
T l
Ty Ty
T T3
(b)

Figure 5.22 Two possible schedules for Example 5.27

5.10. FLOW SHOP SCHEDULING 303

A nonpreemptive schedule is a schedule in which the processing of a task
on any processor is not terminated until the task is complete. A schedule
for which this need not be true is called preemptive. The schedule of Fig-
ure 5.22(a) is a preemptive schedule. Figure 5.22(b) shows a nonpreemptive
schedule. The finish time f;(S) of job i is the time at which all tasks of job
i have been completed in schedule S. In Figure 5.22(a), f1(S) = 10 and
f2(S) = 12. In Figure 5.22(b), f1(S) = 11 and f2(S) = 5. The finish time
F(S) of a schedule S is given by

F(S) = max {f;(S)} (5.22)

The mean flow time MFT(S) is defined to be

MFT(S):% S A(S) (5.23)

1<i<n

An optimal finish time (OFT) schedule for a given set of jobs is a non-
preemptive schedule S for which F(S) is minimum over all nonpreemptive
schedules S. A preemptive optimal finish time (POFT) schedule, optimal
mean finish time schedule (OMFT), and preemptive optimal mean finish
(POMFT) schedule are defined in the obvious way.

Although the general problem of obtaining OFT and POFT schedules for
m > 2 and of obtaining OMFT schedules is computationally difficult (see
Chapter 11), dynamic programming leads to an efficient algorithm to obtain
OFT schedules for the case m = 2. In this section we consider this special
case.

For convenience, we shall use a; to represent ty;, and b; to represent
t2;. For the two-processor case, one can readily verify that nothing is to
be gained by using different processing orders on the two processors (this is
not true for m > 2). Hence, a schedule is completely specified by providing
a permutation of the jobs. Jobs will be executed on each processor in this
order. Each task will be started at the earliest possible time. The schedule
of Figure 5.23 is completely specified by the permutation (5, 1, 3, 2, 4).
We make the simplifying assumption that a; # 0, 1 <4 < n. Note that if
jobs with a; = 0 are allowed, then an optimal schedule can be constructed
by first finding an optimal permutation for all jobs with ¢; # 0 and then
adding all jobs with a; =0 (in any order) in front of this permutation (see
the exercises).

It is easy to see that an optimal permutation (schedule) has the property
that given the first job in the permutation, the remaining permutation is
optimal with respect to the state the two processors are in following the
completion of the first job. Let a1, 09, ..., 0, be a permutation prefix defining
a schedule for jobs T1,T5, ..., T}. For this schedule let f; and f2 be the times
at which the processing of jobs TY,T5,...,T} is completed on processors P;

304 CHAPTER 5. DYNAMIC PROGRAMMING

Figure 5.23 A schedule

and P, respectively. Let t = fo — f1. The state of the processors following
the sequence of decisions 11,15, ..., T} is completely characterized by ¢. Let
g(S,t) be the length of an optimal schedule for the subset of jobs S under
the assumption that processor 2 is not available until time ¢. The length of
an optimal schedule for the job set {1,2,...,n} is g({1,2,...,n},0).

Since the principle of optimality holds, we obtain

g({1727 Tt 7n}70) = 1r§nzl§nn{al + g({1727 e,n} - {Z}abl)} (5-24)

Equation 5.24 generalizes to (5.25) for arbitrary S and ¢. This general-
ization requires that g(¢,t) = max{t,0} and that a; # 0, 1 <i < n.

9(5,4) = min {a; +g(S — {i}, b; + max{t - a;,0})} (5.25)

The term max {f— a;,0} comes into (5.25) as task Th; cannot start until
max{a;,t} (P, is not available until time ¢). Hence fo— fi1 = b;+max{a;,t}—
a; = b; + max{t — a;,0}. We can solve for g(S,t) using an approach similar
to that used to solve (5.21). However, it turns out that (5.25) can be solved
algebraically and a very simple rule to generate an optimal schedule obtained.

Consider any schedule R for a subset of jobs S. Assume that Ps is not
available until time ¢. Let ¢ and j be the first two jobs in this schedule.
Then, from (5.25) we obtain

a; + g(S — {i},b; + max {t —a;,0})
a; +a; +9(S—{i,7},b; + max {b; + max {t—a;,0} —a;,0})
(5.26)

=N
nn
s
1]l

5.10. FLOW SHOP SCHEDULING 305

Equation 5.26 can be simplified using the following result:

ty; = bj—f-max {b,-—f-max {t—a,—,O}—a~,0}
= bj+b —a; +max {max {t—ai,Oi,aj — b} (5.27)
= bj+b; —a; + max {t— a;,a; — b;,0} ’
tij = bj+bi—a;—a;+max {t,a; +a; —b;,a;}

If jobs i and j are interchanged in R, then the finish time ¢'(S,¢) is

g'(S,t) = a;+aj +g(S - {iaj}7tji)

where tj; = bj +b; —aj — a; + max {t,a,j +a; — bj,aj}

Comparing ¢(S,t) and ¢'(S,t), we see that if (5.28) below holds, then
9(8,t) < ¢'(S,1).

max {t,a; +a; — b;,a;} < max {t,a; +a; — bj,a;} (5.28)
In order for (5.28) to hold for all values of ¢, we need

max {a; +a; — b;,a;} < max {a; +a; —b;,a;}

or a; +aj+ max {—b;,—a;} <a; +a; +max {—bj,—a;}

or min {b;,a;} > min {b;,a;} (5.29)

From (5.29) we can conclude that there exists an optimal schedule in
which for every pair (4,7) of adjacent jobs, min{b;,a;} > min{b;,q;}. Ex-
ercise 4 shows that all schedules with this property have the same length.
Hence, it suffices to generate any schedule for which (5.29) holds for every
pair of adjacent jobs. We can obtain a schedule with this property by making
the following observations from (5.29). If min{ay,as,...,a,,b1,b2,...,b,}
is a;, then job i should be the first job in an optimal schedule. If min{a;, ag,

vy Gpy b1, ba, o by} is by, then job j should be the last job in an optimal
schedule. This enables us to make a decision as to the positioning of one
of the n jobs. Equation 5.29 can now be used on the remaining n — 1 jobs
to correctly position another job, and so on. The scheduling rule resulting
from (5.29) is therefore:

306 CHAPTER 5. DYNAMIC PROGRAMMING

1. Sort all the a;’s and b;’s into nondecreasing order.

2. Consider this sequence in this order. If the next number in the sequence
is a; and job j hasn’t yet been scheduled, schedule job j at the leftmost
available spot. If the next number is b; and job j hasn’t yet been
scheduled, schedule job j at the rightmost available spot. If j has
already been scheduled, go to the next number in the sequence.

Note that the above rule also correctly positions jobs with a; = 0. Hence,
these jobs need not be considered separately.

Example 5.28 Let n =4, (a1,a2,a3,a4) = (3, 4, 8, 10), and (b1, bo, b3, bg) =
(6, 2, 9, 15). The sorted sequence of a’s and b’s is (ba, a1, a9, b1, a3, bs, aq, by)
= (2, 3,4, 6, 8,9, 10, 15). Let 01,09,03, and o4 be the optimal schedule.
Since the smallest number is by, we set 04 = 2. The next number is a; and
we set 07 = aj. The next smallest number is a;. Job 2 has already been
scheduled. The next number is b;. Job 1 has already been scheduled. The
next is as and we set g3. This leaves o3 free and job 4 unscheduled. Thus,
o3 = 4. g

The scheduling rule above can be implemented to run in time O(nlogn)
(see exercises). Solving (5.24) and (5.25) directly for g(1,2,...,n,0) for the
optimal schedule will take 2(2") time as there are these many different S’s
for which ¢(S,t) will be computed.

EXERCISES

1. N jobs are to be processed. Two machines A and B are available. If
job % is processed on machine A, then a; units of processing time are
needed. If it is processed on machine B, then b; units of processing time
are needed. Because of the peculiarities of the jobs and the machines,
it is quite possible that a; > b; for some ¢ while a; < b; for some
j, 7 # 1. Obtain a dynamic programming formulation to determine
the minimum time needed to process all the jobs. Note that jobs cannot
be split between machines. Indicate how you would go about solving
the recurrence relation obtained. Do this on an example of your choice.
Also indicate how you would determine an optimal assignment of jobs
to machines.

2. N jobs have to be scheduled for processing on one machine. Associated
with job 7 is a 3-tuple (p4, i, d;). The variable ¢; is the processing time
needed to complete job i. If job 7 is completed by its deadline d;, then
a profit p; is earned. If not, then nothing is earned. From Section 4.4
we know that J is a subset of jobs that can all be completed by their

5.11. REFERENCES AND READINGS 307

deadlines iff the jobs in J can be processed in nondecreasing order of
deadlines without violating any deadline. Assumed; < d;y1,1 <i < n.
Let f;(z) be the maximum profit that can be earned from a subset J
of jobs when n = 4. Here f,(d,) is the value of an optimal selection of
jobs J. Let fo(x) = 0. Show that for = < ¢,

filz) = max {f;_1(z), fi-1(z —t;) +pi}

3. Let I be any instance of the two-processor flow shop problem.

(a)

(b)
()

Show that the length of every POFT schedule for [is the same
as the length of every OFT schedule for 1. Hence, the algorithm
of Section 5.10 also generates a POFT schedule.

Show that there exists an OFT schedule for I in which jobs are
processed in the same order on both processors.

Show that there exists an OFT schedule for I defined by some
permutation o of the jobs (see part (b)) such that all jobs with
a; = 0 are at the front of this permutation. Further, show that the
order in which these jobs appear at the front of the permutation
is not important.

4. Let I be any instance of the two-processor flow shop problem. Let
o = g109 -+ 0, be a permutation defining an OFT schedule for 1.

(a)

(b)
(¢)

Use (5.29) to argue that there exists an OFT o such that
min {b;,a;) > min {b;,a;} for every i and j such that i = o}
and j = o1 (that is, 2 and j are adjacent).

For a o satisfying the conditions of part (a), show that min{b;,a;} >
min{b;,a;} for every ¢ and j such that i = o4 and j = o,k <.

Show that all schedules corresponding to o’s satisfying the con-
ditions of part (a) have the same finish time. (Hint: use part (b)
to transform one of two different schedules satisfying (a) into the
other without increasing the finish time.)

5.11 REFERENCES AND READINGS

Two classic references on dynamic programming are:

Introduction to Dynamic Programming, by G. Nemhauser, John Wiley and
Sons, 1966.

Applied Dynamic Programming by R. E. Bellman and S. E. Dreyfus, Prince-
ton University Press, 1962.

308 CHAPTER 5. DYNAMIC PROGRAMMING

See also Dynamic Programming, by E. V. Denardo, Prentice-Hall, 1982.

The dynamic programming formulation for the shortest-paths problem
was given by R. Floyd.

Bellman and Ford’s algorithm for the single-source shortest-path problem
(with general edge weights) can be found in Dynamic Programming by R. E.
Bellman, Princeton University Press, 1957.

The construction of optimal binary search trees using dynamic program-
ming is described in The Art of Programming: Sorting and Searching, Vol.
3, by D. E. Knuth, Addison Wesley, 1973.

The string editing algorithm discussed in this chapter is in “The string-
to-string correction problem,” by R. A. Wagner and M. J. Fischer, Journal
of the ACM 21, no. 1 (1974): 168-173.

The set generation approach to solving the 0/1 knapsack problem was
formulated by G. Nemhauser and Z. Ullman, and E. Horowitz and S. Sahni.

Exercise 6 in Section 5.7 is due to E. Horowitz and S. Sahni.

The dynamic programming formulation for the traveling salesperson prob-
lem was given by M. Held and R. Karp.

The dynamic programming solution to the matrix product chain problem
(Exercises 1 and 2 in Additional Exercises) is due to S. Godbole.

5.12 ADDITIONAL EXERCISES

1. [Matrix product chains | Let A, B, and C be three matrices such that
C = A x B. Let the dimensions of 4, B, and C respectively be m x
n,n x p, and m x p. From the definition of matrix multiplication,

n

k=1

(a) Write an algorithm to compute C directly using the above for-
mula. Show that the number of multiplications needed by your
algorithm is mnp.

(b) Let My x My x -+ x M, be a chain of matrix products. This
chain may be evaluated in several different ways. Two possibilities
are (((M1 X MQ) X Mg) X M4) X) X Mr and (M1 X (MQ X
(--- x (My_1 x M;)--+). The cost of any computation of M; x

5.12. ADDITIONAL EXERCISES 309

(e)

My x --+ x M, is the number of multiplications used. Consider
the case r = 4 and matrices M; through M, with dimensions
100 x 1,1 x 100,100 x 1, and 1x 100 respectively. What is the
cost of each of the five ways to compute M; x My x Mz x My
? Show that the optimal way has a cost of 10,200 and the worst
way has a cost of 1,020,000. Assumne that all matrix products are
computed using the algorithm of part (a).

Let M;; denote the matrix product M; X M; 1 x -+ x M;. Thus,
My=M,1<i<r. §=DP,P,...,P-_1is a product sequence
computing Mj, iff each product Py is of the form M;; x M, 4,
where M;; and Mj,;, have been computed either by an ear-
lier product P, < k, or represent an input matrix M. Note
that M;; x M;,1, = M;,. Also note that every valid com-
putation of Mj, using only pairwise matrix products at each
step is defined by a product sequence. Two product sequences
Sl = Pl, PQ, Caey PrAl and SQ = U1, UQ, [Urvl are dzﬁ”erent if
P; # U; for some i. Show that the number of different product
sequences if (r — 1)!

Although there are (r — 1)! different product sequences, many of
these are essentially the same in the sense that the same pairs
of matrices are multiplied. For example, the sequences S; =
(M1 X MQ), (M3 X M4), (M12 X M34) and SQ = (M3 X M4), (M1 X
Ms), (Mo x Msy) are different under the definition of part (c).
However, the same pairs of matrices are multiplied in both 57 and
S2. Show that if we consider only those product sequences that
differ from each other in at least one matrix product, then the
number of different sequences is equal to the number of different
binary trees having exactly » — 1 nodes.

Show that the number of different binary trees with n nodes is

1 2n
n+1l\n

2. [Matrix product chains | In the preceding exercise it was established
that the number of different ways to evaluate a matrix product chain
is very large even when r is relatively small (say 10 or 20). In this
exercise we shall develop an O(r?) algorithm to find an optimal product
sequence (that is, one of minimum cost). Let D(7),0 < 7 < r, represent
the dimensions of the matrices; that is, M; has D(i — 1) rows and D(3)
columns. Let C(4,j) be the cost of computing M;; using an optimal
product sequence for M;;. Observe that C(i,i) = 0,1 < i < r, and
that C(i,i + 1) = D(i — 1)D(&)D(i + 1),1 < i < r.

310

CHAPTER 5. DYNAMIC PROGRAMMING

(a) Obtain a recurrence relation for C(4,7),5 > 4. This recurrence
relation will be similar to Equation 5.14.

(b) Write an algorithm to solve the recurrence relation of part (a) for
C(1,7). Your algorithm should be of complexity O(r?).

(c) What changes are needed in the algorithm of part (b) to deter-
mine an optimal product sequence. Write an algorithm to deter-
mine such a sequence. Show that the overall complexity of your
algorithm remains O(r3).

(d) Work through your algorithm (by hand) for the product chain
of part (b) of the previous exercise. What are the values of
C(i,7),1 <i<randj>i? What is an optimal way to compute
Mq4?

3. There are two warehouses W7 and Wy from which supplies are to be

shipped to destinations D;,1 < i < n. Let d; be the demand at D,
and let r; be the inventory at W;. Assume ri +ry = Y d;. Let ¢;;(z45)
be the cost of shipping z;; units from warehouse W; to destination D;.
The warehouse problem is to find nonnegative integers z;;,1 <1 <2
and 1 < j <n, such that z1;+x9; = dj, 1 <j <n, and 3, ; ¢55(xy5) is
minimized. Let g;(z) be the cost incurred when W7 has an inventory
of x and supplies are sent to D;,1 < j <1, in an optimal manner (the
inventory at Wa is 3 <<, dj — z). The cost of an optimal solution to
the warehouse problem is g (7).

(a) Use the optimality principle to obtain a recurrence relation for
9i().

(b) Write an algorithm to solve this recurrence and obtain an optimal
sequence of values for z;;,1 <7 <2,1 <j <n.

. Given a warehouse with a storage capacity of B units and an initial

stock of v units, let y; be the quantity sold in each month, i,1 < i < n.
Let P; be the per-unit selling price in month i, and z; the quantity
purchased in month i. The buying price is ¢; per unit. At the end of
each month, the stock in hand must be no more than B. That is,

vt Y (z)<B, 1<j<n
1<i<y

The amount sold in each month cannot be more than the stock at
the end of the previous month (new stock arrives only at the end of a
month). That is,

Yi <o+ i—Y), 1<i<n
1§]<z

5.12. ADDITIONAL EXERCISES 311

Also, we require x; and y; to be nonnegative integers. The total profit
derived is

n
Z PiY; — ¢T;)

The problem is to determine z; and y; such that P, is maximized.
Let f;(v;) represent the maximum profit that can be earned in months
i+ 1,7+ 2,...,n, starting with v; units of stock at the end of month
i. Then fy(v) is the maximum value of P,.

