Requirement Analysis Modeling

3.1 ANALYSIS MODELING APPROACHES

As discussed in Chapter 2, the analysis stage acts as the bridge
between design and requirement and it happens after the require-
ment phase. The analyst critically explores the requirements and
ensures that the system’s'operational characteristics are under-
stood clearly, interfacing requirements with other systems are
brought out and the constraints that the proposed system should
meet are established in detail. Figure 3.1 helps to understand the
requirements in a better way.

During the Requirement Analysis stage, the analyst aims to
fulfill the following objectives (Figure 3.2).

1. Clearly illustrate the user scenarios
2. Explain the functional activities in detail

Requirement Engineering J

/\

Requirement Development I Requirement Management |

+ Feasibility
« Elicitation
(ZAnalyze D
+ Specification
+ Validation

Figure 3.1 Requirement Analysis

AT W —ai e

P

M ———

Requirement Analysis Modeling * 87

Table 3.1 Structured Analysis - ER Diagram

Type

Corresponding Diagram

Data Modeling

Functional Data Flow Diagram
Mecelins Control Flow Diagram

Behavioral Modeling State Transition Diagram

System

Object 1

f?
s>

Figure 3.7 System versus Data Objects

. POINTS TO PONDER

A System consists of multiple objects. The data flow occurs between
with the objects insider other system.

objects which are inside the same or

For example, in a health insurance system the entities will be

1. The insurer
9. The insurance service provider

3. The policy
4. The claims, etc.

Each of these entities possesses a set of attributes and also holds relationship with other entities.

An insurer has attributes such as ID number, name, address, age, whereas a policy comprises attri-
butes such as policy number, policy tenure, nominee, policy value, etc. (Figure 3.8).

The properties that describe the entity and are common across all the instances of the entity are
called the attributes.
““Entitios are related to each other. For example, an insurer can hold one or multiple policies
whereas an insurance provider may have several insurers attached to it. This leads to the concept of

B8 - Software Engineering

’_ A== i
insurer | Policy
Number (D) Policy ID
Name Tenure |
Age Type |
Address Nomines

Figure 3.8 Insurer and Policy Objects

-

Data Object: Insurer Attributes
iD
! Name
! } Address
: Age

=N |
]
!

o

L

Relationship: Holds One Or More Policies

Attributes
: Policy Number
Policy Tenure
Nominee
Policy Value

Data Objects: Policy

Figure 3.9 Data Object, Attributes, Relationship

relationship where the entities can be linked to each other in a system. Figure 3.9 shows the entity,
stiributes and relationships in a health insurance system.

Data objects hold only the data components and there should be no intent to hold the processes
that deal with the data inside data objects. If the process, which a claim approval of a policy under-
goes, needs to be captured then the data flow diagram needs to be initiated and it should not be
captured inside the ERD. Here, the structure of the database or the system that holds the data for the
system logically comes out from this analysis.

3.2.1.2 Cardinality and Modality

Along with the relationship information of different objects, it is also important to capture how many
types of each object can be attached with other.objects, which is called cardinality and whether it is
mandatory to attach an object with the another object type which is called modality.

In the example of the health insurance system, an insurer can have one or many insurance policies
which will give rise to one-to-many relationship, whereas a policy can be attached to one insurer only
giving rise to one-to-one relationship. Thus, the cardinality provides the information on the maxi-

mum number of relationships an object can hold with another object and can be classified as:

B L)

o ———

Y PR S I A T S) N ' Sa—" _—

Requirement Analysis Modeling * 91

3.2.1.4 Data Dictionary

Data dictionary is the place where the description and information about all data objects produced
and consumed by the software system is maintained. Some of the attributes that normally gets stored

inside a data dictionary are such as

Name Each data, data store and external entity is identified with this primary
naine.
Alias Each data object can have alternate names.

‘ Where-used/how-used | Processes that use the data/control item and how it is used are repre-
sented. The use may be
* as a store
» input to process ‘
» output from process |
» as an external entity

Content description This notation is used for representing content.
Supplementary Other information such as the preset values, restrictions, limitations, etc.
information | is captured.

