= SOFTWARE
ENGINEERING

Chandramouli Subramanian Saikat Duft
Chandramouli Seetharaman B. G. Geetha

P Pearsen
=

| =33 \ 49 — 25 ,

Forewond - %-Qj \ r':‘.-'i_\ = 2 & | xi
Preface . _z’__w-;, f i 439 xiii
tcknowledgements | ke, s > volkss S0

~ 0.9 - Yo
About the Authors v 2L > 1 <q Y i
QN
» 7
" X
Section 1 - Introduction to Software Engineering

1 Software Engineering - Introduction 1
A7 Introduction to Software Engineering 1

42" Software Process 12

43 Software Process Models 21}

1.4 Software Product 28

Section 2 - Requirement Engineering

2 Requi ents Engineering Principles 41
Introduction 41
2.2-What is Requirements Engineering? 41

24" Importance of Requirements 42
Zﬂﬁ'ypea of Requirements 43
2,5-Steps Involved in Requirements Engineering 45

3 mmmmwmnudlm 8
| 34 A 8
85
102

OO

Software Engineering — Introduction

11 INTRODUCTION TO SOFTWARE ENGINEERING

The success of mankind in performing a process with perfection
and accuracy commenced with the origin of computers. The digi-
talized computing machines, initialized in 1940s, merely carried
out arithmetic operations marking the first step toward today’s
innovative computers. The development attained today in the field
of computing was never predicted. Speaking of computers, we
cannot miss the components that make it up as a whole device.
Man developed many individual components to aid him in day-
to-day life. Every device invented simplified the efforts to a larger
extent. Starting from the pulley, the wheel and eventually the com-
puter, relieved the stress and strain and proved to be a masterpiece.
Initially, the computer performed simple tasks and produced
results. However, the device has so rapidly progressed today to
perform analysis, comparison of details and make decisions that
its functions require only minimum human intervention, Applica-
tions of this incredible device can be seen everywhere. Extended
functionalities of the computer have, to a great extent, reduced the
need for investing human effort in nearly all fields, The primary
components of the computer included a memory space to store
the variables, a procedure to perform the operations and a display
to show the results to the user. Instructions to the first-generation
computer were provided by wired components, which were 100
messy. Gradually, the idea of storing the programmed instruc-
tions internally into the device without further need to input every
single instruction was developed. This required a programming
language to create a procedure for every task. A programming
language has certain formats to guide the user for easier and

U

1 * Software Engineering

ollection of similar tasks that provides a single intey.
colle ests, Software is the controlling unip o
software or hardwgp

grouped together form software. Software 15 2 f requ
) - ol s u
face 1o the user to obtain the results for a variety ol req

; . s computer structure,
hardware component. Both the components u'.ulmpla..lt' I.hv. L E:Jmurq o monitoe, s N
Jlﬂnt‘ I5 '.ls-ll;'h:\-. \ “‘m“ll“j\ dc‘|ccl a [}UWE‘!‘ Hnll- C“pacltnm’ rest G :

_ . a'g are defines the functip

to connect are the hardware components used in a f-'f‘lmp‘"‘:r'drzzt:‘::i;‘:::cm the hardware. k.
data transfer, path of control messages and transfer of input ..l.ll‘l it ines 0 e B

This chapter explores the concepts of software, 1t dLj\-“E E‘["t“ W E;v;:q e ina laSksI:h-[.
tance in the evolution of computers, The application of software 1nvo d‘fm eeippibti al
have evolved to the present stage. Different methods have been prﬂpﬂﬁs B ncﬂ] 31 of
software and its deployment in a suitable environment. The _dcp?uyment of softwi : -|‘ nd the
life cycle of a software, but it continues until the next version 18 de»rf:!o?ed. The ‘ f:\ichapmcm team
continues to have its relationship with the software as they release periodic upc":latch ‘ni ; ie‘s]nﬁu:rare iy
meet the ever demanding needs of the clients and the end users. SniTwar-::rengmeerm_g deals with the
rerminologies of designing and delivering software to the client’s sansfagtmn. The origin of soﬂwllfe*
its phases, the level of applicability and the role it plays in the functioning of the computer are dis-
cussed in the following sections.

1.1.1 What Is Software?

Software is defined as the tool with designated order of instructions, performing tasks to provide the
desired results after obtaining the requirements of the users. The methodology of how to perform the
operations in an optimal path to obtain accurate results quickly states the functions of computer software,

Software also consists of procedures, rules, software-related documents and the associated basic
data required to run the software (Refer Figure 1.1),

Software = Computer Programs (Instructions) + Procedures + Rules + Associated documents + Data

Procedures and rules include step-by-step instructions of how to install (deploy) and use the soft-
ware. Documents include requirement documents, design documents and testing-related documents.
To run the software basic data needs to be fed in.