(a) Obtain the dynamic programming recurrence for f;(v;) in terms
of fir1(vi).

(b) What is fn(v;)?

(¢) Solve part (a) analytically to obtain the formula

filvi) = aiz; + by,

for some constants a; and b;.
(d) Show that an optimal P, is obtained by using the following strat-
egy:
Lop>¢
A. If b1 > ¢, then y; = v; and x; = B.
B. If b;y1 < ¢, then y; = v; and z; = 0.
. ¢; > p;
A. If b1 > ¢, then y; =0 and z;, = B — v;.
B. If b1 < p;, then y; = v; and z; = 0.
C. Ifp, <by1 <, then y; =0 and z; = 0.
(e) Use the p; and ¢; in Figure 5.24 and obtain an optimal decision
sequence from part (d).

i 1 2 3 45 6 7 8
pi 8 8 2 3 4 3 2 5
¢ 3 6 7 1 4 5 1 3

Figure 5.24 p; and ¢; for Exercise 4

Assume the warehouse capacity to be 100 and the initial stock to
be 60.

312

CHAPTER 5. DYNAMIC PROGRAMMING

(f) From part (d) conclude that an optimal set of values for z; and y;
will always lead to the following policy: Do no buying or selling
for the first £ months (k may be zero) and then oscillate between
a full and an empty warehouse for the remaining months.

5. Assume that n programs are to be stored on two tapes. Let [; be

the length of tape needed to store the ith program. Assume that
S, < L, where L is the length of each tape. A program can be
stored on either of the two tapes. If S; is the set of programs on tape
1, then the worst-case access time for a program is proportional to
max{};cq, li; 2igs, li}. An optimal assignment of programs to tapes
minimizes the worst-case access times. Formulate a dynamic program-
ming approach to determine the worst-case access time of an optimal
assignment. Write an algorithm to determine this time. What is the
complexity of your algorithm?

. Redo Exercise 5 making the assumption that programs will be stored

on tape 2 using a different tape density than that used on tape 1. If
l; is the tape length needed by program ¢ when stored on tape 1, then
al; is the tape length needed on tape 2.

Let L be an array of n distinct integers. Give an efficient algorithm to
find the length of a longest increasing subsequence of entries in L. For
example, if the entries are 11,17,5,8,6,4,7,12,3, a longest increasing
subsequence is 5,6,7,12. What is the run time of your algorithm?

Chapter 6

BASIC TRAVERSAL AND
SEARCH TECHNIQUES

The techniques to be discussed in this chapter are divided into two categories.
The first category includes techniques applicable only to binary trees. As
described, these techniques involve examining every node in the given data
object instance. Hence, these techniques are referred to as traversal methods.
The second category includes techniques applicable to graphs (and hence also
to trees and binary trees). These may not examine all vertices and so are
referred to only as search methods. During a traversal or search the fields
of a node may be used several times. It may be necessary to distinguish
certain uses of the fields of a node. During these uses, the node is said to be
visited. Visiting a node may involve printing out its data field, evaluating
the operation specified by the node in the case of a binary tree representing
an expression, setting a mark bit to one or zero, and so on. Since we are
describing traversals and searches of trees and graphs independently of their
application, we use the term “visited” rather than the term for the specific
function performed on the node at this time.

6.1 TECHNIQUES FOR BINARY TREES

The solution to many problems involves the manipulation of binary trees,
trees, or graphs. Often this manipulation requires us to determine a vertex
(node) or a subset of vertices in the given data object that satisfies a given
property. For example, we may wish to find all vertices in a binary tree with
a data value less than x or we may wish to find all vertices in a given graph
G that can be reached from another given vertex v. The determination
of this subset of vertices satisfying a given property can be carried out by
systematically examining the vertices of the given data object. This often
takes the form of a search in the data object. When the search necessarily

313

314 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

treenode = record

{

Type data; // Type is the data type of data.
treenode xlchild; treenode xrchild;

-

1 Algorithm InOrder(t)

2 // tis a binary tree. Each node of ¢ has
3 // three fields: lchild, data, and rchild.
4

5 if t # 0 then

6

7 InOrder(t — Ichild);

8 Visit(t);

9 InOrder(t — rchild);

10

11}

Algorithm 6.1 Recursive formulation of inorder traversal

involves the examination of every vertex in the object being searched, it is
called a traversal.

We have already seen an example of a problem whose solution required a
search of a binary tree. In Section 5.5 we presented an algorithm to search
a binary search tree for an identifier z. This algorithm is not a traversal
algorithm as it does not examine every vertex in the search tree. Sometimes,
we may wish to traverse a binary search tree (e.g., when we wish to list out
all the identifiers in the tree). Algorithms for this are studied in this chapter.

There are many operations that we want to perform on binary trees. One
that arises frequently is traversing a tree, or visiting each node in the tree
exactly once. A traversal produces a linear order for the information in a
tree. This linear order may be familiar and useful. When traversing a binary
tree, we want to treat each node and its subtrees in the same fashion. If
we let L, D, and R stand for moving left, printing the data, and moving
right when at a node, then there are six possible combinations of traversal:
LDR, LRD, DLR, DRL, RDL, and RLD. If we adopt the convention that
we traverse left before right, then only three traversals remain: LDR, LRD,
and DLR. To these we assign the names inorder, postorder, and preorder.
Recursive functions for these three traversals are given in Algorithms 6.1
and 6.2.

6.1. TECHNIQUES FOR BINARY TREES 315

1 Algorithm PreOrder(t)

2 / t is a binary tree. Each node of ¢ has
3 // three fields: lchild, data, and rchild.
4

5 if t # 0 then

6

7 Visit(t);

8 PreOrder(t — Ichild);

9 PreOrder(t — rchild);

10 }

11 }

1 Algorithm PostOrder(t)

2 // tis a binary tree. Each node of ¢ has
3 // three fields: Ichild, data, and rchild.
4

5 if ¢ #0 then

6

7 PostOrder(t — [child);

8 PostOrder(t — rchild);

9 Visit(t);

10

11 }

Algorithm 6.2 Preorder and postorder traversals

Figure 6.1 shows a binary tree and Figure 6.2 traces how InOrder works
on it. This trace assumes that visiting a node requires only the printing
of its data field. The output resulting from this traversal is FDHGIBEAC.
With Visit(t) replaced by a printing statement, the application of Algorithm
6.2 to the binary tree of Figure 6.1 results in the outputs ABDFGHIEC and
FHIGDEBCA, respectively.

Theorem 6.1 Let T'(n) and S(n) respectively represent the time and space
needed by any one of the traversal algorithms when the input tree ¢ has
n > 0 nodes. If the time and space needed to visit a node are ©(1), then
T(n) = ©(n) and S(n) = O(n).

Proof: Each traversal can be regarded as a walk through the binary tree.
During this walk, each node is reached three times: once from its parent (or
as the start node in case the node is the root), once on returning from its left

316 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

(&)
Q C
. ®
& G
® O

Figure 6.1 A binary tree

call of value

InOrder in root action

main A
1 B
2 D
3 F
4 — print (‘F’)
4 — print (‘D’)
3 G
4 H
5 — print (‘H’)
5 print (‘G’)
4
5 print (‘I’)
5 — print (‘B
2 E
3 — print (‘E’)
3 — print (‘A’)
1 C
2 — print (‘C’)
9 _

Figure 6.2 Inorder traversal of the binary tree of Figure 6.1

6.1. TECHNIQUES FOR BINARY TREES 317

subtree, and once on returning from its right subtree. In each of these three
times a constant amount of work is done. So, the total time taken by the
traversal is ©(n). The only additional space needed is that for the recursion
stack. If ¢ has depth d, then this space is ©(d). For an n-node binary tree,
d <mn and so S(n) = O(n). O

EXERCISES

Unless otherwise stated, all binary trees are represented using nodes with
three fields: lchild, data, and rchild.

1. Give an algorithm to count the number of leaf nodes in a binary tree
t. What is its computing time?

2. Write an algorithm SwapTree(t) that takes a binary tree and swaps the
left and right children of every node. An example is given in Figure 6.3.
Use one of the three traversal methods discussed in Section 6.1.

o

SwapTree (t)

Figure 6.3 Swapping left and right children

3. Use one of the three traversal methods discussed in Section 6.1 to
obtain an algorithm Equiv(¢,u) that determines whether the binary
trees t and u are equivalent. Two binary trees ¢ and u are equivalent
if and only if they are structurally equivalent and if the data in the
corresponding nodes of ¢ and u are the same.

4. Show the following:

(a) Inorder and postorder sequences of a binary tree uniquely define
the binary tree.

(b) Inorder and preorder sequences of a binary tree uniquely define
the binary tree.

318 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

10

11.

(c) Preorder and postorder sequences of a binary tree do not uniquely
define the binary tree.

In the proof of Theorem 6.1, show, using induction, that T'(n) < con+
¢1 (where ¢, is a constant > 2¢;).

Write a function to construct the binary tree with a given inorder
sequence I and a given postorder sequence P. What is the complexity
of your function?

Do Exercise 6 for a given inorder and preorder sequence.

Write a nonrecursive algorithm for the preorder traversal of a binary
tree t. Your algorithm may use a stack. What are the time and space
requirements of your algorithm?

Do Exercise 8 for postorder as well as inorder traversals.

[Triple-order traversal] A triple-order traversal of a binary tree t is
defined recursively by Algorithm 6.3. A very simple nonrecursive algo-
rithm for such a traversal is given in Algorithm 6.4. In this algorithm
P, ¢, and r point respectively to the present node, previously visited
node, and next node to visit. The algorithm assumes that ¢ # 0 and
that an empty subtree of node p is represented by a link to p rather
than a zero. Prove that Algorithm 6.4 is correct. (Hint: Three links,
lchild, rchild, and one from its parent, are associated with each node
s. Each time s is visited, the links are rotated counterclockwise, and
so after three visits they are restored to the original configuration and
the algorithm backs up the tree.)

[Level-order traversal] In a level-order traversal of a binary tree ¢ all
nodes on level ¢ are visited before any node on level ¢ + 1 is visited.
Within a level, nodes are visited left to right. In level-order the nodes
of the tree of Figure 6.1 are visited in the order ABCDEFGHI. Write
an algorithm Level(t) to traverse the binary tree ¢ in level order. How
much time and space are needed by your algorithm?

6.2 TECHNIQUES FOR GRAPHS

A fundamental problem concerning graphs is the reachability problem. In
its simplest form it requires us to determine whether there exists a path in
the given graph G = (V, E) such that this path starts at vertex v and ends
at vertex u. A more general form is to determine for a given starting vertex
v € V all vertices u such that there is a path from v to w. This latter problem
can be solved by starting at vertex v and systematically searching the graph
G for vertices that can be reached from v. We describe two search methods
for this.

6.2. TECHNIQUES FOR GRAPHS 319

Algorithm Triple(?)
if ¢ #0 then

Visit(t);
Triple(t — lchild);
Visit(t);
Triple(t — rchild);
Visit(t);

0

1}

== O 00O Ut W =

Algorithm 6.3 Triple-order traversal for Exercise 10

1 Algorithm Trip(¢);

2 // It is assumed that lchild and rchild fields are > 0.

3

5 while (p # —1) do

6

7 Visit(p);

8 r:= (p — lchild); (p — lchild) := (p — rchild);
9 (p — rchild) :==q; q:=p; p =13

10

11 }

Algorithm 6.4 A nonrecursive algorithm for the triple-order traversal for
Exercise 10

320 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

6.2.1 Breadth First Search and Traversal

In breadth first search we start at a vertex v and mark it as having been
reached (visited). The vertex v is at this time said to be unexplored. A
vertex is said to have been explored by an algorithm when the algorithm has
visited all vertices adjacent from it. All unvisited vertices adjacent from v
are visited next. These are new unexplored vertices. Vertex v has now been
explored. The newly visited vertices haven’t been explored and are put onto
the end of a list of unexplored vertices. The first vertex on this list is the next
to be explored. Exploration continues until no unexplored vertex is left. The
list of unexplored vertices operates as a queue and can be represented using
any of the standard queue representations (see Section 2.1). BFS (Algorithm
6.5) describes, in pseudocode, the details of the search. It makes use of the
queue representation given in Section 2.1 (Algorithm 2.3).

Example 6.1 Let us try out the algorithm on the undirected graph of Fig-
ure 6.4(a). If the graph is represented by its adjacency lists as in Figure
6.4(c), then the vertices get visited in the order 1, 2, 3, 4, 5, 6, 7, 8. A
breadth first search of the directed graph of Figure 6.4(b) starting at vertex
1 results in only the vertices 1, 2, and 3 being visited. Vertex 4 cannot be
reached from 1. O

Theorem 6.2 Algorithm BFS visits all vertices reachable from v.

Proof: Let G = (V, E) be a graph (directed or undirected) and let v € V.
We prove the theorem by induction on the length of the shortest path from
v to every reachable vertex w € V. The length (i.e., number of edges) of the
shortest path from v to a reachable vertex w is denoted by d(v, w).

Basis Step. Clearly, all vertices w with d(v,w) < 1 get visited.

Induction Hypothesis. Assume that all vertices w with d{v,w) < r get
visited.

Induction Step. We now show that all vertices w with d(v, w) = r+1 also
get visited.

Let w be a vertex in V such that d(v,w) = r + 1. Let u be a vertex that
immediately precedes w on a shortest v to w path. Then d(v,u) = r and so
u gets visited by BFS. We can assume u # v and r > 1. Hence, immediately
before u gets visited, it is placed on the queue ¢ of unexplored vertices. The
algorithm doesn’t terminate until ¢ becomes empty. Hence, u is removed
from ¢ at some time and all unvisited vertices adjacent from it get visited in
the for loop of line 11 of Algorithm 6.5. Hence, w gets visited. O

6.2. TECHNIQUES FOR GRAPHS 321

1 Algorithm BFS(v)

2 // A breadth first search of G is carried out beginning

3 // at vertex v. For any node ¢, visited[i] = 1 if 7 has

4 // already been visited. The graph G and array visited| |
5 // are global; visited|] is initialized to zero.

6

7 u:= w3 // q is a queue of unexplored vertices.

8 visited[v] := 13

9 repeat

for all vertices w adjacent from u do
if (visited|w] = 0) then

Add w to ¢; // w is unexplored.
visited[w] := 1;

}

if ¢ is empty then return; // No unexplored vertex.
Delete u from ¢q; // Get first unexplored vertex.
} until(false);

[I N e e el et
NP OO Uk W~ O
At

Algorithm 6.5 Pseudocode for breadth first search

Theorem 6.3 Let T(n,e) and S(n, e) be the maximum time and maximum
additional space taken by algorithm BFS on any graph G with n vertices
and e edges. T(n,e) = O(n + ¢e) and S(n,e) = O(n) if G is represented
by its adjacency lists. If G is represented by its adjacency matrix, then
T(n,e) = O(n?) and S(n,e) = O(n).

Proof: Vertices get added to the queue only in line 15 of Algorithm 6.5. A
vertex w can get onto the queue only if visited[w] = 0. Immediately following
w’s addition to the queue, visited[w] is set to 1 (line 16). Hence, each vertex
can get onto the queue at most once. Vertex v never gets onto the queue and
so at most n—1 additions are made. The queue space needed is at most n—1.
The remaining variables take O(1) space. Hence, S(n,e) = O(n). If G is an
n-vertex graph with v connected to the remaining n—1 vertices, then all n—1
vertices adjacent from v are on the queue at the same time. Furthermore,
©(n) space is needed for the array visited. Hence S(n,e) = ©(n). This
result is independent of whether adjacency matrices or lists are used.

322 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

(b) Directed graph
(a) Undirected graph G
head nodes
m[2] F{3]0]
@ T 4T {50
B AT 6] 3 A7
W {2 5] 0]
o [{2 1 H8]0]
6 — 3] 3]0
(71 — 3 8]0
[8] —_ = 5 6 70
(c) Adjacency list for G

Figure 6.4 Example graphs and adjacency lists

6.2. TECHNIQUES FOR GRAPHS 323

Algorithm BFT(G,n)
// Breadth first traversal of G

for i := 1to n do // Mark all vertices unvisited.
visited[i] := 03

for i:=1tondo
if (visited[i] = 0) then BFS(:);

RIS W =

Algorithm 6.6 Breadth first graph traversal

If adjacency lists are used, then all vertices adjacent from « can be de-
termined in time d(u), where d(u) is the degree of u if G is undirected and
d(u) is the out-degree of u if G is directed. Hence, when vertex u is being
explored, the time for the for loop of line 11 of Algorithm 6.5 is ©(d(u)).
Since each vertex in G can be explored at most once, the total time for
the repeat loop of line 9 is O(3" d(u)) = O(e). Then visited[i] has to be
initialized to 0, 1 < ¢ < n. This takes O(n) time. The total time is there-
fore O(n + e). If adjacency matrices are used, then it takes ©(n) time to
determine all vertices adjacent from v and the time becomes O(n?). If G
is a graph such that all vertices are reachable from v, then all vertices get
explored and the time is at least O(n + e) and O(n?) respectively. Hence,
T(n,e) = ©(n+e) when adjacency lists are used, and T'(n,e) = ©(n?) when
adjacency matrices are used. g

If BFS is used on a connected undirected graph G, then all vertices in G
get visited and the graph is traversed. However, if GG is not connected, then
at least one vertex of G is not visited. A complete traversal of the graph can
be made by repeatedly calling BFS each time with a new unvisited starting
vertex. The resulting traversal algorithm is known as breadth first traversal
(BFT) (see Algorithm 6.6). The proof of Theorem 6.3 can be used for BFT
too to show that the time and additional space required by BFT on an n-
vertex e-edge graph are ©(n + ¢) and O(n) respectively if adjacency lists are
used. If adjacency matrices are used, then the bounds are ©(n?) and ©(n)
respectively.