Few common notations used for describing data objects in a data dictionary are

i

i = is composed of

! + and

: (0 optional

E {3 iteration

;_] either - or

1 S 0 comment

F {In n repetitions of

{ (...) delimits a comment |

An example of data dictionary maintained for the customer of a banking System is as follows:

Customer Name = Title + First Name +.(_Middle Name) + Last Name

‘ Title = [Mr.| Ms.| Mrs.]
Address = {Address Text}? * . Home and Office Address..*

Along with the basic information that normally becomes part of the data dictionary, other infor-

‘mation may optionally be stored inside it,

" “Below is a list of properties that can be stored inside a data dictionary item if these help in

clarifying the data structure in the system.

+ Name
« Aljases or synonyms
* Default label

T G TV

—— P— — : : i

Requirement Analysls Modeling * 99

4. 1f there are two processes in the system which are not tupning stinultaneousty, then 1t s not
valid to show a data flow between them, This is becauxe the processes have no memory and
cannot store any intermediate rexults

5, There are 3 types of valid data flows
(a) Between a process and an entity
(b) Between a process and a data store
(¢) Between two processes that run simultaneously

6. 1f there is a process which has only input data fow then it 18 an invalid process and i called o
Black Hole
7. Similarly a process which has onfy output fow 1 ot valid and ts called a Niracle

8 Validate whether there is sufficient input data flow to produce the intended output data flow
A process with insufficient data input for the predicted ontput is called a Grey Hole

3.2.2.2 Control Flow Model

Data flow diagram which is used to show the data flow in a svstem is alteady disenssed [ere are
systems where the flow is controlled by events rather than by data. A control Aow diagram (Table 3.4)
is used to represent such systems,

These diagrams are generally time dependent. The flow of controls activates some processes. Here
the model contains same processes as the DFD, but instead of showing the data flow here, the control
flow 1s shown.

The concept of Control Specification (CSPEC) s introduced which 18 hike a window that controls
the processes represented in the DED pased on the event that is passed through the window Below 1s
an example where the control flow and the CSPEC are shown (Figure 327

The inflow of water is stopped once the water level in the tank reaches the safety mark, Note that the
control flow is represented with dotted lines, And the CSPEC 15 represented with a solid bar (Figwre 1.28)

A control model and a process model are connected thy ough data condition. Data condition oceurs
when data input to a process causes control output, The simple guideline for creating a CED s dis
cussed belaw.

1. Draw the data flow diagram and then get rid of all the data flow arross
2 Add control items and windows into CSPEC wherever apphicable.
3. Create the CED from the Level 0 and elaborate into more granular ehild CTDs,

Table 3.3 Structured Analysis, Control Flow Diagram

Type Corresponding Diura
Data Modeling e
Functional Data Flow Diagram —
Modeling

Behavioral Modeling | State Transition Diagram

100 * Software Engineering

Above safety level

Check Water Level

—
CohtoliaT B 8 e s e >

=3
Window into CSPEC \

Figure 3.28 Control Flow Notations

1. Discuss the control flow of a road traffic signal system.

3.2.3 Behavioral Modeling

Behavioral modeling (Figure 3.29) is the third type of structured analysis approach.

The type of analysis models which try to capture the change in behavior of the system as an effect
of some event or trigger are grouped as the behavioral models. State transition diagram (STD) 1s one
example of behavioral modeling.

3.2.3.1 State Transition Diagram (STD)

STDs (Table 3.4) represent the system states and events that trigger state transitions or state

change.

The actions (e.g., activation of some process) as a result of triggers in the system are captured mn
this model. A state can be an observable mogde of behavior. STDs are created for objects which have
significant dynamic behavior. For example, the customer entry form of the banking system may add
a new customer where the customer’s status is “open”. If the customer fails to maintain the mimmum

-

102 - Software Engineering !