Computer software resides in the memory space of the computer, commanding it in every situa-
tion. The process of the software begins with the booting of the computer until it is shut down.

POINTS TO PONDER

Software = Computer Programs (Instructions) + Procedures + Rules + Associated documents + Data

Instruction 1
Requirements ——» Instruction 2 { Desired Resuits |

Figure 1.1 Components of Software

& * Software Engineering

The design of the software product should

I, Be precise and specthc
Conform to budget and requirements
_ Provide a direct solution to the problem

Modularity, cohesion, coupling and layering are the factors to be considered while designing the
software. UML is a modeling language used to model software and nonsoftware systems. UML and
the above factors are discussed in detail in the later chapters.

Software design includes Data Design, Architectural Design, User Interface Design, Procedural
Design and Deployment Level Design.

Software Design Concepts discussed in Chapter 4 includes design models, architectural engineer-
ing. e1c.: Object Oriented Concepts in Chapter S include Class, Objects, Inheritance. Polymorphism,
Design Patterns, 2tc.: Object Oriented Analysis and Design in Chapter 6 includes Use Case Modzl-
ing. UML notations, ete. and User Interface Design is discussed in Chapter 7.

| "SR S

1.1.3.3 Coding and Testing

Coding is defined as the phase where the documented design is transformed into lines of codes in
programming language. In a typical waterfall model, coding 1s done after the requirement analy-
sis (requirement clarification) and design. Writing standardized codes for software helps not only to
maintain it properly once it is built, but also to enhance the code easily at a later point of time; it also
helps 1o identify and fix the bugs quickly and ‘easily. Therefore just writing a proper working code is
not enough. but the focus should be on writing a standard code. So codes are instructions that execute
the program in the environment where it is supposed to be. The designs in high level language are
converted into machine level language for implementation in the real-world environment. Coding
conventions and coding standards are discussed in detail in the later chapters.

Alter coding phase 15 completed, the code have to be tested for ensuring its right functionality
in the platform. Testing is carried out by a separate team of experts (software testers) specialized in
senerating sample cases and subjecting the product to various tests. Only after the product has been
proved 1o be reliable by the tests, it enters into the implementation phase. The process of testing and
its procedures are discussed in detail in the later chapters.

Chapters that are related to coding and testing aspects are:

Chapter 8 Software Coding

Chapter 9 Introduction to Software Measurement and Metrics
Chapter 10 LOC Function Point and Object Oriented Metrics
Chapter 19 Software Testing Plan and Test Case Preparation
Chapter 20 Software Test Automation

11.3.4 Implementation

This phase involves the release of the developed software into the market and to the end users. This phase
is&lﬂﬂﬂllhﬂ&s Deployment Phase. The tested software product is then implemented in the customer's
domm'fhe software developed is installed in the platform for its prescribed function. The success of
the implemented product depends on how much the end users like the product and prefer to use it regu-
larly, There will be similar products satisfying the same functionalities from competing organizations in

G e ———

10 * Software Engineering

1.1.7 What is Software Engineering?

Software engineering comprises strict disciplines that need to be followed to develop a programmable

solution to solve customer's problems. e) ;
Strategies are defined to obtain a viable, efficient and maintainable software solution, which takes

care of the costs, quality, resources and other expenditures, These srrateg?es have been proposed by
various engineers after implementing and analyzing the merits and demenits of each strategy.

1.1.8 Why Study Software Engineering?

Software engineering encompasses every concepts and standards of the disciplines in relation to
design, coding and developing maintainable software complying with the available resources and
budget constraints. Without a minimal intellect on software engineering and its disciplines, the devel-
oper would find it difficult to cope and control a vast area of designing, converting the design into a
code, and finally implementing and upgrading the product with the changing market and conditions.
Every developer cannot just jump into the ocean of creativity and in-depth programming skills with-
out an assessment of software engineering terminologies.

1t 1s the basic of any software -::levcmpm;nt

It helps to produce reliable, reusable and quality software

Software engineering understands the customer needs and develop the software

it helps the developers to understand the disciplines of spftware life cycle

It helps to develop software in efficient way

Software engineering teaches the best practices of software development

Software engineering helps to write software, which can be integrated easily with other software

ST TPOTH e

= oW

1.1.9 Generic View of Software Engineering

The sequential steps that describe the stages of a product being developed are the generic view of
software engineering. Every action required for the development is categorized into three generic
stages (phases) as follows (Refer Figure 1.5):

Definition Phase

Objectives
Outcome
Functionalites

Description Phase

Process to be Followed

FrameWork of

 Data Control Flow
Development Phase

(Implementation, Upgrade)

Figure 1.5 Generic view of Software Engineering

Software Engineering - Introduction * 11

1. Definition Phase: The desired outcomes, functionalities and objectives are ﬁbtmned from the
customers and documented, These objectives are the drwmg force for a product to be devel-

oped. The team of developers and customers agree upon the final and feasible list of goals to be
implemented into the product.