6.2.2 Depth First Search and Traversal

A depth first search of a graph differs from a breadth first search in that the
exploration of a vertex v is suspended as soon as a new vertex is reached. At

324 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

Algorithm DFS(v)

// Given an undirected (directed) graph G = (V, E) with
// m vertices and an array visited]] initially set

// to zero, this algorithm visits all vertices

// reachable from v. G and visited| | are global.

visited[v] := 13
for each vertex w adjacent from v do

Nole BN Bl SISO

if (visited[w] = 0) then DFS(w);

—_ ==
N = O
o~

Algorithm 6.7 Depth first search of a graph

this time the exploration of the new vertex u begins. When this new vertex
has been explored, the exploration of v continues. The search terminates
when all reached vertices have been fully explored. This search process is
best described recursively as in Algorithm 6.7.

Example 6.2 A depth first search of the graph of Figure 6.4(a) starting at
vertex 1 and using the adjacency lists of Figure 6.4(c) results in the vertices
being visited in the order 1, 2, 4, 8, 5, 6, 3, 7. O

One can easily prove that DFS visits all vertices reachable from vertex v.
If T'(n, e) and S(n, e) represent the maximum time and maximum additional
space taken by DFS for an n-vertex e-edge graph, then S(n,e) = O(n)
and T(n,e) = ©(n + e) if adjacency lists are used and T'(n,e) = O(n?) if
adjacency matrices are used (see the exercises).

A depth first traversal of a graph is carried out by repeatedly calling
DFS, with a new unvisited starting vertex each time. The algorithm for this
(DFT) differs from BFT only in that the call to BFS(7) is replaced by a call
to DFS(z). The exercises contain some problems that are solved best by BFS
and others that are solved best by DFS. Later sections of this chapter also
discuss graph problems solved best by DFS.

BFS and DFS are two fundamentally different search methods. In BFS a
node is fully explored before the exploration of any other node begins. The
next node to explore is the first unexplored node remaining. The exercises
examine a search technique (D-search) that differs from BFS only in that

6.3. CONNECTED COMPONENTS AND SPANNING TREES 325

the next node to explore is the most recently reached unexplored node. In
DFS the exploration of a node is suspended as soon as a new unexplored
node is reached. The exploration of this new node is immediately begun.

EXERCISES

1. Devise an algorithm using the idea of BFS to find a shortest (directed)
cycle containing a given vertex v. Prove that your algorithm finds
a shortest cycle. What are the time and space requirements of your
algorithm?

2. Show that DFS visits all vertices in G reachable from v.
3. Prove that the bounds of Theorem 6.3 hold for DFS.

4. Tt is easy to see that for any graph G, both DFS and BFS will take
almost the same amount of time. However, the space requirements
may be considerably different.

(a) Give an example of an n-vertex graph for which the depth of re-
cursion of DFS starting from a particular vertex v is n —1 whereas
the queue of BFS has at most one vertex at any given time if BFS
is started from the same vertex v.

(b) Give an example of an n-vertex graph for which the queue of BFS
has n — 1 vertices at one time whereas the depth of recursion of
DFS is at most one. Both searches are started from the same
vertex.

5. Another way to search a graph is D-search. This method differs from
BFS in that the next vertex to explore is the vertex most recently
added to the list of unexplored vertices. Hence, this list operates as a
stack rather than a queue.

(a) Write an algorithm for D-search.

(b) Show that D-search starting from vertex v visits all vertices reach-
able from wv.

(c) What are the time and space requirements of your algorithm?

6.3 CONNECTED COMPONENTS AND
SPANNING TREES

If G is a connected undirected graph, then all vertices of G will get visited
on the first call to BFS (Algorithm 6.5). If G is not connected, then at

326 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

least two calls to BFS will be needed. Hence, BFS can be used to determine
whether G is connected. Furthermore, all newly visited vertices on a call to
BFS from BFT represent the vertices in a connected component of G. Hence
the connected components of a graph can be obtained using BFT. For this,
BFS can be modified so that all newly visited vertices are put onto a list.
Then the subgraph formed by the vertices on this list make up a connected
component. Hence, if adjacency lists are used, a breadth first traversal will
obtain the connected components in ©(n + ¢€) time.

BFT can also be used to obtain the reflexive transitive closure matrix of
an undirected graph G. If A* is this matrix, then A*(i,7) = 1 iff either
i =7jori# jand 7 and j are in the same connected component. We can
set up in ©(n + e) time an array connec such that connecli] is the index
of the connected component containing vertex ¢, 1 < i < n. Hence, we
can determine whether A*(4,7), i # 7, is 1 or 0 by simply seeing whether
connec[i] = connec[j]. The reflexive transitive closure matrix of an undi-
rected graph G with n vertices and e edges can therefore be computed in
O (n?) time and O(n) space using either adjacency lists or matrices (the space
count does not include the space needed for A* itself).

As a final application of breadth first search, consider the problem of
obtaining a spanning tree for an undirected graph G. The graph G has a
spanning tree iff G is connected. Hence, BFS easily determines the existence
of a spanning tree. Furthermore, consider the set of edges (u, w) used in the
for loop of line 11 of algorithm BFS to reach unvisited vertices w. These
edges are called forward edges. Let ¢ denote the set of these forward edges.
We claim that if G is connected, then ¢ is a spanning tree of G. For the graph
of Figure 6.4(a) the set of edges ¢t will be all edges in G except (5, 8), (6, 8),
and (7, 8) (see Figure 6.5(b)). Spanning trees obtained using a breadth first
search are called breadth first spanning trees.

(a) DFS(1) spanning tree (b) BFS(1) spanning tree

Figure 6.5 DFS and BFS spanning trees for the graph of Figure 6.4(a)

6.3. CONNECTED COMPONENTS AND SPANNING TREES 327

Theorem 6.4 Modify algorithin BFS by adding on the statements ¢ := {;
and ¢t := t U {(u,w)}; to lines 8 and 16, respectively. Call the resulting
algorithm BFS*. If BFS* is called so that v is any vertex in a connected
undirected graph G, then on termination, the edges in ¢ form a spanning
tree of G.

Proof: We have already seen that if G is a connected graph on n vertices,
then all n vertices will get visited. Also, each of these, except the start vertex
v, will get onto the queue once (line 15). Hence, ¢ will contain exactly n — 1
edges. All these edges are distinct. The n — 1 edges in ¢ will therefore define
an undirected graph on n vertices. This graph will be connected since it
contains a path from the start vertex v to every other vertex (and so there
is a path between each two vertices). A simple proof by induction shows
that every connected graph on n vertices with exactly n — 1 edges is a tree.
Hence t is a spanning tree of GG. O

As in the case of BFT, the connected components of a graph can be
obtained using DFT. Similarly, the reflexive transitive closure matrix of an
undirected graph can be found using DFT. If DFS (Algorithm 6.7) is modified
by adding ¢ := (5 and ¢ := t U {(v,w)}; to line 7 and the if statement of
line 10, respectively, then when DFS terminates, the edges in ¢ define a
spanning tree for the undirected graph G if G is connected. A spanning
tree obtained in this manner is called a depth first spanning tree. For the
graph of Figure 6.4(a) the spanning tree obtained will include all edges in G
except for (2,5), (8,7), and (1,3) (see Figure 6.5(a)). Hence, DFS and BFS
are equally powerful for the search problems discussed so far.

EXERCISES

1. Show that for any undirected graph G = (V, E), a call to BFS(v) with
v € V results in visiting all the vertices in the connected component
containing v.

2. Rewrite BFS and BFT so that all the connected components of the
undirected graph G get printed out. Assume that G is input in adja-
cency list form.

3. Prove that if G is a connected undirected graph with n vertices and
n — 1 edges, then G is a tree.

4. Present a D-search-based algorithm that produces a spanning tree for
an undirected connected graph.

ot

(a) The radius of a tree is its depth. Show that the forward edges used
in BFS(v) define a spanning tree with root v having minimum
radius among all spanning trees, for the undirected connected
graph G having root v.

328 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

6.

10.

11.

(b) Using the result of part (a), write an algorithm to find a minimum-
radius spanning tree for G. What are the time and space require-
ments of your algorithm?

The diameter of a tree is the maximum distance between any two ver-
tices. Let d be the diameter of a minimum-diameter spanning tree for
an undirected connected graph G. Let r be the radius of a minimum-
radius spanning tree for G.

(a) Show that 2r — 1 <d < 2r.

(b) Write an algorithm to find a minimum-diameter spanning tree
for G. (Hint: Use breadth-first search followed by some local
modification.)

(c¢) Prove that your algorithm is correct.
(d) What are the time and space requirements of your algorithm?

A bipartite graph G = (V, E) is an undirected graph whose vertices
can be partitioned into two disjoint sets Vi and Vo = V — V; with
the properties that no two vertices in V; are adjacent in G and no
two vertices in Vo are adjacent in G. The graph G of Figure 6.4(a)
is bipartite. A possible partitioning of V is Vi = {1,4,5,6,7} and
Vo = {2,3,8}. Write an algorithm to determine whether a graph G is
bipartite. If (G is bipartite, your algorithm should obtain a partitioning
of the vertices into two disjoint sets V; and V; satisfying the properties
above. Show that if GG is represented by its adjacency lists, then this
algorithm can be made to work in time O(n + e), where n = |V| and
e=|E|

. Write an algorithm to find the reflexive transitive closure matrix A*

of a directed graph G. Show that if G has n vertices and e edges and
is represented by its adjacency lists, then this can be done in time
©(n? + ne). How much space does your algorithm take in addition to
that needed for G and A*? (Hint: Use either BFS or DFS.)

. Input is an undirected connected graph G(V, E) each one of whose

edges has the same weight w (w being a real number). Give an O(|E|)
time algorithm to find a minimum-cost spanning tree for G. What is
the weight of this tree?

Given are a directed graph G(V,E) and a node v € V. Write an
efficient algorithm to decide whether there is a directed path from v
to every other node in the graph. What is the worst-case run time of
your algorithm?

Design an algorithm to decide whether a given undirected graph G(V, E)
contains a cycle of length 4. The running time of the algorithm should
be O(|V]3).

6.4. BICONNECTED COMPONENTS AND DFS 329

12. Let G(V, E) be a binary tree with n nodes. The distance between two
vertices in GG is the length of the path connecting these two vertices.
The problem is to construct an n xn matrix whose ijth entry is the dis-
tance between v; and v;. Design an O(n?) time algorithm to construct
such a matrix. Assume that the tree is given in the adjacency-list
representation.

13. Present an O(|V]) time algorithm to check whether a given undirected
graph G(V,E) is a tree. The graph G is given in the form of an
adjacency list.

6.4 BICONNECTED COMPONENTS AND DFS

In this section, by “graph” we always mean an undirected graph. A vertex
v in a connected graph G is an articulation point if and only if the deletion
of vertex v together with all edges incident to v disconnects the graph into
two or more nonempty components.

Example 6.3 In the connected graph of Figure 6.6(a) vertex 2 is an artic-
ulation point as the deletion of vertex 2 and edges (1,2),(2,3),(2,5),(2,7),
and (2,8) leaves behind two disconnected nonempty components (Figure
6.6(b)). Graph G of Figure 6.6(a) has only two other articulation points:
vertex 5 and vertex 3. Note that if any of the remaining vertices is deleted
from G, then exactly one component remains. O

A graph G is biconnected if and only if it contains no articulation points.
The graph of Figure 6.6(a) is not biconnected. The graph of Figure 6.7 is
biconnected. The presence of articulation points in a connected graph can
be an undesirable feature in many cases. For example, if G represents a com-
munication network with the vertices representing communication stations
and the edges communication lines, then the failure of a communication sta-
tion i that is an articulation point would result in the loss of communication
to points other than i too. On the other hand, if G has no articulation
point, then if any station ¢ fails, we can still communicate between every
two stations not including station 4.

In this section we develop an efficient algorithm to test whether a con-
nected graph is biconnected. For the case of graphs that are not biconnected,
this algorithm will identify all the articulation points. Once it has been de-
termined that a connected graph G is not biconnected, it may be desirable
to determine a set of edges whose inclusion makes the graph biconnected.
Determining such a set of edges is facilitated if we know the maximal sub-
graphs of G that are biconnected. G' = (V', E') is a maximal biconnected
subgraph of G if and only if G has no biconnected subgraph G" = (V", E")

330 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

(a) Graph G (b) Result of deleting vertex 2

Figure 6.6 An example graph

such that V/ C V" and E' ¢ E”. A maximal biconnected subgraph is a
biconnected component.

The graph of Figure 6.7 has only one biconnected component (i.e., the
entire graph). The biconnected components of the graph of Figure 6.6(a)
are shown in Figure 6.8.

Figure 6.7 A biconnected graph

It is relatively easy to show that

Lemma 6.1 Two biconnected components can have at most one vertex in
common and this vertex is an articulation point. O

Hence, no edge can be in two different biconnected components (as this
would require two common vertices). The graph G can be transformed into
a biconnected graph by using the edge addition scheme of Algorithm 6.8.

6.4. BICONNECTED COMPONENTS AND DFS 331

Since every biconnected component of a connected graph G contains at
least two vertices (unless G itself has only one vertex), it follows that the v;
of line 5 exists.

Example 6.4 Using the above scheme to transform the graph of Figure
6.6(a) into a biconnected graph requires us to add edges (4, 10) and (10, 9)
(corresponding to the articulation point 3), edge (1,5) (corresponding to the
articulation point 2), and edge (6,7) (corresponding to point 5). O

Q)

s
&

OO,
w0

Figure 6.8 Biconnected components of graph of Figure 6.6(a)

Note that once the edges (v;,v;,1) of line 6 (Algorithm 6.8) are added,
vertex a is no longer an articulation point. Hence following the addition

for each articulation point a do

{
Let By, B, ..., Bj, be the biconnected
components containing vertex a;
Let v;,v; # a, be a vertex in B;, 1 <1 < k;
Add to G the edges (vs,vi41), 1 <1 < k;

O UL N~

Algorithm 6.8 Scheme to construct a biconnected graph

332 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

of the edges corresponding to all articulation points, G has no articulation
points and so is biconnected. If G has p articulation points and b bicon-
nected components, then the scheme of Algorithm 6.8 introduces exactly
b — p new edges into G. One can show that this scheme may use more
than the minimum number of edges needed to make G biconnected (see the
exercises).

Now, let us attack the problem of identifying the articulation points and
biconnected components of a connected graph G with n > 2 vertices. The
problem is efficiently solved by considering a depth first spanning tree of G.

Figure 6.9(a) and (b) shows a depth first spanning tree of the graph of
Figure 6.6(a). In each figure there is a number outside each vertex. These
numbers correspond to the order in which a depth first search visits these
vertices and are referred to as the depth first numbers (dfns) of the vertex.
Thus, dfn[l] = 1, dfn[4] = 2, dfn[6] = 8, and so on. In Figure 6.9(b) solid
edges form the depth first spanning tree. These edges are called tree edges.
Broken edges (i.e., all the remaining edges) are called back edges.

(b)

Figure 6.9 A depth first spanning tree of the graph of Figure 6.6(a)

Depth first spanning trees have a property that is very useful in identifying
articulation points and biconnected components

6.4. BICONNECTED COMPONENTS AND DFS 333

Lemma 6.2 If (u,v) is any edge in G, then relative to the depth first span-
ning tree ¢, either u is an ancestor of v or v is an ancestor of u. So, there are
no cross edges relative to a depth first spanning tree ((u,v) is a cross edge
relative to ¢ if and only if u is not an ancestor of v and v is not an ancestor

of u).

Proof: To see this, assume that (u,v) € E(G) and (u,v) is a cross edge.
Then (u,v) cannot be a tree edge as otherwise u is the parent of v or vice
versa. So, (u,v) must be a back edge. Without loss of generality, we can
assume dfn[u] < dfn[v]. Since vertex w is visited first, its exploration cannot
be complete until vertex v is visited. From the definition of depth first
search, it follows that u is an ancestor of all the vertices visited until v is
completely explored. Hence u is an ancestor of v in ¢ and (u,v) cannot be a
cross edge. O

We make the following observation

Lemma 6.3 The root node of a depth first spanning tree is an articulation
point iff it has at least two children. Furthermore, if u is any other vertex,
then it is not an articulation point iff from every child w of u it is possible
to reach an ancestor of v using only a path made up of descendents of w and
a back edge. O

Note that if this cannot be done for some child w of u, then the deletion of
vertex u leaves behind at least two nonempty components (one containing
the root and the other containing vertex w). This observation leads to a
simple rule to identify articulation points. For each vertex u, define L[u] as
follows:

Lu}] = min {dfn[u], min {L[w]|w is a child of u}, min {dfnw] |
(u,w) is a back edge}

It should be clear that L[u] is the lowest depth first number that can be
reached from u using a path of descendents followed by at most one back
edge. From the preceding discussion it follows that if u is not the root, then
u is an articulation point iff u has a child w such that L{w] > dfn[u].