List down various state transition statusina college student life from momning till evenirg.

L

A

3.

4,

3.3 OBJECT-ORIENTED ANALYSIS A

In an object-oriented analysis the system is depicted as a group of interacting objects. The attributes
of the objects are represented by its class, the state and the behavior. With modern tools and tech-
niques which support creation of object-oriented analysis, these analysis techniques have become

very popular. The details of the Object-oriented analysis and design models are discussed in detail in
the subsequent chapters.

Data modeling

Functional or flow-oriented modeling and

. Behavioral modeling

Corresponding Diagram 1 |
Data Modeling £R Diagram 1
Functional Data Flow Diagram [-l\
. > |
Modeling Control Flow Diagram \ \
Behavioral Modeling | State Transition Diagram _! “l

Entity relation diagram is 3 form of data modeling technique. It diagrammatically shows the relationship
between different objects inside a system.

. Data flow diagram is 3 highly effective model which is used for showing the flow of information through a
system. DFDs can be used in the early stages of systems analysis to help understand the current system and to
represent a required system. The DFDs represent external entities sending and receiving information (called
entities), the processes that change information {called processes), the information flows (cailed data flows),
and the place where the information is stored (called data stores). Level 0 or the context diagram is the top
fevel diagram which can be decomposed into lower level diagrams (Level 1, Level 2. .Level N) to represent
different areas of the system.

‘ Smtunexmplenft!nb&a?hﬁimoddinue:hniqm.hd\omthe system states and events that trigger
mmﬂmw

:
E
.

i
|
|

e

g

Answer: A

Answer: A

Answer: C

4

Answer: D

Answer: B

Answer: A

Requirement Analysis Modeling * 103

Providing a graphical representation of the system behavior which is depicted as a combination of
functional flow and data flow to create the input for the design phase is called

A. Analysis modeling B. Data modeling
(. Functional modeling D. Behavioral modeling

The two most popular approaches to software analysis, which have developed and got fine-tuned
over the years, are structured analysis and object-oriented analysis.

A. True B. False

What are the notations to capture the control and behavioral aspects of the real time engineering
problems along with the information systems applications?

A. Analysis modeling B. Data modeling

C. Functional-oriented analysis D. Behavioral modeling

All of the following are examples of structured analysis except?
A. Data modeling B. Functional or flow-oriented modeling

C. Behavioral modehing D. Design analysis

Which is an analysis technique that deals with the data processing part of an application?
A. Analysis modeling B. Data modeling

C. Functional modeling D. Behavioral modeling

This is the identity which has multiple attributes and 1s related to other entities in the system.
A. Flow object B. Attributes object
C. Data object D. Information object

Along with the relationship information of different objects, it is also important to capture how
many types of each object can be attached with other objects. This is called

A. Modality B. Cardinality
C. Modularity D. Attach ability

Along with the relationship information of different objects, it is also important to know whether it
is mandatory to attach an object with another object. This is called

A. Modality B. Cardinality
C. Modularity D. Attachability

Ps—p———

Design and Architectural Engineering

41 DESIGN PROCESS AND CONCEPTS

During the design process, the software requirements model
(discussed in the previous chapters), which was prepared for the
requirements is converted into suitable and appropriate design
models (Figure 4.1) that describe the architecture and other
design components.

Each design product is verified and validated before moving 10
the next phase of software development.

In the requirements analysis stage, the decision about imple-
mentation is consciously avoided. In the design stage, the
decision about implementation is consciously made and a step-
by-step procedure is followed. - - Ny -

The design process encompasses a sequence of activities that
slowly reduces the level of abstraction with which the softwarc is
represented.

Design activities are subdivided into high-level design activi-
ties and low-level (or detailed) design activities. Architecture
is the outcome of high-level design activities, whereas the data
structure and the corresponding algorithms are the outcomes of
low-level design activities.