. Description Phase: The next generic phase takes the necessary steps for further development;

the desired outcomes are framed with optimal preceding and succeeding processes. The frame-
work nfdam and control flow ina pm&um, how the processes are ordered and how the function-

— g

12 * Software Engineering

| g
= 1";

Froject Product

Figure 1.7 Project vs Product

manager. Managers also determine the life cycle that has to be followed among the various mod-
gls. The best option would help to conserve the resources and money invested by the management.
A slight deviation from the proposed procedure would disturb the efficiency of the entire process.

L1.10.3 Product

The selection of best plans and procedures, and assigning the right and efficient staff to the project
ensure the success of the project thereby ensuring the final outcome of the project called as product
(refer Figure 1.7). Product is the ontcome of the project.

There are many models of developing a product, evolved from the very beginning era of software
development. Different models proposed increased the efficiency of the team of developers by alter-
ing and speeding up the actions of normal methods.

1.2 SOFTWARE PROCESS

A set of interrelated actions and activities to achieve a predefined result is called as process. Process
has its own set of inputs and produces the output(s). Tools and techniques acts on the process to
achieve the desired outcome. The processes have to be planned with great care and the knowledge
about the effects of each implementation and activity on the product should be understood clearly by

all the stakeholders. Groups of individual processes constitute whole software.
For example: Preparing a dosa (an Indian dish) as a process. If we call five different people
(chefs) and give them the same ingredients and tools required to make the dosa, will the output be

the same? The size and taste of the dosa is bound to vary. Why is it s0? This is not only because of

the difference in skills possessed by the chefs, but also because of the techniqu'es'thgyhmfc:lcamr
over a period. Thus, we need to understand and tearn_th‘n.techn_iques_?qf.a process to produce a better
output. - '

In the following few sections an overview of different software development processes are giver.

1.2.1 The Linear Sequential Model
A sequence of actions describes the order in which the execution of activities are planned and fol-
lowed. Linear sequential model was the initial step in developing a software product, otherwise
\del (T Figire 1) %
_The-process of development is divided intc i

ot R “‘{?EAEEEF“EE? tions (steps) from requirements analy-
igning, coding and testing, implementation and finally maintenance. Each activity is carried
'“II - - s T - MR T i Ty Ty -

sult, th m . E y cannot

14 * Software Engineering

7. Process: The software engineering processes ensure that all the Iﬁﬂhﬂﬂ]ﬂg}f layers work tugethc]-
and enable the timely development of the software system,

3. Methods: The « methods in software engineering provide the technical capabilities to the system,
The requirement analysis, design, modeling, development, testing, etc. are the tasks related to
the methods.

Tmlr -[h,m lﬂﬂdﬁ the support to the process and methods by making the tasks automated

e e g T T

.::-..;:m:u:mT and the next lay ers are dedicated
odolo tu pmduu theprd'em&ﬂ outcome.

Software Engineering - Introduction * 17

1.2.41 Business Modeling

' Business modeling is the stage in which the types of information that are prime factors of the applica-
tion are defined. The category of informatjon involved in the processes, the pmr:t:durﬂs that use the
information for various computations, initiators of the information and lransfcr of dala between the
processes are defined in the business modeling phase. thh the details on the. mfcrrmatmn being pro-
cessed. the area of functionality of the application can _b;‘_ﬂﬁtermlmgi

Pt

v F) ,..,". N - in 1 e
1.2.4.2 Data Modeling /" |t &2 ¢ Lattd red | Tt gasde t Wi

AL

They are refined into entities of high importance. The characteristics of the entities dnd their relatmn-
ships are also defined in this data 2 modeling _phasa Attnbutes. and entities enable a hetter undersmnd—

ing on the chief factors around which the cnure pmcessr:s are framed, BT
-___.___—

1.2.4.3 Process Modeling 7 /,'w A ee ’ ﬁm‘t‘ fart Lo mA

Pr-:u:ess rmnclmg .:lefmes the activities needed 10 process the entitics, Ev ery mstructmn is framed in

CE———————

their associated metrics. Without Erqp.:l:..@imgn. of these nracﬁsrs:ﬁ,._ﬁhF-s.fs:a?,i.t;.d.qqtc.@ﬁ?% cannot be
achieved. =

1.2.4.4 Application Generation ;5 sk ;pi W@gpfpj s _gfh-'- ;)@f zmwa

Application generation is a phase that uses automated tools to generate the workin -