Example 6.5 For the spanning tree of Figure 6.9(b) the L values are L[1 :
10] = {1,1,1,1,6,8,6,6,5,4}. Vertex 3 is an articulation point as child 10
has L[10] = 4 and dfn[3] = 3. Vertex 2 is an articulation point as child 5
has L[5] = 6 and dfn[2] = 6. The only other articulation point is vertex 5;
child 6 has L[6] = 8 and dfn[5] = 7. O

L[u] can be easily computed if the vertices of the depth first spanning
tree are visited in postorder. Thus, to determine the articulation points,

334 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

it is necessary to perform a depth first search of the graph GG and visit the
nodes in the resulting depth first spanning tree in postorder. It is possible to
do both these functions in parallel. Pseudocode Art (Algorithm 6.9) carries
out a depth first search of G. During this search each newly visited vertex
gets assigned its depth first number. At the same time, L[i] is computed for
each vertex in the tree. This algorithm assumes that the connected graph
G and the arrays dfn and L are global. In addition, it is assumed that the
variable num is also global. It is clear from the algorithm that when vertex
u has been explored and a return made from the function, then L[u] has
been correctly computed. Note that in the else clause of line 15, if w # v,
then either (u,w) is a back edge or dfn[w] > dfn[u] > L[u]. In either case,
Llu] is correctly updated. The initial call to Art is Art(1,0). Note dfn is
initialized to zero before invoking Art.

1 Algorithm Art(u,v)

2 // uis a start vertex for depth first search. v is its parent if any
3 // in the depth first spanning tree. It is assumed that the global
4 // array dfn is initialized to zero and that the global variable

5 // num is initialized to 1. n is the number of vertices in G.

6

7 dfnu] := numy Llu] := num; num = num + 1;

8 for each vertex w adjacent from u do

9 {

10 if (dfn[w] = 0) then

11

12 Art(w, u); // w is unvisited.

}Z L[U] = min(L[u], L[w]);

15 else if (w # v) then L[u] := min(L[u],dfn[w]);

16

17 }

Algorithm 6.9 Pseudocode to compute dfn and L

Once L[1 : n] has been computed, the articulation points can be identified
in O(e) time. Since Art has a complexity O(n + e), where e is the number of
edges in G, the articulation points of G can be determined in O(n + ¢) time.

Now, what needs to be done to determine the biconnected components of
G? If following the call to Art (line 12) L{w] > dfn[u], then we know that u
is either the root or an articulation point. Regardless of whether u is not the
root or is the root and has one or more children, the edge (u, w) together with

6.4. BICONNECTED COMPONENTS AND DFS 335

all edges (both tree and back) encountered during this call to Art (except
for edges in other biconnected components contained in subtree w) forms
a biconnected component. A formal proof of this statement appears in the
proof of Theorem 6.5. The modified algorithm appears as Algorithm 6.10.

O OO UU W =

Algorithm BiComp(u,v)

// u is a start vertex for depth first search. v is its parent if
// any in the depth first spanning tree. It is assumed that the
// global array dfn is initially zero and that the global variable
// num is initialized to 1. n is the number of vertices in G.

dfnfu] == num; Llu] := num; num := num + 1;
for each vertex w adjacent from v do

if (v £ w) and (dfnfw] < dfnlu]))then
add (u,) to the top of a stack s;
f (dfn[w] = 0) then

if (L{w] > dfn[u]) then

write ("New bicomponent");
repeat

Delete an edge from the top of stack s;
Let this edge be (z,y);
write (z, y);

} until (((z,y) = (u,w)) or ((z,y) = (w,u)));

BiComp(w, u); // w is unvisited.
L{u] := min(L[u], L[w]);

else if (w # v) then L[u] := min(L[u], dfn[w]);

Algorithm 6.10 Pseudocode to determine bicomponents

One can verify that the computing time of Algorithm 6.10 remains O(n +
e). The following theorem establishes the correctness of the algorithm. Note
that when G has only one vertex, it has no edges so the algorithm generates

336 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

no output. In this case G does have a biconnected component, namely its
single vertex. This case can be handled separately.

Theorem 6.5 Algorithm 6.10 correctly generates the biconnected compo-
nents of the connected graph G when G has at least two vertices.

Proof: This can be shown by induction on the number of biconnected com-
ponents in GG. Clearly, for all biconnected graphs G, the root u of the depth
first spanning tree has only one child w. Furthermore, w is the only ver-
tex for which L[w] > dfn[u] in line 11.1 of Algorithm 6.10. By the timne
w has been explored, all edges in G have been output as one biconnected
component.

Now assume the algorithm works correctly for all connected graphs G with
at most m biconnected components. We show that it also works correctly
for all connected graphs with m + 1 biconnected components. Let G be any
such graph. Consider the first time that L{w] > dfn[u] in line 11.1. At
this time no edges have been output and so all edges in G incident to the
descendents of w are on the stack and are above the edge (u,w). Since none
of the descendents of u is an articulation point and u is, it follows that the set
of edges above (u,w) on the stack forms a biconnected component together
with the edge (u,w). Once these edges have been deleted from the stack
and output, the algorithm behaves essentially as it would on the graph G,
obtained by deleting from G the biconnected component just output. The
behavior of the algorithim on G differs from that on G’ only in that during
the completion of the exploration of vertex u, some edges (u,r) such that
(u,r) is in the component just output may be considered. However, for all
such edges, dfn[r] # 0 and dfn[r] > dfn[u] > L[u]. Hence, these edges only
result in a vacuous iteration of the for loop of line 8 and do not materially
affect the algorithm.

One can easily establish that G’ has at least two vertices. Since in addition
G’ has exactly m biconnected components, it follows from the induction
hypothesis that the remaining components are correctly generated. O

It should be noted that the algorithm described above will work with
any spanning tree relative to which the given graph has no cross edges.
Unfortunately, graphs can have cross edges relative to breadth first spanning
trees. Hence, algorithm Art cannot be adapted to BFS.

EXERCISES

1. For the graphs of Figure 6.10 identify the articulation points and draw
the biconnected components.

2. Show that if G is a connected undirected graph, then no edge of G can
be in two different biconnected components.

6.4. BICONNECTED COMPONENTS AND DFES 337

Figure 6.10 Graphs for Exercise 1

10.

. Let G; = (V;, E;),1 < i < k, be the biconnected components of a

connected graph G. Show that

(a) If i # 7, then V; N V; contains at most one vertex.

(b) Vertex v is an articulation point of G iff {v} = V; NV} for some i
and j, ¢ # j.

Show that the scheme of Algorithm 6.8 may use more than the mini-
mum number of edges needed to make G biconnected.

Let G be a connected undirected graph. Write an algorithm to find
the minimum number of edges that have to be added to G so that
G becomes biconnected. Your algorithm should output such a set of
edges. What are the time and space requirements of your algorithm?

. Show that if ¢ is a breadth first spanning tree for an undirected con-

nected graph G, then G may have cross edges relative to t.

. Prove that a nonroot vertex u is an articulation point iff L[w] > dfn[u]

for some child w of wu.

Prove that in BiComp (Algorithmm 6.10) if either v = w or dfn[w] >
dfnlu], then edge (u,w) is either already on the stack of edges or has
been output as part of a biconnected component.

Let G(V,E) be any connected undirected graph. A bridge of G is
defined to be an edge of G which when removed from G, will make it
disconnected. Present an O(|£]|) time algorithm to find all the bridges
of G.

Let S(V,T) be any DFS tree for a given connected undirected graph
G(V, E). Prove that a leaf of S can not be an articulation point of G.

338 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

11. Prove or disprove: “An undirected graph G(V, E) is biconnected if and
only if for each pair of distinct vertices v and w in V there are two
distinct paths from v to w that have no vertices in common except v
and w.”

6.5 REFERENCES AND READINGS

Several applications of depth first search to graph problems are given in
“Depth first search and linear graph algorithms,” by R. Tarjan, STAM Jour-
nal on Computing 1, no. 2 (1972): 146-160.

The O(n + €) depth first algorithm for biconnected components is due to
R. Tarjan and appears in the preceding paper. This paper also contains an
O(n + e) algorithm to find the strongly connected components of a directed
graph.

An O(n + e) algorithm to find a smallest set of edges that, when added

to a graph G, produces a biconnected graph has been given by A. Rosenthal
and A. Goldner.

For an extensive coverage on graph algorithms see:

Data Structures and Network Algorithms, by R. E. Tarjan, Society for In-
dustrial and Applied Mathematics, 1983.

Algorithmic Graph Theory, by A. Gibbons, Cambridge University Press,
1985.

Algorithmic Graph Theory and Perfect Graphs, by M. Golumbic, Academic
Press, 1980.

Chapter 7

BACKTRACKING

7.1 THE GENERAL METHOD

In the search for fundamental principles of algorithm design, backtracking
represents one of the most general techniques. Many problems which deal
with searching for a set of solutions or which ask for an optimal solution
satisfying some constraints can be solved using the backtracking formulation.
The name backtrack was first coined by D. H. Lehmer in the 1950s. Early
workers who studied the process were R. J. Walker, who gave an algorithmic
account of it in 1960, and S. Golomb and L. Baumert who presented a very
general description of it as well as a variety of applications.

In many applications of the backtrack method, the desired solution is
expressible as an n-tuple (z,,...,z,), where the z; are chosen from some
finite set S;. Often the problem to be solved calls for finding one vector
that maximizes (or minimizes or satisfies) a criterion function P(z1,...,zy).
Sometimes it seeks all vectors that satisfy P. For example, sorting the array
of integers in a[l : n] is a problem whose solution is expressible by an n-
tuple, where z; is the index in a of the ith smallest element. The criterion
function P is the inequality a[z;] < a[z; 1] for 1 <i < n. The set S; is finite
and includes the integers 1 through n. Though sorting is not usually one of
the problems solved by backtracking, it is one example of a familiar problem
whose solution can be formulated as an n-tuple. In this chapter we study a
collection of problems whose solutions are best done using backtracking.

Suppose m; is the size of set S;. Then there are m = mimg---my n-
tuples that are possible candidates for satisfying the function P. The brute
force approach would be to form all these n-tuples, evaluate each one with
P, and save those which yield the optimum. The backtrack algorithm has
as its virtue the ability to yield the same answer with far fewer than m
trials. Its basic idea is to build up the solution vector one component at a
time and to use modified criterion functions P;(z1,...,z;) (sometimes called

339

340 CHAPTER 7. BACKTRACKING

bounding functions) to test whether the vector being formed has any chance
of success. The major advantage of this method is this: if it is realized that
the partial vector (z1,z2,...,2;) can in no way lead to an optimal solution,
then m;,; - -- my, possible test vectors can be ignored entirely.

Many of the problems we solve using backtracking require that all the
solutions satisfy a complex set of constraints. For any problem these con-
straints can be divided into two categories: ezplicit and implicit.

Definition 7.1 Explicit constraints are rules that restrict each z; to take
on values only from a given set. m

Common examples of explicit constraints are

{all nonnegative real numbers}

{0,1}

{a:ligagui}

z; >0 or S;
z; =0 or 1 or S;
li<zi<wu; or S

The explicit constraints depend on the particular instance I of the problem
being solved. All tuples that satisfy the explicit constraints define a possible
solution space for I.

Definition 7.2 The implicit constraints are rules that determine which of
the tuples in the solution space of I satisfy the criterion function. Thus
implicit constraints describe the way in which the z; must relate to each
other. O

Example 7.1 [8-queens] A classic combinatorial problem is to place eight
queens on an 8 X 8 chessboard so that no two “attack,” that is, so that no
two of them are on the same row, column, or diagonal. Let us number the
rows and columns of the chessboard 1 through 8 (Figure 7.1). The queens
can also be numbered 1 through 8. Since each queen must be on a different
row, we can without loss of generality assume queen : is to be placed on
row i. All solutions to the 8-queens problem can therefore be represented
as 8-tuples (z1,...,zs), where z; is the column on which queen i is placed.
The explicit constraints using this formulation are S; = {1,2,3,4,5,6,7, 8},
1 < i < 8. Therefore the solution space consists of 8 8-tuples. The implicit
constraints for this problem are that no two z;'s can be the same (i.e., all
queens must be on different columns) and no two queens can be on the same
diagonal. The first of these two constraints implies that all solutions are
permutations of the 8-tuple (1, 2, 3, 4, 5, 6, 7, 8). This realization reduces
the size of the solution space from 8% tuples to 8! tuples. We see later how to
formulate the second constraint in terms of the z;. Expressed as an 8-tuple,
the solution in Figure 7.1 is (4, 6, 8, 2, 7, 1, 3, 5). O

7.1. THE GENERAL METHOD 341

column
1 2 3 4 5 6 7 8
! Q
2 Q
row 3 Q
4 Q
3 Q
61Q
7 Q
8 Q

Figure 7.1 One solution to the 8-queens problem

Example 7.2 [Sum of subsets] Given positive numbers w;, 1 <7 < n, and
m, this problem calls for finding all subsets of the w; whose sums are m.
For example, if n = 4, (w1, w2, w3, ws) = (11, 13, 24, 7), and m = 31, then
the desired subsets are (11, 13, 7) and (24, 7). Rather than represent the
solution vector by the w; which sum to m, we could represent the solution
vector by giving the indices of these w;. Now the two solutions are described
by the vectors (1, 2, 4) and (3, 4). In general, all solutions are k-tuples
(Z1,22,...,2%), 1 <k <n, and different solutions may have different-sized
tuples. The explicit constraints require x; € {j | j is an integer and 1 <
j < n}. The implicit constraints require that no two be the same and that
the sum of the corresponding w;’s be m. Since we wish to avoid generating
multiple instances of the same subset (e.g., (1, 2, 4) and (1, 4, 2) represent the
same subset), another implicit constraint that is imposed is that z; < z;11,
1<i<k.

In another formulation of the sum of subsets problem, each solution subset
is represented by an n-tuple (z1,z9,...,z,) such that z; € {0,1},1 <i < n.
Then z; = 0 if w; is not chosen and z; = 1 if w; is chosen. The solutions
to the above instance are (1, 1, 0, 1) and (0, 0, 1, 1). This formulation
expresses all solutions using a fixed-sized tuple. Thus we conclude that
there may be several ways to formulate a problem so that all solutions are
tuples that satisfy some constraints. One can verify that for both of the
above formulations, the solution space consists of 2" distinct tuples. O

342 CHAPTER 7. BACKTRACKING

Backtracking algorithms determine problem solutions by systematically
searching the solution space for the given problem instance. This search is
facilitated by using a tree organization for the solution space. For a given
solution space many tree organizations may be possible. The next two ex-
amples examine some of the ways to organize a solution into a tree.

Example 7.3 [n-queens] The n-queens problem is a generalization of the 8-
queens problem of Example 7.1. Now n queens are to be placed on an n x n
chessboard so that no two attack; that is, no two queens are on the same row,
column, or diagonal. Generalizing our earlier discussion, the solution space
consists of all n! permutations of the n-tuple (1,2,...,n). Figure 7.2 shows
a possible tree organization for the case n = 4. A tree such as this is called
a permutation tree. The edges are labeled by possible values of x;. Edges
from level 1 to level 2 nodes specify the values for z,. Thus, the leftmost
subtree contains all solutions with 1 = 1; its leftmost subtree contains all
solutions with 1 = 1 and z9 = 2, and so on. Edges from level ¢ to level i +1
are labeled with the values of z;. The solution space is defined by all paths
from the root node to a leaf node. There are 4! = 24 leaf nodes in the tree
of Figure 7.2. O

4 3 4 2 3

Q0O OOWIODODODOOODOODIIDE

Figure 7.2 Tree organization of the 4-queens solution space. Nodes are
numbered as in depth first search.

7.1. THE GENERAL METHOD 343

Example 7.4 [Sum of subsets] In Example 7.2 we gave two possible formu-
lations of the solution space for the sum of subsets problem. Figures 7.3 and
7.4 show a possible tree organization for each of these formulations for the
case n = 4. The tree of Figure 7.3 corresponds to the variable tuple size
formulation. The edges are labeled such that an edge from a level ¢ node to
a level 7 + 1 node represents a value for z;. At each node, the solution space
is partitioned into subsolution spaces. The solution space is defined by all
paths from the root node to any node in the tree, since any such path corre-
sponds to a subset satisfying the explicit constraints. The possible paths are
() (this corresponds to the empty path from the root to itself), (1), (1,2),
(1,2,3), (1,2,3,4), (1,2,4), (1,3,4), (2), (2,3), and so on. Thus, the left-
most subtree defines all subsets containing wy, the next subtree defines all
subsets containing ws but not wi, and so on.

The tree of Figure 7.4 corresponds to the fixed tuple size formulation.
Edges from level 7 nodes to level i + 1 nodes are labeled with the value of
x;, which is either zero or one. All paths from the root to a leaf node define
the solution space. The left subtree of the root defines all subsets containing
wi, the right subtree defines all subsets not containing w, and so on. Now
there are 2* leaf nodes which represent 16 possible tuples. O

Figure 7.3 A possible solution space organization for the sum of subsets
problem. Nodes are numbered as in breadth-first search.