Software Requirements Model

Transformation

h

Software Design Model

Figure 4.1 Software Design Model

S S ———

g i

:
:

Design and Architectural Engineering * 109

Function Oriented System Object Oriented System

Data |« * Attributes ""':6{“_,{(_:;{ M 3
+ Functions (Data Elements)

Methods /

—_—

+Object?
Data Elements |
\ Methods A
— - o

B

''''' -
Figure 4.2 Function-Oriented System vs Object-Oriented System
‘g-
function-oriented system. Functions are used to access, process, modify the data and store it back
into the data storage system. The system state is maintained in the data. Functions are easily mapped

to modules (subsystems).

Object-oriented design is the design concept of an object-oriented system, which is completely
made up of objects. Objects have data and functions inside them. In this system also, functions
(inside objects) are used to access the data (inside objects). We will be discussing the object-orienter
concepts in detail in Chapter 5.

R &

4.6 MODULARITY, COHESION, COUPLING, LAYERING

The possibility of dividing a single project into smaller units called modules is termed modularity
(Figure 4.3) of the project. Modularity helps in designing the system in a better way and ensures that
each module communicates and does the specific task assigned to it. It also helps in reusability and
maintainability. '

The two main characteristics that need to be considered while designing the modulanity of projects
are cohesion and coupling.

Cohesion refers to “how strongly” one module is related to the other, which helps to group simi-
lar items together. Cohesion measures the semantic strength (high and low cohesion) of relation-
ships between modules within a functional unit. Internal cohesion of a module is the strength of the
elements within the modules, whereas external cohesion of a module is the strength of relationships
between modules (Figure 4.4).

Project

h

Module 1 Module 2 Module N

Figure 4.3 Modularity

3

Design and Architectural Engineering = 111

Coincidental cohesion: As the name indicates, in this type the cohesion (grouping) occurs coin-
cidently. Elements or modules are grouped together for different purposes and there is no common
reason for grouping. The only common thing is that they are grouped together.

Logical cohesion: In this type, as the name indicates, cohesion (grouping) occurs logically b?.SCd
on similarity and not based on functionality. Elements or modules are grouped together based on

common logic. Logical grouping may be based on the functionality, nature, and behavior of the
elements/modules.

Temporal cohesion: In this type, cohesion (grouping) occurs during run time at a particular time
of program execution. Modules that are being called during the exception handling procedure can

be grouped together. Modules that are being executed at time T, T + X, or T + 2X can be grouped
together.

Procedural cohesion: In this type, cohesion (grouping) is used to execute a certain procedure.
Modules that are used for a procedure can be grouped together. Note that the same module can be
grouped together with another module for executing another procedure.

Communicational cohesion: In this type, cohesion (grouping) occurs because part of the module
shares same data (acts on same data) for communication purposes. For example, functions A, B, and
C access common data (same database). Modules A, B, and C access a common database.

Sequential cohesion: In this type, cohesion (grouping) occurs as the output of one module is an
input of another module. This will look like an assembly line sequence.

Functional cohesion: In this type, cohesion (grouping) occurs as all the functions contribute to a
single task of the module, In order to execute a single task, all modules contribute. Within a function,
each part is executed in order.

Coupling is a measure of “how tightly” two entities or modules are related to each other. Coupling
measures the strength of the relationships between entities or modules. It is very easy to measure cou-
pling both quantitatively and qualitatively.

Figure 4.6 shows the difference between loosely coupled and highly coupled modules.

¥

POINTS TO PONDER

Coupling is a measure of “how tightly” two entities or modules are related to each other. Coupling mea-
sures the strength of the relationships between entities or modules. Coupling is very easy to measure
quantitatively and qualitatively.

]

L

No dependencies Loosely coupled-some dependencies

-~

vy

A A A

Z

Highly coupled-many dependencies

Figure 4.6 Coupling

114 « Software Engineering

POINTS TO PONDER

Real time refers to designing the software systems whose behavior is subject to timing constraints and is em-
bedded in a large hardware system. This kind of software monitors and controls the system and its environ-
ment by gathering different sets of data using sensors. Actuators acts in the opposite way and they change
the environment of the system.