M application. The automated fools are used for faster analysis of similar Mnents for
and save the time for new dEﬁlEES Software tools have provided a wide range of amenities for

faster deployment of an application with the same accuracy. §

1.2.4.5 Testing and Turnover

The final phase is to test the correctness and consistency of the dwelngm@mﬂmh such a
short time and nmplemmtau-m of many reusable components, the accuracy o It

_be tested with greater care. Reusing a component involves increased risk factors because the interfac
ng modules need to relate to the dsﬁ' rent modules of varying apphcam:ms

—--l-u_l"—'_'__._-

POINTS TO PONDER

The business modeling is the stage in which the types of information that are prime factors of the appli-

cation are defined. Application generation is a phase that uses automated toals to generate the working
“model of the designed appih:auan

"Ll.ﬁ‘ 'ftocm ﬁmewnrk

; 13 = Software Engineering

only two requirements: username and password. The new application with the same requirement need
not create a new design but can reuse the whole module. The login form also requires a database for

storing the usernames and the corresponding passwords.

Process Framewark

Software 1 1

B g R -

P N ettt

A
Process 1.0

20 * Software Engineering

The ‘initial level is a poorly controlled phase with no proper designation of the schedule and the
resources needed for the development. The primary requirements are analyzed, selected and advanced
to the next level of the model. In the succeeding level, certain processes are chosen to produce the
desired outcomes after organizing the schedule and resources needed. Yet those processes are in urge
of additional consistency in the ‘repeatable’ level. The control processes are ordered and in position.

The third level ‘defined’ requires stringent measures to be followed. The processes are regulated,
well understood and thus properly ordered. The consistency of all the processes is achieved in this
stage. ‘Manage’ is the fourth level in which adequate steps are taken to determine the actions to
update and upgrade the processes in the product. The level defines measures to widen the functional-
ity of every process. This level forwards its outcome to the ‘optimizing’ level which concentrates on
smoothening of approaches for better, faster and risk-free execution of the processes.

All these levels are proposed to achieve a process incremental model helping the development
team to nominate an efficient product with minimal effort.

People Capability Maturity Model (PCMM) is another model of capability maturity model
released in 1995 (book form in 2001) and it deals with the improvement of human resources (assets)
of the organization. The people management process areas addressed in PCMM contain the common
features and key practices.

1.2.7 Process Pattern
Thﬂn: has been a standard order of activities for completing a task. The order may not be altered, as
attern has been proven as the most optimal solution. There will not be another alternative with an
ngth as an existing pattern. Patterns compile a set of activities or tasks or actions, following

ibed anumb of execution, These patterns are considered in software lifecycles, customer
mication, coding, reviews and test patterns.

H.ﬂ h'mhsaﬂments
rocess has its own strength, weakness and associated risks. These factors have to be dis-
mmd w . determine the level of applicability. With high risks and weaknesses a process cannot be
ap;sled to a product. The strength of all possible affirmative solutions has to be resolved to decide on
the applicable solution and on the first alternative. Evaluation of the strengths, weaknesses and risks
mfmy Mmﬁmba process model is called as Process Assessment..

sment describes the results of evaluation as

oY W&Stm needs revision and modifications
-Complete definition and satisfies the customer

. Managod _Controlled and maintained

. wmd-smm procedure applied

3 wiﬂi llmitﬁ qf mﬂnu

ethe ds. fo mntmﬂlmg and coordinating fhe
| . Methodical processes are

Software process models help the developer team to recognize the fﬁ’.’l@ﬁ‘ﬁﬁﬁs}.
. Set of tasks, subtasks and interfaces

2. Resources necded for every process:

3. Adequate time span

1 3.1 Tnﬂﬁmﬂ%mhﬂaﬁ Mndtls

"

s of the waterfall model ensue in sequential order. These processes are docu-
' tion are printed and stored for future references. This mode!

T W [T

Software Engineering - Introduction = 13

The major advantage of the incremental model is that the consecutive steps do not have to wail
until the preceding function completes its activity. This assists the team of developers 10 complete the
design process much faster. The large and complex problem can be divided into a number of smaller
and unique tasks, providing an easier chance to solve. Incremental model is suitable for applications
that need additions and alterations in its contents after certain time period. For example, the shopping
mall application needs to introduce new offers and concessions on the price list of all items for fes-
tive moments. They cannot be stable at all times and the waterfall model is not the right method to
develop the product. The constraints on time and expenses justified the need of the incremental model
at once. The already existing product can be combined with a new requirement by means of the inte-
grator. Incremental model also facilitates the isolation of errors and faulty components at a faster
rate, the modules being independent and capable of running without the support of other modules.
Faulty modules remain intact until rectified. :
~ Versions and higher configurations of an existing product can be developed with incremental pro-
cess model. Links would have been established 1o permit the on
version, The links are the functional spots of the integrator component, which builds up a communi-
‘cation link between the versions. - o = el
Advantages of the Model

1. Quick feedback loop from business stakeholders

2. Focus on customer feedback

3. Customer feels the product early

opment is difficult with incremental model -
dut i given in piecs,tracking and moritoring i difficul

24 - Software Engineering

the product had to be designed anew. Taking the importance of a risk management process and testing
_process into account, the spiral model defined new strategies.