At this point it is useful to develop some terminology regarding tree
organizations of solution spaces. Fach node in this tree defines a problem

344 CHAPTER 7. BACKTRACKING

state. All paths from the root to other nodes define the state space of the
problem. Solution states are those problem states s for which the path from
the root to s defines a tuple in the solution space. In the tree of Figure 7.3 all
nodes are solution states whereas in the tree of Figure 7.4 only leaf nodes are
solution states. Answer states are those solution states s for which the path
from the root to s defines a tuple that is a member of the set of solutions (i.e.,
it satisfies the implicit constraints) of the problem. The tree organization of
the solution space is referred to as the state space tree.

Figure 7.4 Another possible organization for the sum of subsets problems.
Nodes are numbered as in D-search.

At each internal node in the space tree of Examples 7.3 and 7.4 the
solution space is partitioned into disjoint sub-solution spaces. For example,
at node 1 of Figure 7.2 the solution space is partitioned into four disjoint
sets. Subtrees 2, 18, 34, and 50 respectively represent all elements of the
solution space with z; = 1, 2, 3, and 4. At node 2 the sub-solution space with
x1 = 1 is further partitioned into three disjoint sets. Subtree 3 represents
all solution space elements with 1 = 1 and z2 = 2. For all the state space
trees we study in this chapter, the solution space is partitioned into disjoint
sub-solution spaces at each internal node. It should be noted that this is

7.1. THE GENERAL METHOD 345

not a requirement on a state space tree. The only requirement is that every
element of the solution space be represented by at least one node in the state
space tree.

The state space tree organizations described in Example 7.4 are called
static trees. This terminology follows from the observation that the tree
organizations are independent of the problem instance being solved. For
some problems it is advantageous to use different tree organizations for dif-
ferent problem instances. In this case the tree organization is determined
dynamically as the solution space is being searched. Tree organizations that
are problem instance dependent are called dynamic trees. As an example,
consider the fixed tuple size formulation for the sum of subsets problem (Ex-
ample 7.4). Using a dynamic tree organization, one problem instance with
n = 4 can be solved by means of the organization given in Figure 7.4. An-
other problem instance with n = 4 can be solved by means of a tree in which
at level 1 the partitioning corresponds to zo = 1 and 2o = 0. At level 2
the partitioning could correspond to 1 = 1 and z1 = 0, at level 3 it could
correspond to x3 = 1 and x3 = 0, and so on. We see more of dynamic trees
in Sections 7.6 and 8.3.

Once a state space tree has been conceived of for any problem, this prob-
lem can be solved by systematically generating the problem states, deter-
mining which of these are solution states, and finally determining which
solution states are answer states. There are two fundamentally different
ways to generate the problem states. Both of these begin with the root
node and generate other nodes. A node which has been generated and all
of whose children have not yet been generated is called a live node. The
live node whose children are currently being generated is called the E-node
(node being expanded). A dead node is a generated node which is not to
be expanded further or all of whose children have been generated. In both
methods of generating problem states, we have a list of live nodes. In the
first of these two methods as soon as a new child C of the current E-node
R is generated, this child will become the new FE-node. Then R will become
the E-node again when the subtree C' has been fully explored. This corre-
sponds to a depth first generation of the problem states. In the second state
generation method, the E-node remains the F-node until it is dead. In both
methods, bounding functions are used to kill live nodes without generating
all their children. This is done carefully enough that at the conclusion of the
process at least one answer node is always generated or all answer nodes are
generated if the problem requires us to find all solutions. Depth first node
generation with bounding functions is called backtracking. State generation
methods in which the E-node remains the E-node until it is dead lead to
branch-and-bound methods. The branch-and-bound technique is discussed
in Chapter 8.

The nodes of Figure 7.2 have been numbered in the order they would be
generated in a depth first generation process. The nodes in Figures 7.3 and

346 CHAPTER 7. BACKTRACKING

7.4 have been numbered according to two generation methods in which the
E-node remains the £-node until it is dead. In Figure 7.3 each new node is
placed into a queue. When all the children of the current E-node have been
generated, the next node at the front of the queue becomes the new E-node.
In Figure 7.4 new nodes are placed into a stack instead of a queue. Current
terminology is not uniform in referring to these two alternatives. Typically
the queue method is called breadth first generation and the stack method is
called D-search (depth search).

Example 7.5 [4-queens| Let us see how backtracking works on the 4-queens
problem of Example 7.3. As a bounding function, we use the obvious criteria
that if (z1,z9,...,2;) is the path to the current E-node, then all children
nodes with parent-child labelings z;, are such that (x1,...,z;+1) represents
a chessboard configuration in which no two queens are attacking. We start
with the root node as the only live node. This becomes the F-node and
the path is (). We generate one child. Let us assume that the children are
generated in ascending order. Thus, node number 2 of Figure 7.2 is generated
and the path is now (1). This corresponds to placing queen 1 on column
1. Node 2 becomes the E-node. Node 3 is generated and immediately
killed. The next node generated is node 8 and the path becomes (1, 3).
Node 8 becomes the E-node. However, it gets killed as all its children
represent board configurations that cannot lead to an answer node. We
backtrack to node 2 and generate another child, node 13. The path is now
(1, 4). Figure 7.5 shows the board configurations as backtracking proceeds.
Figure 7.5 shows graphically the steps that the backtracking algorithm goes
through as it tries to find a solution. The dots indicate placements of a
queen which were tried and rejected because another queen was attacking.
In Figure 7.5(b) the second queen is placed on columns 1 and 2 and finally
settles on column 3. In Figure 7.5(c) the algorithm tries all four columns
and is unable to place the next queen on a square. Backtracking now takes
place. In Figure 7.5(d) the second queen is moved to the next possible
column, column 4 and the third queen is placed on column 2. The boards in
Figure 7.5 (e), (f), (g), and (h) show the remaining steps that the algorithm
goes through until a solution is found.

Figure 7.6 shows the part of the tree of Figure 7.2 that is generated.
Nodes are numbered in the order in which they are generated. A node that
gets killed as a result of the bounding function has a B under it. Contrast
this tree with Figure 7.2 which contains 31 nodes. O

With this example completed, we are now ready to present a precise
formulation of the backtracking process. We continue to treat backtracking
in a general way. We assume that all answer nodes are to be found and not
just one. Let (z1,z2,...,z;) be a path from the root to a node in a state space
tree. Let T(z1,z2,...,z;) be the set of all possible values for z;11 such that
(z1,Z2,...,Ti41) 18 also a path to a problem state. T(zy,z2,...,2,) = 0.

7.1. THE GENERAL METHOD 347

1 1] 1 1
2 I 2 2
3
(a) (b) (©) (d)
1 1 1 1
2 2 2
3 K
] 4
(e) (H (g) (h)

Figure 7.5 Example of a backtrack solution to the 4-queens problem

Figure 7.6 Portion of the tree of Figure 7.2 that is generated during back-
tracking

348 CHAPTER 7. BACKTRACKING

We assume the existence of bounding function B; 11 (expressed as predicates)
such that if B;y1(z1,%2,...,%i41) 18 false for a path (zy,z9,...,2:41) from
the root node to a problem state, then the path cannot be extended to
reach an answer node. Thus the candidates for position 7 4+ 1 of the solution
vector (z1,...,Z,) are those values which are generated by T and satisfy
B;i1. Algorithm 7.1 presents a recursive formulation of the backtracking
technique. It is natural to describe backtracking in this way since it is
essentially a postorder traversal of a tree (see Section 6.1). This recursive
version is initially invoked by

Backtrack(1);

1 Algorithm Backtrack(k)

2 // This schema describes the backtracking process using
3 // recursion. On entering, the first kK — 1 values

4 /[z[1],z[2],...,z[k — 1] of the solution vector

5 // z[1: n] have been assigned. z[] and n are global.

6

7 for (each z[k] € T(z[1],...,z[k —1]) do

s

9 if (By(z[1],z[2],...,z[k]) # 0) then

10

11 if (z[1),2[2],...,z[k] is a path to an answer node)
12 then write (z[1 : k]);

13 if (k < n) then Backtrack(k + 1);

14 }

15

16 }

Algorithm 7.1 Recursive backtracking algorithm

The solution vector (z1,...,z,), is treated as a global array z[1 : n]. All
the possible elements for the kth position of the tuple that satisfy By are
generated, one by one, and adjoined to the current vector (zi,...,Tx_1).
Each time zj is attached, a check is made to determine whether a solution
has been found. Then the algorithm is recursively invoked. When the for
loop of line 7 is exited, no more values for z; exist and the current copy of
Backtrack ends. The last unresolved call now resumes, namely, the one that
continues to examine the remaining elements assuming only k& — 2 values
have been set.

7.1. THE GENERAL METHOD 349

Note that this algorithm causes all solutions to be printed and assumes
that tuples of various sizes may make up a solution. If only a single solution
is desired, then a flag can be added as a parameter to indicate the first
occurrence of success.

1 Algorithm [Backtrack(n)

2 // This schema describes the backtracking process.

3 // All solutious are generated in z[1 : n] and printed

4 // as soon as they are determined.

)

6 k:=1;

7 while (k # 0) do

8

9 if (there remains an untried z[k] € T(z[1],z[2],.. .,
10 z[k — 1)) and Bg(z[1],...,z[k]) is true) then
11

12 if (z[1],...,z[k] is a path to an answer node)
13 then write (z[1: k]);

14 k:=k +1; // Consider the next set.

15 }

16 else k := k —1; // Backtrack to the previous set.
17

18 }

Algorithm 7.2 General iterative backtracking method

An iterative version of Algorithm 7.1 appears in Algorithm 7.2. Note that
T() will yield the set of all possible values that can be placed as the first
component z, of the solution vector. The component z, will take on those
values for which the bounding function Bj(z1) is true. Also note how the
elements are generated in a depth first manner. The variable k is continually
incremented and a solution vector is grown until either a solution is found or
no untried value of zy remains. When k is decremented, the algorithm must
resume the generation of possible elements for the kth position that have
not yet been tried. Therefore one must develop a procedure that generates
these values in some order. If only one solution is desired, replacing write
(z[1: k]); with {write (z[1 : k]); return;} suffices.

The efficiency of both the backtracking algorithms we’ve just seen de-
pends very much on four factors: (1) the time to generate the next zy, (2)
the number of zj satisfying the explicit constraints, (3) the time for the
bounding functions By, and (4) the number of zj satisfying the By. Bound-

354 CHAPTER 7. BACKTRACKING

1 Algorithm Place(k,1)

2 // Returns true if a queen can be placed in kth row and
3 // ith column. Otherwise it returns false. z[] is a

4 // global array whose first (k — 1) values have been set.
5 // Abs(r) returns the absolute value of r.

6

7 for j:=1to k—1do

8 if ((z[j] = i) // Two in the same column

9 or (Abs(z[j] —i) = Abs(j — k)))

10 // or in the same diagonal

11 then return false;

12 return true;

13 }

Algorithm 7.4 Can a new queen be placed?

1 Algorithm NQueens(k,n)

2 // Using backtracking, this procedure prints all
3 // possible placements of n queens on an n X n
4 // chessboard so that they are nonattacking.

5

6 for i:=1tondo

7

8 if Place(k,) then

9

10 z[k] = 1;

11 if (k = n) then write (z[1 : n));
12 else NQueens(k + 1,n);

13 }

14

15 }

Algorithm 7.5 All solutions to the n-queens problem

7.2. THE 8-QUEENS PROBLEM 355

At this point we might wonder how effective function NQueens is over the
brute force approach. For an 8 x 8 chessboard there are (684) possible ways to
place 8 pieces, or approximately 4.4 billion 8-tuples to examine. However, by
allowing only placements of queens on distinct rows and columns, we require
the examination of at most 8!, or only 40,320 8-tuples.

We can use Estimate to estimate the number of nodes that will be gener-
ated by NQueens. Note that the assumptions that are needed for Estimate
do hold for NQueens. The bounding function is static. No change is made
to the function as the search proceeds. In addition, all nodes on the same
level of the state space tree have the same degree. In Figure 7.8 we see five
8 x 8 chessboards that were created using Estimate.

As required, the placement of each queen on the chessboard was chosen
randomly. With each choice we kept track of the number of columns a queen
could legitimately be placed on. These numbers are listed in the vector
beneath each chessboard. The number following the vector represents the
value that function Estimate would produce from these sizes. The average
of these five trials is 1625. The total number of nodes in the 8-queens state
space tree is

7
1+ 3 [W_o(8)] = 69,281
7=0

So the estimated number of unbounded nodes is only about 2.34% of the
total number of nodes in the 8-queens state space tree. (See the exercises
for more ideas about the efficiency of NQueens.)

EXERCISES

1. Algorithm NQueens can be made more efficient by redefining the func-
tion Place(k,) so that it either returns the next legitimate column on
which to place the kth queen or an illegal value. Rewrite both functions
(Algorithms 7.4 and 7.5) so they implement this alternate strategy.

2. For the n-queens problem we observe that some solutions are simply
reflections or rotations of others. For example, when n = 4, the two
solutions given in Figure 7.9 are equivalent under reflection.

Observe that for finding inequivalent solutions the algorithm need only
set z[1] =2,3,...,[n/2].
(a) Modify NQueens so that only inequivalent solutions are computed.

(b) Run the n-queens program devised above for n = 8, 9, and 10.
Tabulate the number of solutions your program finds for each
value of n.

356 CHAPTER 7. BACKTRACKING

1 LT
AT [T 2 L‘
3 3
4 4
5 5
] 6
|
(8,5,4,3,2) = 1649 (8,5,3,1,2,1)=769
2 2
3 3
TECTT] [
5 5
s 1] BEERENES
6]] I N
7 |
[[
(8,6,4,2,1,1,1) = 1401 (8,6,4,3,2)=1977
1
2
3
]
4
5
6
7
B 8

(8,5,3,2,2,1,1,1) = 2329

Figure 7.8 Five walks through the 8-queens problem plus estimates of the
tree size

7.3. SUM OF SUBSETS

357

Figure 7.9 Equivalent solutions to the

3. Given an n X n chessboard, a kni
with coordinates (z,y). The pro

moves such that every square of
sequence of moves exists. Present,

7.3 SUM OF SUBSETS

Suppose we are given n distinct positi
and we desire to find all combinations

This is called the sum of subsets problen

we could formulate this problem using

We consider a backtracking solution us
this case the element x; of the solution v
on whether the weight w; is included ox

The children of any node in Figure

at level ¢ the left child corresponds to
A simple choice for the bounding fuy

k n
S w3
i=1 i=k

Clearly z1,...,z; cannot lead to an
satisfied. The bounding functions can b

are initially in nondecreasing order. In|

an answer node if

k
Z Wi + W
i=1

The bounding functions we use are they

> 4-queens problem

ght is placed on an arbitrary square
blem is to determine n? — 1 knight
the board is visited once if such a
an algorithm to solve this problem.

ve numbers (usually called weights)
f these numbers whose sums are m.
n. Examples 7.2 and 7.4 showed how
pither fixed- or variable-sized tuples.
ing the fixed tuple size strategy. In
ector is either one or zero depending
not.

V.4 are easily generated. For a node
; = 1 and the right to z; = 0.

wctions is Bg(z1,...,zg) = true iff

w; > m
H1

swer node if this condition is not
e strengthened if we assume the w;’s
this case z1,...,z, cannot lead to

(c+1>m

efore

358 CHAPTER 7. BACKTRACKING

k n
Bi(z1,...,zk) = true iff Zwixi + Z w; > m
i=1 i=k+1

k
and Zwixi + w1 <M (7.1)

i=1

Since our algorithm will not make use of B,,, we need not be concerned by
the appearance of w1 in this function. Although we have now specified all
that is needed to directly use either of the backtracking schemas, a simpler
algorithm results if we tailor either of these schemas to the problem at hand.
This simplification results from the realization that if z; = 1, then

n

k
Zwixrl— Z w; >m
7 =1

i=k+1

For simplicity we refine the recursive schema. The resulting algorithm is
SumOfSub (Algorithm 7.6).

Algorithm SumOfSub avoids computing %, w;z; and Yo w; each
time by keeping these values in variables s and r respectively. The algorithm
assumes wy < m and Y w; > m. The initial call is SumOfSub(0, 1,37, w;).
It is interesting to note that the algorithm does not explicitly use the test
k > n to terminate the recursion. This test is not needed as on entry to the
algorithm, s # m and s +r > m. Hence, r # 0 and so k can be no greater
than n. Also note that in the else if statement (line 11), since s + w < m
and s + r > m, it follows that r # w; and hence £k +1 < n. Observe
also that if s + wgx = m (line 9), then zx,1,...,z, must be zero. These
zeros are omitted from the output of line 9. In line 11 we do not test for

Zi?:l wiT; + Y jepy1 Wi > m, as we already know s +r > m and z; = L.