4.8 DESIGN MODELS

The software engineer creates a design model, the end user develops a mental image that is often
called the user’s model, and the implementers of the system create a system image. These models
differ drastically. The role of an interface designer is to reconcile these differences and derive a con-

sistent representation of the interface.
Figure 4.13 shows the design models of an entire system.

4.8.1 Data Design

In data design, a high-level model is depicted (drawn) based on the user’s view of the data cr informa-
tion, Data design is actually derived from the ER diagram (refer to Structural Analysis — Data Model-
ing in Chapter 3). Designing to correctly fit the data structure is essential for creating a high-quality
application. Transforming this data model into a database structure is critical for implementing the

business requirements. The data warehouse structure, if any, is also designed in this step. ‘
Database is the center of this design. Analysis that is applicable to a function, is also to be applied

on the data. Data dictionary (information about data) is also established here.

4.8.2 Architectural Design

The objective of software design is to derive an architectural design (diagrammatic representation) of
a system and this representation provides a framework from which more detailed design activities are
conducted. Architectural design is derived from requirements analysis and is also based on already
available architectural patterns and styles. It defines the physical and logical relationships between the
major structural elements of a system and also between the corresponding components at high level.

Tu

Design Models

Y

+ Data Design

+ Architecture Design

» Interface Design

+ Component Design
(Procedural Design)

» Deployment Level Design

Figure 4.13 Design Models

Design and Architectural Engineering © 115

4.8.2.1 What Is Software Architecture?

Software architecture defines the logical relationships between the major structural elements of a
system and also the relationship between the corresponding components at a high level to execute the
functionalities of the overall system.

4.8.2.2 Software Architecture vs System Architecture

The representation of software architecture in physical components of machines is called system
architecture.

4.8.2.3 Architectural Notations

To represent the architectural design, different notations are used to represent the flow of control

hierarchy. Depth indicates the number of levels of control and width represents the overall span of
control (Figure 4.14).

Fan-in indicates the number of modules that directly control a given module. In Figure 4.15,
Module 1 is controlled by threc other modules and therefore fan-in of Module 1 is 3.

Fan-out is a measure of the number of modules that are directly controlled by another module. In
Figure 4.16, Module 1 controls three different modules and therefore fan-out of Module 1 is 3.

] Depth of Control

Span of Control

Figure 4.14 Level and Span of Control

Module 2

Module 1 Module 3

Module 4

Figure 415 Fan-in Notation

118 * Software Engineering

Module 2

Module 1 » Module 3

Module 4

Figure 4.16 Fan-out Notation

A pipe-and-filter pattern (Figure 4.17) has a set of components called filters and they are con-
nected by pipes, which transmit data from one component to the next.

A data store (Figure 4.18) resides at the center of this architecture and is accessed frequently by
other components.

" POINTS TO PONDER

Fan-out is a measure of the number of modules that are directly controlled by another module.

4.8.2.4 Mapping Requirements into Architecture

Requirements (data flow and control flow) are transformed into design using the architectural
diagram. This diagram establishes the information flow between various components. There are two
types of information flow (or data flow), namely, transform flow and transaction flow. In the trans-
form flow, the data flow occurs sequentially and in straight line paths, whereas one data triggers the
flow of data in one or various paths in the transaction flow.

Pipe Filter

Component 1 Component 2

Figure 4.17 Pipe and fFilter

Component 1 Component 2

Data Store

Figure 418 Data Store Representation

LR Y 0 | S R TR T PR ETTR

i Y e

T ETIY T SRR

Design and Architectural Engineering * 1n7

Design Heuristics Design heuristics are used in both transform and transaction mapping. First, let us
look into design heuristics before getting into the details of transform and transaction mapping.
Heuristic is a Greek word that means “to find or to discover,” indicating that it is an experience-
based technique and is simply a thumb rule or an intuitive judgment. Design heuristic is a heuristic
for the design — which is purely based on previous experience.
The following are the simple and basic design heuristics:

+ Evaluate the design first using the principle “minimize coupling and maximize cohesion”

+ Minimize a high fan-out structure (refer to Fan-in and Fan-out structures given in this
chapter)

« Move to a fan-in structure as depth increases (refer to Fan-in and Fan-out structures given in
this chapter)

» Scope of effect of a module should be within' the scope of control of that particular module
(refer to Scope of Effect and Scope of Control given in this chapter)

Transform Mapping Transform mapping has several steps, which arc as follows (Figure 4.19):

Step 1: Analyze and refine the existing DFD (DFD i1s a functional model structure which was dis-
cussed in Chapter 3 in detail)

Step 2: Find out the transform and transaction characteristics of DFD

Step 3: Try to isolate the transform center by providing input, output, and boundary conditions

Step 4: After factoring (minimum of two levels), use design heuristics to improve the mapping

Transaction Mapping The steps in transaction mapping are similar to transform mapping, except that
in Step 3, we try to isolate the transaction center instead of the transform center which are as follows

(Figure 4.20):

Step 1: Analyze and refine the existing DFD

Step 2: Find out the transform and transaction characteristics of the DFD

Step 3: Try to isolate the transaction center

Step 4: After factoring (minimum of two levels), use design heuristics to improve the mapping

Analyze and Refine DFD

¥

Find out Transform and
Transaction Center

}

Isolate Transform Center

¥

Factor and Design
Heuristics

Figure 419 Transform Mapping

Design and Architectural Engineering * ne

] Server |« Client 2
\
Client 3

Figure 4.21 Centralized Structure

Decentralized Structure Ina decentralized structure, both the olient and the server reside in the same
machine and they also communicate with another machine to share the resources (server and client
components), which 1s also called peer-to-peer communication. Both the computers (system) per-
form the same functionality, which is called symmetric functionality (Figure 4.22). The connection
between one computer (system) and another computer (system) 18 unstructured.

Hybrid Structure A combination of the centralized structure and the decentralized structure 18 called
a hybrid structure (Figure 4.23).

+ POINTS TO PONDER

A distributed system has three main components, namely, data, process, and interface. If these components
are distributed across locations, it is called a distributed system. The three types of systems are centralized,

decentralized, and hybrid.

Server 2

Figure 4.22 Decentralized Structure

Client 1, Server 1 \

Centralized Server Client 2, Server 2 j

Client 3, Server 3 ‘

Figure 4.23 Hyb rid Structure

120 = Software Engineering

4.8.2.6 Top-Down Approach and Bottom-Up Approach of Design

The top-down approach is represented by the hierarchical structure. It starts from the highest level
to the lowest level in the hierarchy structure. This approach identifies the major components of the
system and divides the components into lower level components. The root module is called ine main
module and the lower level components are called the subordinate modules, The top-down approach
describes the organization and interaction of software components (Figure 4.24). _
The bottom-up approach is just the opposite of the top-down approach and it staris with the basic
lower level components of the system and proceeds to the higher level components (Figure 4.25)-

4.8.2.7 ModularDesign Approach

In this approach, the overall system is divided into modules (subsystems), which can be tested
separately and can be combined (integrated) to form the overall system at a later point in time
(Figure 4.26). We discussed this approach while discussing coupling and cohesion.

A modular system has the following characteristics:

+ Each module will act as a separate system
» Each module is scalable and reusable
» Modules (subsystems) can be integrated easily to form the overa 1l system

« Industry standards will be used in all modules
« Interface is consistent across the modules

High Level Component

h 4

Component Level 1 Component Level 1 Component Level 1 i

-

Component Level 2 Component Level 2

Component Level 2 l

Figure 4.24 Top-Down Approach

High Level Component

h

Component Level 1 Component Leve! 1

b

Component Level 1

Component Level 2 Component Level 2

Component Level 2

Figure 4.25 Bottom-Up Approach

P R TR

Design and Architectural Engineering * 121

Overall System

",
"