A spiral model encompasses the {terative steps.in a spiral representation as shown in Figure 1.17.
Each circle in the model denotes a succeeding level of the previous state. These are divided task
regions, which represent the selective process. The task regions may vary from the camplmty level
‘of different products.

T-hc ﬂmmg part includes the tasks for designing an ¢ sﬂimant ﬂ*amewglje < as a solution to the
] . Planning also happens in steps: Life Cycle Plan is mm%ﬂgm_@mpmﬂﬂ Plan is
d in the next level; and Integration Plan is in the last level. N
n the Risk 4 .n sis Phase the prototype is being developed, The risk analysis would report the
tification and effects of the ! :sent risks in the prototype. Assessments of risks i at every rota-
Wiﬁﬁﬁﬁg-“umﬂ farmlvm -atthcfmalmge

o o — ———

Software Engineering ~ Introduction * 25

Construction and release also happens in iterative fashion based on the base prototype developed.
At every level it is also being strengthened and the final level is the final code to be delivered to the
customer

The number of iterations is determined by the team manager depending upon the rectifications
made and completion of the product. The cost and schedule cannot be assumed right at the beginning
phase as the prototypes are altered at every rotation. The team manager adjusts cost and time metrics
after every circle, The spiral model is selected for software of higher level nrgamzatmns

POINTS TO PONDER

4 spiral model encompasses the iterative steps in a spiral representation. Each circle in the model denotes a
succeeding level of the previous state. There are divided task regions, which represent the selective process.

[
A

WIN-WIN Spiral Model e - s

The results are based on the negotiations made by the customers. WIN-WIN result is decided for best
negm.iations The customers have their own rr:quiraml:nts and needs abuut the system or pmduct The
Jhdm-.inpnrhas some criteria and budgers given by their urgamzatmn and the develupcr wins byq
working to realistic and achievable budgets and deadlines. Boehm's WIN-WIN spiral model defines

a set of negotiation activities at the begmnmg of each pass around the spiral.

The ac activities.of the system.are decided by identifying the key stakeholders and the win condition
__for the system. Negotiation of the stakeholders’ wins conditions are reconciled into a set of winwin

" conditions for all concerned.

The WIN-WIN spiral model introduces three process milestones, called anchor points. These
points help to establish the completion of one cyele around the spiral and provide decisions before the
software project initiates its forthcoming cycle.

The anchor points represent three different views of progress

1. Life Cycle Objectives (LCO): It deﬁ:_leﬁ a set of objectives for each major software engineering
activity.

2. Life Cycle Architecture (LCA): It establishes goal that must be met as the system and software
architecture is defined.

3. Initial Operational Capability (10C): It rEpresmms a set of objectives associated with the prep-

aration of the software for _mﬂg]lﬂ}ﬂﬁmlmhmm site preparation prior to in taﬂatmn and
assistance required by all parties that wﬂmgg or support | [éa software.

133 Compnn:nt-hiud Development Model

ﬁilfhts de_vdnpmcnt model is one of the evolutionary practices for dwﬁ]ﬁpmg a software product.
onent-based development (refer Figure 1.18) introduced the concept of reusability to the full

',-mtmmu.ﬁnummlm of the requirements, instead of enterm mﬁmdm nhaaa.cﬁmm-
:'ormﬁdulﬁﬁﬂh&".':'...f'ﬂmﬂﬁr e . S gﬂ euse 15 the

15 * Software Engineering

| New Fmﬂuc}A_]
New Re used Re used New
Component 3 ponent 4 || Component 5| Cc

Figure 1.18 Component-based Model

b

e T T UL

RemirementsCompation. 019§ s ek wer sty

‘4 new product are compared with the recorded list of requirements from
ably high enough to be a perfect match.

N 11 I TVRTT

e

Software Engineering - Introduction * 27

Knowledge on the mathematical implications is absolute in this case for detecting an error-free
software product, whereas most products do not need such efficient methodologies considering the

extra cost and time factors.