Example 7.6 Figure 7.10 shows the portion of the state space tree gener-
ated by function SumOfSub while working on the instance n = 6, m = 30,
and w[l : 6] = {5,10,12,13,15,18}. The rectangular nodes list the values
of s, k, and r on each of the calls to SumOfSub. Circular nodes represent
points at which subsets with sums m are printed out. At nodes A, B, and
C the output is respectively (1, 1, 0, 0, 1), (1, 0, 1, 1), and (0, 0, 1, 0, 0O,
1). Note that the tree of Figure 7.10 contains only 23 rectangular nodes.
The full state space tree for n = 6 contains 26 — 1 = 63 nodes from which
calls could be made (this count excludes the 64 leaf nodes as no call need be
made from a leaf). O

7.3. SUM OF SUBSETS 359

Algorithm SumOfSub(s, k,r)
// Find all subsets of w[l : n] that sum to m. The values of z[7],
// 1< j <k, have already been determined. s = Z —1w[j] * z[j]

// and r = Z" x W[7]. The w[j]’s are in nondecreasmg order.
// It is assumed that w[l] <m and 37, w[i] > m.

// Generate left child. Note: s+ w[k] < m since By_; is true.
zlk] .= 1;
if (s + w[k] = m) then write (z[1 : k]); // Subset found

// There is no recursive call here as w[j] >0, 1 < j <n.
else if (s +w[k] +wk+1] <m

then SumOfSub(s + wlk], k + 1,r — w[k]);

// Generate right child and evaluate By.
if ((s+r —w[k] > m) and (s +w[k + 1] < m)) then

OO0 ~IDH U W

z[k] := 0;
SumOfSub(s, k + 1,7 — wlk]);

e o e el R T Sy T
L~ U W —O
-

Algorithm 7.6 Recursive backtracking algorithm for sum of subsets prob-
lem

EXERCISES

1. Prove that the size of the set of all subsets of n elements is 2.

2. Let w ={5,7,10,12,15,18,20} and m = 35. Find all possible subsets
of w that sum to m. Do this using SumOfSub. Draw the portion of
the state space tree that is generated.

3. With m = 35, run SumOfSub on the data (a) w = {5,7,10,12,15, 18,20},
(b)w—{201815121075} and ()w—{157205181012}
Are there any discernible differences in the computing times?

4. Write a backtracking algorithm for the sum of subsets problem using
the state space tree corresponding to the variable tuple size formula-
tion.

360 CHAPTER 7. BACKTRACKING

x;=1
x,=1 x,=0
x3=1 x3=0 x3=1 x3=0
x4=0 | x4=1 | x4=0
(B) 5533] [10,533] [12,533] [13,533
x5=1 x5=1

ngﬁﬂ 13,6,18

©

Figure 7.10 Portion of state space tree generated by SumOfSub

7.4 GRAPH COLORING

Let G be a graph and m be a given positive integer. We want to discover
whether the nodes of G can be colored in such a way that no two adjacent
nodes have the same color yet only m colors are used. This is termed the
m-colorability decision problem and it is discussed again in Chapter 11. Note
that if d is the degree of the given graph, then it can be colored with d + 1
colors. The m-colorability optimization problem asks for the smallest integer
m for which the graph G can be colored. This integer is referred to as the
chromatic number of the graph. For example, the graph of Figure 7.11 can
be colored with three colors 1,2, and 3. The color of each node is indicated
next to it. It can also be seen that three colors are needed to color this graph
and hence this graph’s chromatic number is 3.

7.4. GRAPH COLORING 361

Figure 7.11 An example graph and its coloring

A graph is said to be planar iff it can be drawn in a plane in such a
way that no two edges cross each other. A famous special case of the m-
colorability decision problem is the 4-color problem for planar graphs. This
problem asks the following question: given any map, can the regions be
colored in such a way that no two adjacent regions have the same color
yet only four colors are needed? This turns out to be a problem for which
graphs are very useful, because a map can easily be transformed into a graph.
Each region of the map becomes a node, and if two regions are adjacent,
then the corresponding nodes are joined by an edge. Figure 7.12 shows a
map with five regions and its corresponding graph. This map requires four
colors. For many years it was known that five colors were sufficient to color
any map, but no map that required more than four colors had ever been
found. After several hundred years, this problem was solved by a group of
mathematicians with the help of a computer. They showed that in fact four
colors are sufficient. In this section we consider not only graphs that are
produced from maps but all graphs. We are interested in determining all
the different ways in which a given graph can be colored using at most m
colors.

Suppose we represent a graph by its adjacency matrix G[1 : n,1 : n],
where G[i, 7] = 1if (4, j) is an edge of G, and G[i, j] = 0 otherwise. The colors
are represented by the integers 1,2,...,m and the solutions are given by the
n-tuple (z1,...,zy), where z; is the color of node 7. Using the recursive
backtracking formulation as given in Algorithm 7.1, the resulting algorithm
is mColoring (Algorithm 7.7). The underlying state space tree used is a
tree of degree m and height n + 1. Each node at level i has m children
corresponding to the m possible assignments to z;, 1 < i < n. Nodes at

362 CHAPTER 7. BACKTRACKING

Figure 7.12 A map and its planar graph representation

level n + 1 are leaf nodes. Figure 7.13 shows the state space tree when n =
3 and m = 3.

Function mColoring is begun by first assigning the graph to its adja-
cency matrix, setting the array z[| to zero, and then invoking the statement
mColoring(1);.

Notice the similarity between this algorithm and the general form of the
recursive backtracking schema of Algorithm 7.1. Function NextValue (Algo-
rithm 7.8) produces the possible colors for zj after z; through zy_; have
been defined. The main loop of mColoring repeatedly picks an element from
the set of possibilities, assigns it to zy, and then calls mColoring recursively.
For instance, Figure 7.14 shows a simple graph containing four nodes. Below
that is the tree that is generated by mColoring. Each path to a leaf repre-
sents a coloring using at most three colors. Note that only 12 solutions exist
with exactly three colors. In this tree, after choosing z; = 2 and z5 = 1,
the possible choices for z3 are 2 and 3. After choosing z; = 2, zo = 1, and
3 = 2, possible values for x4 are 1 and 3. And so on.

An upper bound on the computing time of mColoring can be arrived at by
noticing that the number of internal nodes in the state space tree is Z?;ol mt,
At each internal node, O(mn) time is spent by NextValue to determine the
children corresponding to legal colorings. Hence the total time is bounded

by S mitln = ¥ min = n(m"t - 2)/(m ~ 1) = O(nm™).

7.4. GRAPH COLORING 363

1 Algorithm mColoring(k)

2 // This algorithm was formed using the recursive backtracking
3 // schema. The graph is represented by its boolean adjacency
4 // matrix G[1 : n,1:n]. All assignments of 1,2,...,m to the
5 // vertices of the graph such that adjacent vertices are

6 // assigned distinct integers are printed. k is the index

7 // of the next vertex to color.

8

9 repeat

10 {// Generate all legal assignments for z[k].

11 NextValue(k); // Assign to z[k] a legal color.

12 if (z[k] = 0) then return; // No new color possible
13 if (k =n) then // At most m colors have been
14 // used to color the n vertices.

15 write (z[1 : n]);

16 else mColoring(k + 1);

17 } until (false);

18 }

Algorithm 7.7 Finding all m-colorings of a graph

Figure 7.13 State space tree for mColoring when n =3 and m = 3

364 CHAPTER 7. BACKTRACKING

1 Algorithm NextValue(k)

2 // z[1],...,z[k — 1] have been assigned integer values in

3 // the range [1,m] such that adjacent vertices have distinct
4 // integers. A value for z[k] is determined in the range

5 // [0,m]. z[k] is assigned the next highest numbered color
6 while maintaining distinctness from the adjacent vertices
7 // of vertex k. If no such color exists, then z[k] is 0.

8 {

9 repeat

10

11 z[k] := (z[k] + 1) mod (m + 1); // Next highest color.
12 if (z]] = 0) then return; // All colors have been used.
13 for j:=1to ndo

14 { / / Check if this color is

15 // distinct from adjacent colors.

16 if (Gt] #0) and (s[4] = =[]])

17 // If (k,7) is and edge and if adj.

18 // vertices have the same color.

19 then break;

20

21 if (j =n + 1) then return; // New color found
22 } until (false); // Otherwise try to find another color.
23 }

Algorithm 7.8 Generating a next color

EXERCISE

1. Program and run mColoring (Algorithm 7.7) using as data the complete
graphs of size n = 2, 3, 4, 5, 6, and 7. Let the desired number of colors
be k = n and k = n/2. Tabulate the computing times for each value
of n and k.

7.5 HAMILTONIAN CYCLES

Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle
(suggested by Sir William Hamilton) is a round-trip path along n edges of
G that visits every vertex once and returns to its starting position. In other
words if a Hamiltonian cycle begins at some vertex v; € G and the vertices

7.5. HAMILTONIAN CYCLES 365

x,=2/132] 2 \33
OO

Figure 7.14 A 4-node graph and all possible 3-colorings

of G are visited in the order vy, ve, ..., vn11, then the edges (v;, v;41) are in
E. 1 <1 <n, and the v; are distinct except for v; and vy, 1, which are equal.

The graph G1 of Figure 7.15 contains the Hamiltonian cycle 1, 2, 8, 7,
6, 5, 4, 3, 1. The graph G2 of Figure 7.15 contains no Hamiltonian cycle.
There is no known easy way to determine whether a given graph contains a
Hamiltonian cycle. We now look at a backtracking algorithm that finds all
the Hamiltonian cycles in a graph. The graph may be directed or undirected.
Only distinct cycles are output.

The backtracking solution vector (z1,...,zy) is defined so that z; rep-
resents the ith visited vertex of the proposed cycle. Now all we need do is
determine how to compute the set of possible vertices for zy if x1,..., 251
have already been chosen. If £ = 1, then x1 can be any of the n vertices. To
avoid printing the same cycle n times, we require that 1 = 1. If 1 < k < n,
then z; can be any vertex v that is distinct from xq,29,...,Zk—1 and v is
connected by an edge to 1. The vertex z,, can only be the one remaining
vertex and it must be connected to both z,_; and z;. We begin by present-
ing function NextValue(k) (Algorithm 7.9), which determines a possible next

366 CHAPTER 7. BACKTRACKING

Gl:

TN

Figure 7.15 Two graphs, one containing a Hamiltonian cycle

vertex for the proposed cycle.

Using NextValue we can particularize the recursive backtracking schema
to find all Hamiltonian cycles (Algorithm 7.10). This algorithm is started
by first initializing the adjacency matrix G[1: n,1 : n], then setting z[2 : n]
to zero and z[1] to 1, and then executing Hamiltonian(2).

Recall from Section 5.9 the traveling salesperson problem which asked for
a tour that has minimum cost. This tour is a Hamiltonian cycle. For the
simple case of a graph all of whose edge costs are identical, Hamiltonian will
find a minimum-cost tour if a tour exists. If the common edge cost is ¢, the
cost of a tour is cn since there are n edges in a Hamiltonian cycle.

EXERCISES

1. Determine the order of magnitude of the worst-case computing time
for the backtracking procedure that finds all Hamiltonian cycles.

2. Draw the portion of the state space tree generated by Algorithm 7.10
for the graph G1 of Figure 7.15.

3. Generalize Hamiltonian so that it processes a graph whose edges have
costs associated with them and finds a Hamiltonian cycle with mini-
mum cost. You can assume that all edge costs are positive.

7.5. HAMILTONIAN CYCLES 367

1 Algorithm NextValue(k)

2 // z[l:k—1]is a path of k — 1 distinct vertices. If z[k] = 0, then
3 // no vertex has as yet been assigned to z[k]. After execution,

4 /] z[k] is assigned to the next highest numbered vertex which

5 // does not already appear in z[1 : k — 1] and is connected by

6 // an edge to z[k — 1]. Otherwise z[k] = 0. If k = n, then

7 // in addition z[k] is connected to z[1].

8

9 repeat

10 {

11 zlk] := (z[k] + 1) mod (n + 1); // Next vertex.

12 if (z[k] = 0) then return;

13 if (G[z[k — 1], z[k]] # 0) then

14 { // Is there an edge?

15 for j:=1to k—1 do if (z[j] = z[k]) then break;
16 // Check for distinctness.

17 if (j = k) then // If true, then the vertex is distinct.
18 if ((k <n) or ((k=n) and G[z[n], z[1]] # 0))
19 then return;

20 }

21 } until (false);

22 }

Algorithm 7.9 Generating a next vertex

368 CHAPTER 7. BACKTRACKING

1 Algorithm Hamiltonian(k)

2 // This algorithm uses the recursive formulation of
3 // backtracking to find all the Hamiltonian cycles
4 // of a graph. The graph is stored as an adjacency
5 // matrix G[1:n,1:n]. All cycles begin at node 1.
6

7 repeat

8 { // Generate values for z[k].

9 NextValue(k); // Assign a legal next value to z[k].
10 if (z[k] = 0) then return;

11 if (k =n) then write (z[1 : n]);

12 else Hamiltonian(k + 1);

13 } until (false);

14 }

Algorithm 7.10 Finding all Hamiltonian cycles

7.6 KNAPSACK PROBLEM

In this section we reconsider a problem that was defined and solved by a dy-
namic programming algorithm in Chapter 5, the 0/1 knapsack optimization
problem. Given n positive weights w;, n positive profits p;, and a positive
number m that is the knapsack capacity, this problem calls for choosing a
subset of the weights such that

Z w;z; < m and Z p;T; is maximized (7.2)

1<i<n 1<i<n

The z;’s constitute a zero-one-valued vector.

The solution space for this problem consists of the 2” distinct ways to
assign zero or one values to the z;’s. Thus the solution space is the same
as that for the sum of subsets problem. T'wo possible tree organizations are
possible. One corresponds to the fixed tuple size formulation (Figure 7.4)
and the other to the variable tuple size formulation (Figure 7.3). Backtrack-
ing algorithms for the knapsack problem can be arrived at using either of
these two state space trees. Regardless of which is used, bounding functions
are needed to help kill some live nodes without expanding them. A good
bounding function for this problem is obtained by using an upper bound
on the value of the best feasible solution obtainable by expanding the given
live node and any of its descendants. If this upper bound is not higher than

7.6. KNAPSACK PROBLEM 369

the value of the best solution determined so far, then that live node can be

killed.

We continue the discussion using the fixed tuple size formulation. If at
node Z the values of z;, 1 < i < k, have already been determined, then an
upper bound for Z can be obtained by relaxing the requirement x; = 0 or 1
to 0 < z; <1for k+1 <4 < n and using the greedy algorithm of Section 4.2
to solve the relaxed problem. Function Bound(cp,cw, k) (Algorithm 7.11)
determines an upper bound on the best solution obtainable by expanding
any node Z at level k + 1 of the state space tree. The object weights and
profits are w[i] and p[i]. It is assumed that p[i]/w[i] > p[i + 1)/w[i + 1],
1<4<n.

1 Algorithm Bound(cp, cw, k)

2 // cp is the current profit total, cw is the current
3 // weight total; k is the index of the last removed
4 // item; and m is the knapsack size.

5

6 b:=cp; c:= cw;

7 fori:=k+1tondo

8

9 ¢ = ¢+ wlil;

9 if (¢ < m) then b:= b+ pl[i];

10 else return b + (1 — (¢ — m)/w(t]) * p[e];
11

12 return b;

13 }

Algorithm 7.11 A bounding function

From Bound it follows that the bound for a feasible left child of a node Z
is the same as that for Z. Hence, the bounding function need not be used
whenever the backtracking algorithm makes a move to the left child of a node.
The resulting algorithm is BKnap (Algorithm 7.12). It was obtained from
the recursive backtracking schema. Initially set fp := —1;. This algorithm
is invoked as

BKnap(1,0,0);

When fp # —1, z[i], 1 <i <mn, is such that ;" | p[i]z[i] = fp. In lines 8
to 18 left children are generated. In line 20, Bound is used to test whether a

370

CHAPTER 7. BACKTRACKING

{

SO U i W

29 }

Algorithm BKnap(k, cp, cw)
// m is the size of the knapsack; n is the number of weights
// and profits. w[] and p[| are the weights and profits.
// pli]/w(i] > pli + 1]/w[i + 1]. fw is the final weight of

/ knapsack; fp is the final maximum profit. z[k] = 0 if w[k]
// is not in the knapsack; else z[k] = 1.

// Generate left child.
if (cw + w[k] <m) then

k| == 1;
?f[(]k < n) then BKnap(k + 1, cp + p[k], cw + w[k]);
if ((cp + plk] > fp) and (k = n)) then

for j:=1 to k do z[j] := y[jl;

}

}
// Generate right child.
if (Bound(cp, cw,k) > fp) then

k] := 05 if (k < n) then BKnap(k + 1, ¢p, cw);
if ((cp > fp) and (k = n)) then

~ RS,

fp:=cp; fw:= cw;
for j:=1 to k do z[j] := y[j];

}

Algorithm 7.12 Backtracking solution to the 0/1 knapsack problem

7.6. KNAPSACK PROBLEM 371

right child should be generated. The path y[i], 1 < ¢ <k, is the path to the

current node. The current weight cw = ¥ w[ily[i] and ep = S¥7 ! p[ily[i].
In lines 13 to 17 and 23 to 27 the solution vector is updated if need be.