\A T
Module 1 Maodule 2 1_ Module N 11

I ———

—

Figure 4.26 Modular Approach

4.8.3 User Interface Design

The data flow diagram (requirements analysis model) helps both architectural design and user

interface design.
The user interface design creates an effective communication medium between a human (user of

the system) and a computer. It proposes a set of interface design principles such that it identifies the
objects and methods involved and then creates a screen layout that forms the basis for a user interface.
The user interface design focuses on three basic areas:

|. Interface between components of the system

2. Interface between the system and humans (users)
3. Interface between the system and other systems (nonhumans)

According to Theo Mandel, the three “golden rules” of interface design are:

1. Place the user in control

2. Reduce the user’s memory load

3. Make the interface consistent

These three golden rules are discussed in detail in Chapter 7.

4.8.4 Procedural Design

Procedural design is also called component design. It is completely based on process specification
(PSPEC) and control specification (CSPEC). The “state transition diagram™ of the requirements anal-
ysis model is also used in component design.

Component design is usually done after user interface design. During user interface design, we
discuss the components and details of their interface. At the component design stage, these interfaces
get fine tuned. Component-level architecture and data designs are fine tuned and lower level algo-
rithms are defined in detail for each component.

Component-level design depicts the software at a level of abstraction that is very close to the
code. At the component level, the software engineer must represent data structures, interfaces, and
algorithms in sufficient detail to guide in the generation of programming language source code. To
accomplish this, the designer uses one of a number of design notations that represent component-
leve] detail (text, graphical, or tabular formats).

Structured programming is a procedural design philosophy that constrains the number and type
of].ogical constructs used to represent algorithmic detail. The intent of structured programming is to
assist the designer in defining algorithms that are less complex and therefore easier to read, code, test,
and maintain.

122 + Software Engineering

4.8.5 Deployment-Level Design

Deployment-level design takes care of the procedure of implementing the actual systems and their
components within a physical environment. The Unified Modelling Language (UML) deployment
diagram is used for this purpose and we will be discussing UML in deail in Chapter 6.

4.9 DESIGN DOCUMENTATION i

There are two types of design documents, namely, high-level design document and low-level design
document. A high-level design document contains architectural details.

System architecture document (SAD) is the design document where all the design and architec-
tural elements are captured. An SAD along with a low-level design document is used as an input to
the coders (developers). A low-level design document contains the data structure and its associated

components along with interaction details.

ALl b § S Rl e] e DL ST R e O e T T QA DO T et T Gt T Py T - LR . S
S et A e T :ﬁ%fzé%ﬂgg‘qﬁ;ﬁﬁ:akeifwﬁas'zmmﬁwhﬁzxme-,_:.,-.-«.-....-- i5

vopteiey s e e W TV L sete i FRA Bl e e

A software design is an appropriate engineering representation of a software product under study and is the process
of problem solving by converting the requirements of the product into a software solution. Software Engineering
comprises strict disciplines that need to be followed to develop a programmable solution to solve the problems of
customers. Strategies are defined to obtain a runable, efficient, and maintainable software solution that takes care of
the costs, quality, resources, and other expenditure.

» The design of function-oriented system is called function-oriented design and the design of object-oriented
system is called object-oriented design

» The possibility of dividing a single project into smaller units called modules is termed modularity.

+ Cohesion refers to “how strong” one module is related to the other, which helps to group similar items
together. Cohesion measures the semantic strength (high and low cohesion) of relationships between
modules within a functional unit.

The various types of cohesion are:

+ Coincidental cohesion

* logical cohesion

+ Temporal cohesion

* Procedural cohesion
Communicational cohesion

+ Sequential cohesion

+ Functional cohesion

+ Coupling is a measure of “how tightly” two entities or modules are related to each other. Coupling measures
the strength of the relationships between entities or modules.

The different types of coupling are:
Content coupling

Common coupling

Control coupling

Stamp coupling

Data coupling

Uncoupled

o U—— T T T