1.3.5 Software Engineering Process
Engineering process defines a dedicated and disciplined order of activities with a clear-cut view on
how to reach the destination. A software product of high significance needs a pertinent roadmap lead-
ing to the objectives. Deriving such an efficient path toward the destination can be achieved only if the
order is obeyed completely. The engineering process has gained expertise in many of today’s appli-
cations and products. The engineering process, unlike other problem-solving strategies and design
approaches, orders activities with respect to profound technical information of the product statement.
Software engineering process differs from the ordinary process models in the following means.
Normal problem-solving strategies define and solve the problem by verification of the prapose_d
solution, whereas in the engineering processes, the software requirements are analyzed and speci-
fied followed by designing and implementating a suitable product and, finally, verifying the designed
product with respect to the specified requirements, Efficiency is promoted as the prime factors are
narrowed down and the knowledge on the processes is imparted to all employees and participants.
This knowledge is acquired by working on the previous successful projects and exposure to the tech-
nical background.

1.3.5.1 Primary Steps of Software Engineering Process

As mentioned, the initial step is to ‘Analyze’ and ‘Specify’; the requirements are analyzed for general
aspects, such as identifying the main objectives of the entire product and then the associated objec-
tives of next importance and other indirect activities that support the objectives are analyzed, ensur-
ing problem identification and determination of the functional and nonfunctional requirements. These
functional and nonfunctional requirements are the resources, which have a direct or indirect impact
“on the outcome of the product. These analyses produce a list of specifications on the requirements
and the identified problem.. :

‘Designing and Implementation™of a well-organized technical plan would deduce the number of
designs 1o meet the goals of the product. Once the design has been proved as an efficient solution,
it can be developed as a prototype for examination by the customer for any changes. The prototype
eliminates the chances of later delays if properly verified. A prototype is extended with full function-
alities and implemented in the final product.

‘Verifying’ the deployed product involves the cross-checking of how well the whole product works
iﬂjmgmmqu_.mually, the product is developed and enhanced by introducing addi-
tional features when the demands increase. The data design and the flow design are separately. veri-
fied to ensure maximum efficiency. Functional design verifies the relationships among the existing

‘processes and transfer of data in between the available functions without any conflicts,

1.3.6 Business Process Engineering

Software products are employed in almost every field, mostly in business applications. They are
implemented in business areas and are never constant in backdrop as the customers and end users
need features of global influence. Distributed environments of a same business process cannot be the
same. Operational responsiveness is the ability of a software product to respond to different queries

—

18 * Software Engineering

from the customers. The serviceable business processes are intended to respond, provide solutions
regarding the business outsources and purpose. The detailed information on the available services to
the customers is promised to every requester with 100% satisfaction.

Operational responsiveness advocates the principles, intentions and functional aspects of a par-
ticular organization. The organization develops a software product with its business processes
employed. The software developed concentrates on the devoted business processes unlike other soft-
ware solutions.

1.3.7 Fourth-generation Techniques

The Fourth-Generation Techniques (4GT) combines distinguished directory of software tools with
assisting amenities for a software developer. Nonprocedural languages for databases maintenance and
data manipulation operations, high end graphics interfacing, spreadsheet operations, drag and drop
creations of web-based applications are some of the high-level 4G technologies. Imagine a whole
system implementing all of these separate techniques into a single procedure. 4GT is designed to_
generate the source code by themselves with minimal specification from the designer. The developer
‘does not put any extra effort other than inputting the complete requirements and other conditions.
Positioning the preconditions, post conditions and the flow conditions at the correct location would
be enough:; the rest of the coding is taken care automatically by the procedure itself. After mention-
ing such conditions a nonoperational prototype is developed as a sample output. The foremost point
is that the customer should be able to understand every functionality and error-prone zones in the
_ prototype. This procedure aids in faster development and deployment of a software product with
~ greater interactive sessions and participation of a customer. As all the processes eliminate the abstract
terminologies, the entire process becomes completely visible from architecture to coding. The major
drawback is that a customer himself may lack the optimal way of descnbmg the requirements, and
unwanted processes may be wasting the efficiency of the 4GT.

This technique includes the following processes:
‘___-__-__'_‘-‘——_

* Regquirements Specification
* Prototype Design
Implementation
* Constructing the Original Framework

1.4 SOFTWARE PRODUCT

1.4.1 Characteristics of A Good Software Product

A gﬁoﬁ software product should possess the following characteristics:
Com letmsm—‘fhe developed software products should cover all the stated and agreed require-
out missing out any.
stency-Operations of the product should be stable and capable of handling the problems in

e W "‘:;5;'“ tﬂh’mlﬂgﬁ' l‘t‘qﬁirﬂment or geographical aspects, and the prod-

Software Engineering — Introduction * 29

B T —

Completeness

- —— i | e

Inter

Operability Consistency

(Dur’a’*biittg-

30 * Software Engineering

1.4.3 Role of Management in Software Products

Management plays an important role in driving the processes of development in the right path ben-
efitting the customer and the organization. The, ultimate goal is to limit the budget and achieve a
reasonable profit satisfying the qud ility standards. Managing the development process includes the

following steps.