So far, all our backtracking algorithms have worked on a static state
space tree. We now see how a dynamic state space tree can be used for the
knapsack problem. One method for dynamically partitioning the solution
space is based on trying to obtain an optimal solution using the greedy
algorithm of Section 4.2. We first replace the integer constraint z; = 0 or 1
by the constraint 0 < z; < 1. This yields the relaxed problem

max Z p;x; subject to Z w;z; < m (7.3)
1<i<n 1<i<n
0<z; <1, 1<i<n

If the solution generated by the greedy method has all z;’s equal to zero or
one, then it is also an optimal solution to the original 0/1 knapsack problem.
If this is not the case, then exactly one z; will be such that 0 < z; < 1. We
partition the solution space of (7.2) into two subspaces. In one z; = 0
and in the other x; = 1. Thus the left subtree of the state space tree will
correspond to z; = 0 and the right to z; = 1. In general, at each node Z
of the state space tree the greedy algorithm is used to solve (7.3) under the
added restrictions corresponding to the assignments already made along the
path from the root to this node. In case the solution is all integer, then an
optimal solution for this node has been found. If not, then there is exactly
one z; such that 0 < z; < 1. The left child of Z corresponds to z; = 0, and
the right to z; = 1.

The justification for this partitioning scheme is that the noninteger z; is
what prevents the greedy solution from being a feasible solution to the 0/1
knapsack problem. So, we would expect to reach a feasible greedy solution
quickly by forcing this z; to be integer. Choosing left branches to correspond
to x; = 0 rather than z; = 1 is also justifiable. Since the greedy algorithm
requires pj/wj > pj+1/w;q1, we would expect most objects with low index
(i.e., small j and hence high density) to be in an optimal filling of the knap-
sack When z; is set to zero, we are not preventing the greedy algorithm
from using any of the objects with j < i (unless z; has already been set to
zero). On the other hand, when z; is set to one, some of the z;’s with j <
will not be able to get into the knapsack. Therefore we expect to arrive at
an optimal solution with z; = 0. So we wish the backtracking algorithm to
try this alternative first. Hence the left subtree corresponds to z; = 0.

Example 7.7 Let us try out a backtracking algorithm and the above dy-
namic partitioning scheme on the following data: p = {11,21,31, 33,43, 53,
55,65}, w = {1,11,21,23,33,43,45,55}, m = 110, and n = 8. The greedy

372 CHAPTER 7. BACKTRACKING

solution corresponding to the root node (i.e., Equation (7.3)) is z = {1, 1,1,
1,1,21/45,0,0}. Its valueis 164.88. The two subtrees of the root correspond
to g = 0 and zg = 1, respectively (Figure 7.16). The greedy solution at
node 2 is z = {1,1,1,1,1,0,21/45,0}. Its value is 164.66. The solution
space at node 2 is partitioned using z7 = 0 and z7; = 1. The next E-node is
node 3. The solution here has xg = 21/55. The partitioning now is with zg
= 0 and zg = 1. The solution at node 4 is all integer so there is no need to
expand this node further. The best solution found so far has value 139 and
z={1,1,1,1,1,0,0,0}. Node 5 is the next E-node. The greedy solution for
this node is z = {1,1,1,22/23,0,0,0,1}. Its value is 159.56. The partition-
ing is now with 4 = 0 and z4 = 1. The greedy solution at node 6 has value
156.66 and z5 = 2/3. Next, node 7 becomes the E-node. The solution here
is {1,1,1,0,0,0,0,1}. Its value is 128. Node 7 is not expanded as the greedy
solution here is all integer. At node 8 the greedy solution has value 157.71
and z3 = 4/7. The solution at node 9 is all integer and has value 140. The
greedy solution at node 10 is {1,0,1,0,1,0,0,1}. Its value is 150. The next
E-node is 11. Its value is 159.52 and z3 = 20/21. The partitioning is now
on z3 = 0 and z3 = 1. The remainder of the backtracking process on this
knapsack instance is left as an exercise. O

Experimental work due to E. Horowitz and S. Sahni, cited in the ref-
erences, indicates that backtracking algorithms for the knapsack problem
generally work in less time when using a static tree than when using a dy-
namic tree. The dynamic partitioning scheme is, however, useful in the
solution of integer linear programs. The general integer linear program is
mathematically stated in (7.4).

minimize 3} <o, € Tj

subject t0 3.1 <j<p, @iy 75 < b, 1<i<m (7.4)

s are nonnegative integers

If the integer constraints on the z;’s in (7.4) are replaced by the constraint
z; > 0, then we obtain a linear program whose optimal solution has a value
at least as large as the value of an optimal solution to (7.4). Linear programs
can be solved using the simplex methods (see the references). If the solution
is not all integer, then a noninteger z; is chosen to partition the solution
space. Let us assume that the value of z; in the optimal solution to the
linear program corresponding to any node Z in the state space is v and v is
not an integer. The left child of Z corresponds to z; < [v] whereas the right
child of Z correspond to x; > [v] . Since the resulting state space tree has a
potentially infinite depth (note that on the path from the root to a node Z

7.6. KNAPSACK PROBLEM 373

the solution space can be partitioned on one z; many times as each z; can
have as value any nonnegative integer), it is almost always searched using a
branch-and-bound method (see Chapter 8).

Figure 7.16 Part of the dynamic state space tree generated in Example 7.7

EXERCISES

1. (a) Present a backtracking algorithm for solving the knapsack opti-
mization problem using the variable tuple size formulation.

(b) Draw the portion of the state space tree your algorithm will gen-
erate when solving the knapsack instance of Example 7.7.

2. Complete the state space tree of Figure 7.16.

3. Give a backtracking algorithm for the knapsack problem using the
dynamic state space tree discussed in this section.

4. [Programming project] (a) Program the algorithms of Exercises 1 and
3. Run these two programs and BKnap using the following data: p =

374 CHAPTER 7. BACKTRACKING

{11,21,31,33,43, 53,565,665}, w = {1,11,21,23,33,43,45,55}, m =
110, and n = 8. Which algorithm do you expect to perform best?

(b) Now program the dynamic programming algorithm of Section 5.7
for the knapsack problem. Use the heuristics suggested at the end of
Section 5.7. Obtain computing times and compare this program with
the backtracking programs.

5. (a) Obtain a knapsack instance for which more nodes are generated
by the backtracking algorithm using a dynamic tree than using a
static tree.

(b) Obtain a knapsack instance for which more nodes are generated
by the backtracking algorithm using a static tree than using a
dynamic tree.

(c) Strengthen the backtracking algorithms with the following heuris-
tic: Build an array minw[| with the property that minw[i]
is the index of the object that has least weight among objects
i,1+1,...,n. Now any E-node at which decisions for z1,...,z;_1
have been made and at which the unutilized knapsack capacity is
less than w[minw(i]] can be terminated provided the profit earned
up to this node is no more than the maximum determined so far.
Incorporate this into your programs of Exercise 4(a). Rerun the
new programs on the same data sets and see what (if any) im-
provements result.

7.7 REFERENCES AND READINGS

An early modern account of backtracking was given by R. J. Walker. The
technique for estimating the efficiency of a backtrack program was first pro-
posed by M. Hall and D. E. Knuth and the dynamic partitioning scheme for
the 0/1 knapsack problem was proposed by H. Greenberg and R. Hegerich.
Experimental results showing static trees to be superior for this problem can
be found in “Computing partitions with applications to the knapsack prob-
lem,” by E. Horowitz and S. Sahni, Journal of the ACM 21, no. 2 (1974):
277-292.

Data presented in the above paper shows that the divide-and-conquer
dynamic programming algorithm for the knapsack problem is superior to
BKnap.

For a proof of the four-color theorem see Every Planar Map is Four Col-
orable, by K. 1. Appel, American Mathematical Society, Providence, RI,
1989.

7.8. ADDITIONAL EXERCISES 375

A discussion of the simplex method for solving linear programs may be
found in:

Linear Programming: An Introduction with Applications, by A. Sultan, Aca-
demic Press, 1993.

Linear Optimization and Eztensions, by M. Padberg, Springer-Verlag, 1995.

7.8 ADDITIONAL EXERCISES

1.

Suppose you are given n men and n women and two n x n arrays P and
@ such that P(i,j) is the preference of man ¢ for woman j and Q(%, j)
is the preference of woman ¢ for man j. Given an algorithm that finds
a pairing of men and women such that the sum of the product of the
preferences is maximized.

. Let A(1:n,1:n) bean n xn matrix. The determinant of A is the

number

det(A) = Z Sgn(s)al,s(l)a2,3(2) ©rGpos(n)

Ll

where the sum is taken over all permutations s(1),...,s(n) of {1,2,...,
n} and sgn(s) is + 1 or —1 according to whether s is an even or odd
permutation. The permanent of A is defined as

per(A) =Y a1 41)02,62) * n,s(n)

The determinant can be computed as a by-product of Gaussian elimi-
nation requiring O(n®) operations, but no polynomial time algorithm
is known for computing permanents. Write an algorithm that com-
putes the permanent of a matrix by generating the elements of s using
backtracking. Analyze the time of your algorithm.

. Let MAZE(1 : n,1 : n) be a zero- or one-valued, two-dimensional

array that represents a maze. A one means a blocked path whereas a
zero stands for an open position. You are to develop an algorithm that
begins at MAZE(1, 1) and tries to find a path to position MAZE(n,n).
Once again backtracking is necessary here. See if you can analyze the
time complexity of your algorithm.

. The assignment problem is usually stated this way: There are n people

to be assigned to n jobs. The cost of assigning the ith person to the
jth job is cost(i, 7). You are to develop an algorithm that assigns every
job to a person and at the same time minimizes the total cost of the
assignment.

376 CHAPTER 7. BACKTRACKING

5. This problem is called the postage stamp problem. Envision a country
that issues n different denominations of stamps but allows no more
than m stamps on a single letter. For given values of m and n, write
an algorithm that computes the greatest consecutive range of postage
values, from one on up, and all possible sets of denominations that
realize that range. For example, for n = 4 and m = 5, the stamps with
values (1, 4, 12, 21) allow the postage values 1 through 71. Are there
any other sets of four denominations that have the same range?

6. Here is a game called Hi-Q. Thirty-two pieces are arranged on a board
as shown in Figure 7.17. Only the center position is unoccupied. A
piece is only allowed to move by jumping over one of its neighbors
into an empty space. Diagonal jumps are not permitted. When a
piece is jumped, it is removed from the board. Write an algorithm
that determines a series of jumps so that all the pieces except one are
eventually removed and that final piece ends up at the center position.

7. Imagine a set of 12 plane figures each composed of five equal-size
squares. Each figure differs in shape from the others, but together
they can be arranged to make different-sized rectangles. In Figure 7.18
there is a picture of 12 pentominoes that are joined to create a 6 x 10
rectangle. Write an algorithm that finds all possible ways to place the
pentominoes so that a 6 x 10 rectangle is formed.

(D N
1 =
-/ g

100
100
1000000
100°000
toolooo

Figure 7.17 A Hi-Q board in its initial state

8. Suppose a set of electric components such as transistors are to be
placed on a circuit board. We are given a connection matrix CONN,
where CONN(4, j) equals the number of connections between compo-
nent ¢ and component j, and a matrix DIST, where DIST (r,s) is

7.8. ADDITIONAL EXERCISES 377

1
- 2 3 4 5
|6

7 8
9 11

10 12

Figure 7.18 A pentomino configuration

10.

the distance between position r and position s on the circuit board.
The wiring of the board consists of placing each of n components at
some location. The cost of a wiring is the sum of the products of
CONN({i,j) * DIST(r,s), where component i is placed at location r
and component j is placed at location s. Compose an algorithm that
finds an assignment of components to locations that minimizes the
total cost of the wiring.

. Suppose there are n jobs to be executed but only k processors that can

work in parallel. The time required by job ¢ is #;. Write an algorithm
that determines which jobs are to be run on which processors and the
order in which they should be run so that the finish time of the last
job is minimized.

Two graphs G(V,F) and H(A, B) are called isomorphic if there is a
one-to-one onto correspondence of the vertices that preserves the adja-
cency relationships. More formally if f is a function from V to A and
(v,w) is an edge in E, then (f(v), f(w)) is an edge in H. Figure 7.19
shows two directed graphs that are isomorphic under the mapping that
1,2,3,4, and 5 and go to a,b,c,d, and e. A brute force algorithm to
test two graphs for isomorphism would try out all n! possible corre-
spondences and then test to see whether adjacency was preserved. A
backtracking algorithm can do better than this by applying some obvi-
ous pruning to the resultant state space tree. First of all we know that
for a correspondence to exist between two vertices, they must have the
same degree. So we can select at an early stage vertices of degree k for
which the second graph has the fewest number of vertices of degree k.
This exercise calls for devising an isomorphism algorithm that is based
on backtracking and makes use of these ideas.

378

CHAPTER 7. BACKTRACKING

@
N

© ©)

Figure 7.19 Two isomorphic graphs (Exercise 10)

11. A graph is called complete if all its vertices are connected to all the

other vertices in the graph. A maximal complete subgraph of a graph is
called a clique. By “maximal” we mean that this subgraph is contained
within no other subgraph that is also complete. A clique of size k has
(’f) subcliques of size i, 1 <7 < k. This implies that any algorithm that
looks for a maximal clique must be careful to generate each subclique
the fewest number of times possible. One way to generate the clique is
to extend a clique of size m to size m + 1 and to continue this process
by trying out all possible vertices. But this strategy generates the same
clique many times; this can be avoided as follows. Given a clique X,
suppose node v is the first node that is added to produce a clique of
size one greater. After the backtracking process examines all possible
cliques that are produced from X and v, then no vertex adjacent to v
need be added to X and examined. Let X and Y be cliques and let
X be properly contained in Y. If all cliques containing X and vertex
v have been generated, then all cliques with ¥ and v can be ignored.
Write a backtracking algorithm that generates the maximal cliques of
an undirected graph and makes use of these last rules for pruning the
state space tree.

Chapter 8

BRANCH-AND-BOUND

8.1 THE METHOD

This chapter makes extensive use of terminology defined in Section 7.1. The
reader is urged to review this section before proceeding.

The term branch-and-bound refers to all state space search methods in
which all children of the E-node are generated before any other live node
can become the E-node. We have already seen (in Section 7.1) two graph
search strategies, BFS and D-search, in which the exploration of a new
node cannot begin until the node currently being explored is fully explored.
Both of these generalize to branch-and-bound strategies. In branch-and-
bound terminology, a BFS-like state space search will be called FIFO (First
In First Out) search as the list of live nodes is a first-in-first-out list (or
queue). A D-search-like state space search will be called LIFO (Last In
First Out) search as the list of live nodes is a last-in-first-out list (or stack).
As in the case of backtracking, bounding functions are used to help avoid
the generation of subtrees that do not contain an answer node.

Example 8.1 [4-queens] Let us see how a FIFO branch-and-bound algo-
rithm would search the state space tree (Figure 7.2) for the 4-queens prob-
lem. Initially, there is only one live node, node 1. This represents the case
in which no queen has been placed on the chessboard. This node becomes
the E-node. It is expanded and its children, nodes 2, 18, 34, and 50, are
generated. These nodes represent a chessboard with queen 1 in row 1 and
columns 1, 2, 3, and 4 respectively. The only live nodes now are nodes 2, 18,
34, and 50. If the nodes are generated in this order, then the next E-node
is node 2. It is expanded and nodes 3, 8, and 13 are generated. Node 3
is immediately killed using the bounding function of Example 7.5. Nodes
8 and 13 are added to the queue of live nodes. Node 18 becomes the next
E-node. Nodes 19, 24, and 29 are generated. Nodes 19 and 24 are killed as
a result of the bounding functions. Node 29 is added to the queue of live

379

380 CHAPTER 8. BRANCH-AND-BOUND

nodes. The F-node is node 34. Figure 8.1 shows the portion of the tree of
Figure 7.2 that is generated by a FIFO branch-and-bound search. Nodes
that are killed as a result of the bounding functions have a “B” under them.
Numbers inside the nodes correspond to the numbers in Figure 7.2. Num-
bers outside the nodes give the order in which the nodes are generated by
FIFO branch-and-bound. At the time the answer node, node 31, is reached,
the only live nodes remaining are nodes 38 and 54. A comparison of Figures
7.6 and 8.1 indicates that backtracking is a superior search method for this
problem. O

2 (2 3 4 5 (50
6 7 8 9 10 11 12 13 14 15 16 17
3 ® "1 "1y e ey 6 C@) @) Ceh UG e
B B B B B B
18 19 20 21 22 23 24 25 26 27 28 29
1) 734 (30 (32 T3 T3 T2 T6H TN T Y
B B B B B B B

30
ey

answer node

Figure 8.1 Portion of 4-queens state space tree generated by FIFO branch-
and-bound

8.1.1 Least Cost (LC) Search

In both LIFO and FIFO branch-and-bound the selection rule for the next
E-node is rather rigid and in a sense blind. The selection rule for the next
E-node does not give any preference to a node that has a very good chance
of getting the search to an answer node quickly. Thus, in Example 8.1, when
node 30 is generated, it should have become obvious to the search algorithm
that this node will lead to an answer node in one move. However, the rigid
FIFO rule first requires the expansion of all live nodes generated before node
30 was expanded.