1.4.3.1 Defining the Vision

The goal of the organization is different from that of the objectives of the product. The vision is the
force that motivates the development team. This defines the standards and principles of the organiza-
tion apart from the desired outcomes of the product. The vision keeps the team on track to maintain
the standards under any condition.

1.4.3.2 Defining the Plan

The plans are the operations derived with inputs and desires on the outputs. Plan is the blueprint,
which has to be followed for achieving the outcomes. The plan encompasses many individual pro-
cesses, structured in an ordered sequence. This structure defined is an optimal solution for perfect
execution of operations. Without a proper plan, the solution cannot be obtained as promised. There

are also additional plans designed as a backup in case cf Fallures The alfernative plans are also num-
bered as the first alternative and so on. Secandary options are initiated only if the optimal plan fails
to succeed.

1.4.3.3 Defining the Designation

Every participating member in a development process is assigned with a role and jobs to perform.
The m%ﬂm@cmenmy duties to ensure that every activity is performed as sched-
“iled and plann \d planned. Every member follows the vision and principles of the organization besides their
"TE'sEn bed role. The members are categorized according to their authority level and decision-making

capa _Jhl}[But all members have the liberty to express their views and ideas over the tasks.
-‘-.'_.:._-.—-—--*-—'-“—"__' i e o - - .

1.4.3.4 Testing the Pathway

“Testing is an important process in managing the defined plans. Testing includes the verification of the
correctness and consistency of the product, chec.kmg on whether the resources are properly used, and
whether budget and time constraints are met. Thus testing process ensures that the development team
proceeds in the destined path as defined. This reports the dewatmn from the defined pathway, if the
results are different from the sample outputs.

1.4.3.5 Supportive Activities

There are many associated processes beyond the normal procedures. Licensing the product as the
registered outcome of a particular organization and marketing the prgﬁugjmg:_lg_ﬁ competitive
organizations.are some of the additional and adequate activities, which support the delivery of the
software product. End user training has to be pruwded after delivery to ensure efficient utilization.

“Not every user can readily use the software product as many may lack the basic knowledge to under-
stand the functionality,

Software Engineering - Introduction * 31

The project management concepts are discussed in the following chapters:
Chapter 1 3-Project Management Introduction

Chapter 14-Risk Analysis and Management

Chapter 15-Communication and Team Management

Chapter 16-Project Time and Cost Management
Chapter 17-Project Stakeholder Management

1.4.4 Role of Metrics and Measurements

The terms representing the quality and quantity of a particular process are metrics and measures.
They are used in determining the level of any means in the form of numbers or units. Understanding
these terms needs the definition of data points, These are units that denote the condition of a process,
the variables involved and the errors in a particular spot.

What is
Measured

can then be
Improved

A Mm is when the data point values are noted. A ‘Measurement’ is the representation of
T A awholf- mme or pmcesm cu]]echvely Maas’umments are of twn typea,

mls obtained by monitoring and controlling the budget and time
s from the scheduled path would be reported by the metric values.

e 9 Innuducﬂﬂn ﬁa Software M'
er 10.

o ——

Requirements Engineering Principles

2.1 INTRODUCTION

As discussed in the previous chapter, in software development,
the software project life cycle starts with capturing the require-
ments of the project. Developing a product or executing a project
is nothing but catering and taking the requirements to the next
level. (gg_tﬂt_lle_ling‘,__documenting, disseminating and managing the
requirements is the key to success of any project. Although it
sounds easy, gathering the requirements effectively and managing
them efficiently is a complex task and needs to be handled n a
§§stem'at'ic manner. Requirements engineering principles help to
do this task 1n a better way.

According to industry average, more than 90% of the software
projects fail due to faulty or incomplete requirements capturing.
This certainly gives an idea of how important this step is for the
success of any software project. In this chapter, we will cover
the different aspects of requirements engineering with steps and
guidelines.

2.2 WHAT IS REQUIREMENTS ENGINEERING?

Before getting into the details of requirements engineering, let us
understand what “requirement” is.

According to IEEE Standard 610.12-1990, requirement is
defined aséa condition or capability needed by a user to solve
a problem or achieve an objective” or “a condition or capability
that must be met or processed by a system or system component

to satisfy a contract, standard, specification, or other formally
imposed docum_ents.D

42 * Software Engineering

|
’L Externally Imposed Conditions

Y

Capabilities to Meet the Conditions

Y

Recording the Requirements

Figure 2.1 Requirements Engineering

This means that the requirements originate from the user’s needs and are then captured and tracked
to satisfy a contract or a specification.
Now, let us look into the definition of “requirements engineering.”