8.1. THE METHOD 381

The search for an answer node can often be speeded by using an “in-
telligent” ranking function é(-) for live nodes. The next E-node is selected
on the basis of this ranking function. If in the 4-queens example we use a
ranking function that assigns node 30 a better rank than all other live nodes,
then node 30 will become the E-node following node 29. The remaining live
nodes will never become E-nodes as the expansion of node 30 results in the
generation of an answer node (node 31).

The ideal way to assign ranks would be on the basis of the additional
computational effort (or cost) needed to reach an answer node from the live
node. For any node z, this cost could be (1) the number of nodes in the
subtree x that need to be generated before an answer node is generated
or, more simply, (2) the number of levels the nearest answer node (in the
subtree z) is from z. Using cost measure 2, the cost of the root of the tree
of Figure 8.1 is 4 (node 31 is four levels from node 1). The costs of nodes 18
and 34, 29 and 35, and 30 and 38 are respectively 3, 2, and 1. The costs of
all remaining nodes on levels 2, 3, and 4 are respectively greater than 3, 2,
and 1. Using these costs as a basis to select the next E-node, the E-nodes
are nodes 1, 18, 29, and 30 (in that order). The only other nodes to get
generated are nodes 2, 34, 50, 19, 24, 32, and 31. Tt should be easy to see
that if cost measure 1 is used, then the search would always generate the
minimum number of nodes every branch-and-bound type algorithm must
generate. If cost measure 2 is used, then the only nodes to become E-nodes
are the nodes on the path from the root to the nearest answer node. The
difficulty with using either of these ideal cost functions is that computing
the cost of a node usually involves a search of the subtree x for an answer
node. Hence, by the time the cost of a node is determined, that subtree
has been searched and there is no need to explore z again. For this reason,
search algorithms usually rank nodes only on the basis of an estimate g(-)
of their cost.

Let g(x) be an estimate of the additional effort needed to reach an answer
node from z. Node z is assigned a rank using a function ¢é(-) such that
é(z) = f(h(z)) + 9(z), where h(z) is the cost of reaching z from the root
and f(-) is any nondecreasing function. At first, we may doubt the usefulness
of using an f(-) other than f(h(z)) = 0 for all h(z). We can justify such
an f(-) on the grounds that the effort already expended in reaching the live
nodes cannot be reduced and all we are concerned with now is minimizing
the additional effort we spend to find an answer node. Hence, the effort
already expended need not be considered.

Using f(-) = 0 usually biases the search algorithm to make deep probes
into the search tree. To see this, note that we would normally expect g(y) <
g(z) for y, a child of z. Hence, following z, y will become the E-node, then
one of y’s children will become the F-node, next one of 4’s grandchildren will
become the F-node, and so on. Nodes in subtrees other than the subtree z
will not get generated until the subtree z is fully searched. This would not

382 CHAPTER 8. BRANCH-AND-BOUND

be a cause for concern if g(z) were the true cost of z. Then, we would not
wish to explore the remaining subtrees in any case (as x is guaranteed to get
us to an answer node quicker than any other existing live node). However,
g(z) is only an estimate of the true cost. So, it is quite possible that for two
nodes w and z, §(w) < g(z) and z is much closer to an answer node than
w. It is therefore desirable not to overbias the search algorithm in favor of
deep probes. By using f(-) # 0, we can force the search algorithm to favor
a node z close to the root over a node w which is many levels below z. This
would reduce the possibility of deep and fruitless searches into the tree.

A search strategy that uses a cost function é(z) = f(h(z))+g(z) to select
the next F-node would always choose for its next F-node a live node with
least ¢(+). Hence, such a search strategy is called an LC-search (Least Cost
search). It is interesting to note that BFS and D-search are special cases
of LC-search. If we use g(z) = 0 and f(h(z)) = level of node z, then a
LC-search generates nodes by levels. This is essentially the same as a BFS.
If f(h(z)) =0 and g(z) > g(y) whenever y is a child of z, then the search
is essentially a D-search. An LC-search coupled with bounding functions is
called an L.C branch-and-bound search.

In discussing LC-searches, we sometimes make reference to a cost function
¢(-) defined as follows: if z is an answer node, then c¢(z) is the cost (level,
computational difficulty, etc.) of reaching = from the root of the state space
tree. If z is not an answer node, then ¢(z) = oo providing the subtree
z contains no answer node; otherwise c¢(z) equals the cost of a minimum-
cost answer node in the subtree z. It should be easy to see that é(-) with
f(h(z)) = h{z) is an approximation to ¢(-). From now on ¢(z) is referred to
as the cost of z.

8.1.2 The 15-puzzle: An Example

The 15-puzzle (invented by Sam Loyd in 1878) consists of 15 numbered tiles
on a square frame with a capacity of 16 tiles (Figure 8.2). We are given
an initial arrangement of the tiles, and the objective is to transform this
arrangement into the goal arrangement of Figure 8.2(b) through a series
of legal moves. The only legal moves are ones in which a tile adjacent to
the empty spot (ES) is moved to ES. Thus from the initial arrangement
of Figure 8.2(a), four moves are possible. We can move any one of the
tiles numbered 2, 3, 5, or 6 to the empty spot. Following this move, other
moves can be made. Each move creates a new arrangement of the tiles.
These arrangements are called the states of the puzzle. The initial and goal
arrangements are called the initial and goal states. A state is reachable from
the initial state iff there is a sequence of legal moves from the initial state
to this state. The state space of an initial state consists of all states that
can be reached from the initial state. The most straightforward way to solve
the puzzle would be to search the state space for the goal state and use the

8.1. THE METHOD 383

path from the initial state to the goal state as the answer. It is easy to see
that there are 16! (16! ~ 20.9 x 10'?) different arrangements of the tiles on
the frame. Of these only one-half are reachable from any given initial state.
Indeed, the state space for the problem is very large. Before attempting to
search this state space for the goal state, it would be worthwhile to determine
whether the goal state is reachable from the initial state. There is a very
simple way to do this. Let us number the frame positions 1 to 16. Position i
is the frame position containing tile numbered ¢ in the goal arrangement of
Figure 8.2(b). Position 16 is the empty spot. Let position(i) be the position
number in the initial state of the tile numbered i. Then position(16) will
denote the position of the empty spot.

134,15 11234
2 5 12 516/|7
F7 6111114 9110|111} 12!
o |] j ! ;
189 10]13 [13]14]15
(a) An arrangement (b) Goal arrangement (c)

Figure 8.2 15-puzzle arrangements

For any state let less(i) be the number of tiles 7 such that § < ¢ and
position(j) > position(i). For the state of Figure 8.2(a) we have, for exam-
ple, less(1) = 0, less(4) = 1, and less(12) = 6. Let z =1 if in the initial
state the empty spot is at one of the shaded positions of Figure 8.2(c) and
z = 0 if it is at one of the remaining positions. Then, we have the following
theorem:

Theorem 8.1 The goal state of Figure 8.2(b) is reachable from the initial
state iff 3°1%, less(i) + z is even.

Proof: Left as an exercise. O

Theorem 8.1 can be used to determine whether the goal state is in the
state space of the initial state. If it is, then we can proceed to determine a
sequence of moves leading to the goal state. To carry out this search, the
state space can be organized into a tree. The children of each node z in
this tree represent the states reachable from state z by one legal move. It
is convenient to think of a move as involving a move of the empty space
rather than a move of a tile. The empty space, on each move, moves either
up, right, down, or left. Figure 8.3 shows the first three levels of the state

384 CHAPTER 8. BRANCH-AND-BOUND

space tree of the 15-puzzle beginning with the initial state shown in the root.
Parts of levels 4 and 5 of the tree are also shown. The tree has been pruned
a little. No node p has a child state that is the same as p’s parent. The
subtree eliminated in this way is already present in the tree and has root
parent(p). As can be seen, there is an answer node at level 4.

1

12 34
REL 8
9 [10]7 |11
13[14]15)12

o w— lef
right down T 5
4 —

1|23 |4
5|6
97 in
13[14]15]12

Edges are labeled according to the direction
in which the empty space moves

Figure 8.3 Part of the state space tree for the 15-puzzle

A depth first state space tree generation will result in the subtree of
Figure 8.4 when the next moves are attempted in the order: move the empty
space up, right, down, and left. Successive board configurations reveal that
each move gets us farther from the goal rather than closer. The search of
the state space tree is blind. It will take the leftmost path from the root
regardless of the starting configuration. As a result, an answer node may
never be found (unless the leftmost path ends in such a node). In a FIFO
search of the tree of Figure 8.3, the nodes will be generated in the order
numbered. A breadth first search will always find a goal node nearest to the
root. However, such a search is also blind in the sense that no matter what
the initial configuration, the algorithm attempts to make the same sequence
of moves. A FIFO search always generates the state space tree by levels.

8.1. THE METHOD 385

K 4 5 6

V2 Tal] 12] s 1]2 Ja s 1 [2 048
|5]6 |3 8} down(s [6 |3 down(s [e |3 [n] down[5 |6 [5 [
9 (107 [n] 9 [10]7 |0 To [oo]7] | 9 [1o]7 112

1] 1a[15] 12] 1] 1] 15[12 3] alis] 2 13)14] 15
left

12 11 I 10 9 8 - 7.

HENEY 1]2]s8] R ERE 1 [2]4]s [(]2]a]s []2]a]s
s 6|4 down(s [e [+ [u] right[s e [au] up [s[s] |u| up [sles[u] up [s]e3|n
5 [10]3 5 [10]3 | 12! o 103 |12 9 |03 |12 IR o 07|12
13 14]7 [1s (a]ia]7] FERE Uk 13 1al7 s 3l s

Figure 8.4 First ten steps in a depth first search

What we would like, is a more “intelligent” search method, one that seeks
out an answer node and adapts the path it takes through the state space
tree to the specific problem instance being solved. We can associate a cost
¢(z) with each node z in the state space tree. The cost ¢(z) is the length of
a path from the root to a nearest goal node (if any) in the subtree with root
z. Thus, in Figure 8.3, ¢(1) = ¢(4) = ¢(10) = ¢(23) = 3. When such a cost
function is available, a very efficient search can be carried out. We begin with
the root as the E-node and generate a child node with ¢()-value the same
as the root. Thus children nodes 2, 3, and 5 are eliminated and only node
4 becomes a live node. This becomes the next F-node. Its first child, node
10, has ¢(10) = ¢(4) = 3. The remaining children are not generated. Node
4 dies and node 10 becomes the E-node. In generating node 10’s children,
node 22 is killed immediately as ¢(22) > 3. Node 23 is generated next. It
is a goal node and the search terminates. In this search strategy, the only
nodes to become E-nodes are nodes on the path from the root to a nearest
goal node. Unfortunately, this is an impractical strategy as it is not possible
to easily compute the function ¢(-) specified above.

We can arrive at an easy to compute estimate é(z) of ¢(z). We can write
éz) = f(z)+ g(z), where f(z) is the length of the path from the root to
node z and g(z) is an estimate of the length of a shortest path from z to a
goal node in the subtree with root z. One possible choice for g(z) is

g(z) = number of nonblank tiles not in their goal position

Clearly, at least g(z) moves have to be made to transform state z to a
goal state. More than §(z) moves may be needed to achieve this. To see
this, examine the problem state of Figure 8.5. There g(z) = 1 as only tile 7
is not in its final spot (the count for g(z) excludes the blank tile). However,
the number of moves needed to reach the goal state is many more than §(x).
So é(x) is a lower bound on the value of ¢(x).

386 CHAPTER 8. BRANCH-AND-BOUND

An LC-search of Figure 8.3 using é(z) will begin by using node 1 as the
E-node. All its children are generated. Node 1 dies and leaves behind the
live nodes 2, 3, 4, and 5. The next node to become the E-node is a live node
with least é(z). Then é(2) = 1+4, é(3) = 144, é(4) = 1+2, and é(5) = 1+4.
Node 4 becomes the E-node. Its children are generated. The live nodes at
this time are 2, 3, 5, 10, 11, and 12. So ¢(10) = 2+ 1, é(11) = 2+ 3, and
¢(12) = 2 4+ 3. The live node with least ¢ is node 10. This becomes the next
FE-node. Nodes 22 and 23 are generated next. Node 23 is determined to be
a goal node and the search terminates. In this case LC-search was almost
as efficient as using the exact function ¢(). It should be noted that with a
suitable choice for ¢é(), an LC-search will be far more selective than any of
the other search methods we have discussed.

12134

506

9 10/11]12
——f——

1314 15| 7

Figure 8.5 Problem state

8.1.3 Control Abstractions for LC-Search

Let ¢ be a state space tree and ¢() a cost function for the nodes int. If z is a
node in ¢, then ¢(z) is the minimum cost of any answer node in the subtree
with root . Thus, ¢(t) is the cost of a minimum-cost answer node in ¢.
As remarked earlier, it is usually not possible to find an easily computable
function ¢() as defined above. Instead, a heuristic ¢ that estimates ¢() is used.
This heuristic should be easy to compute and generally has the property
that if z is either an answer node or a leaf node, then ¢(z) = é(x). LCSearch
(Algorithm 8.1) uses ¢ to find an answer node. The algorithm uses two
functions Least() and Add(x) to delete and add a live node from or to the
list of live nodes, respectively. Least() finds a live node with least &(). This
node is deleted from the list of live nodes and returned. Add(x) adds the
new live node z to the list of live nodes. The list of live nodes will usually
be implemented as a min-heap (Section 2.4). Algorithm LCSearch outputs
the path from the answer node it finds to the root node ¢. This is easy to
do if with each node x that becomes live, we associate a field parent which
gives the parent of node z. When an answer node g is found, the path from

8.1. THE METHOD 387

g to t can be determined by following a sequence of parent values starting
from the current E-node (which is the parent of g) and ending at node ¢.

listnode = record {

}

Nalie SN e B CNRIUN

listnode *next, x parent; float cost;

Algorithm LCSearch(t)
// Search t for an answer node.

if *f is an answer node then output *¢ and return;
E :=t; // E-node.

Initialize the list of live nodes to be empty;

repeat

for each child z of F do
{

if z is an answer node then output the path
from z to t and return;

Add(xz); // z is a new live node.

(z — parent) := E; // Pointer for path to root.

if there are no more live nodes then

{

write ("No answer node"); return;

}
E := Least();
} until (false);

Algorithm 8.1 LC-search

The correctness of algorithm LCSearch is easy to establish. Variable E
always points to the current E-node. By the definition of LC-search, the
root node is the first E-node (line 5). Line 6 initializes the list of live nodes.
At any time during the execution of LCSearch, this list contains all live nodes
except the E-node. Thus, initially this list should be empty (line 6). The
for loop of line 9 examines all the children of the E-node. If one of the
children is an answer node, then the algorithm outputs the path from z to ¢
and terminates. If a child of £ is not an answer node, then it becomes a live
node. It is added to the list of live nodes (line 13) and its parent field set to

388 CHAPTER 8. BRANCH-AND-BOUND

E (line 14). When all the children of E have been generated, E becomes a
dead node and line 16 is reached. This happens only if none of E’s children
is an answer node. So, the search must continue further. If there are no live
nodes left, then the entire state space tree has been searched and no answer
nodes found. The algorithm terminates in line 18. Otherwise, Least(), by
definition, correctly chooses the next E-node and the search continues from
here.

From the preceding discussion, it is clear that LCSearch terminates only
when either an answer node is found or the entire state space tree has been
generated and searched. Thus, termination is guaranteed only for finite state
space trees. Termination can also be guaranteed for infinite state space trees
that have at least one answer node provided a “proper” choice for the cost
function ¢é() is made. This is the case, for example, when é(z) > é(y) for
every pair of nodes z and y such that the level number of z is “sufficiently”
higher than that of y. For infinite state space trees with no answer nodes,
LCSearch will not terminate. Thus, it is advisable to restrict the search to
find answer nodes with a cost no more than a given bound C.

One should note the similarity between algorithm LCSearch and algo-
rithms for a breadth first search and D-search of a state space tree. If the
list of live nodes is implemented as a queue with Least() and Add(z) being
algorithms to delete an element from and add an element to the queue, then
LCSearch will be transformed to a FIFO search schema. If the list of live
nodes is implemented as a stack with Least() and Add(z) being algorithms
to delete and add elements to the stack, then LCSearch will carry out a LIFO
search of the state space tree. Thus, the algorithms for LC, FIFO, and LIFO
search are essentially the same. The only difference is in the implementation
of the list of live nodes. This is to be expected as the three search methods
differ only in the selection rule used to obtain the next E-node.

8.1.4 Bounding

A branch-and-bound method searches a state space tree using any search
mechanism in which all the children of the E-node are generated before
another node becomes the F-node. We assume that each answer node z has
a cost ¢(x) associated with it and that a minimum-cost answer node is to be
found. Three common search strategies are FIFO, LIFO, and LC. (Another
method, heuristic search, is discussed in the exercises.) A cost function é(-)
such that é(x) < ¢(z) is used to provide lower bounds on solutions obtainable
from any node z. If upper is an upper bound on the cost of a minimum-cost
solution, then all live nodes = with é(x) > upper may be killed as all answer
nodes reachable from z have cost ¢(z) > ¢é(z) > upper. The starting value
for upper can be obtained by some heuristic or can be set to oc. Clearly, so
long as the initial value for upper is no less than the cost of a minimum-cost
answer node, the above rules to kill live nodes will not result in the killing of