. Requirements engineering is the discipline that explores the externally imposed conditions on 2
proposed computer system and tries to identify the capabilities that will meet those imposed condi-
tions and recording the same in the form of documentation called the requirement document of the
computer system.”

The whole gamut of activities related to requirements from inception to understanding, tracking
and maintaining the requirements is termed requirements engineering (Figure 2.1).

2.3 IMPORTANCE OF REQUIREMENTS

Requirements are the stepping stones to the success of any project. If software projects get started
without properly understanding the user’s needs or without exploring the multiple dimensions of the
requirements, there will be misalignment at the end between the final result delivered and the user’s
expectations of the project resulting in a lot of rework.

In software development, primary focus is usually given to the construction phase. which leads to
a lot of problems at the end. .

~ A software project has to be completed within a specified time frame and budget. However, in
some cases, rework has to be done due to incomplete requirements understanding, which is the pri-
mary cause of schedule and budget overruns. TR g o |

Figure 2.2 shows the relative cost of repairing a defect at each stage of the software project
life cycle. It is evident that the earlier the error is detected, the easier and cheaper it is to fix the

_CEHIOL..

For example, if a defect in the requirements is found at the requirements review stage, then it will
cost less (e.g., $x) to fix the issue, but as this faulty requirement percolates through the later stages it
would cost more to fix the same issue: 3 times the cost to fix it during the design stage, 5 to 10 times
the cost to fix it during the construction stage, 10 times the cost to fix it during the system testing
stage of the project and 10 to 100 times the cost to fix it during the postrelease phase. Therefore, iden-
tifying and fixing errors at an early stage will cost less to the organization,

‘ This §i ifies :Lhat capturing th_g require{zlents %m_glglgly_gﬂqﬂgqt@cﬂy at the early stages of the
project life cycle is ess <p the project within the budget so that it is profitable. The only way

to ensure this is to follow a disciplined requirements engineering process.

Requirements Engineering Principles * 43

Cost correct art Error Stage detected

: Requirements LDesign Construction | Systemn Test | Post release
' Stage introduced | Requirements o | X 510X 10X 1015@/_1
ioesegn s b R 10X Judhes B 25-1(3;!’}_',‘5_”5
i Constrl:'ctlr.;n Sdat !_ :f' _‘-!"Jif‘_ JI |_0_?‘3_/__J

Figure 2.2 Cost of Fixing Errors at Different Stages

POINTS TO PONDER

The cost of fixing an error in the system increases exponentially with the stage of the project.

2.4 TYPES OF REQUIREMENTS

Requirements can be categorized into three main types: functional requirements, nonfunctional
requirements, and interface specification.

¢

Types of Requirements #
« Functional Requirements &q b/z
+ Non Functional Requirements ¢! : 3

+ Interface Specification

2.4.1 Functional (User) Requirements

The set of requirements (Figure 2.3) that defines what the system will do or accomplish is called
functional requirements. These requirements determine how the software will behave to meet users’

needs.

Business Logic
Data Logic
Data Manipulation
Processing Logic

Decision Making

Figure 2.3 Functional Requirements Characteristics

44 - Software Engineering

The requirements may be for performing calculations, data manipulation, processing, logical
decision-making, etc., which form the basis-Qf business rules. Functional requirements are often
captured in use cases. Functional requirements are the main drivers of the application architec-
ture of a system. An example of functional requirement is a retail shop billing software having
the functionalities of capturing commodity prices, calculating discounts, generating bills, printing
Invoices, ete.

2.4.2 Nonfunctional (System) Requirements

Functional requirements are supported by nonfunctional requirements (see Figure 2.4). The quality
attributes and the design and architecture constraints that the system must have are called nonfunc-
tional requirements (NFRs).

Some of the quality attributes of the system from an end user’s perspective include performance,
availability, usability and security and from a developer’s perspective include reusability, testability,
maintainability and portability.

NFRs as shown in Figure 2.4 are critical in most of the software projects than functional require-
ments. NFRs cater to the architectural needs of the overall system, whereas functional requirements
cater to the design needs of the overall system.

Some examples of NFRs are:

“The system should be available 24 x 7” (Availability)

“The system should save or fetch 1000 records in 1 second” (Performance)

NFRs may be related to the product or the organization or to the external requirements of the sys-
tem. Product-related NFRs include performance, availability, maintainability, portability, reliability,
security, scalability, testability and usability, whereas organization-related NFRs include standards
requirements and implementation requirements. External NFRs include legal requirements and ethi-
cal requirements.

Measuring NFRs We need to first define measurable criteria for each NFR and then realize the met-
rics by measuring it. For example, Availability can be first defined in terms of percentage and then
define the duration within which we are going to measure it. To measure the availability, we can as-
sume the availability of the system in the past | week to be 100% as the system was running continu-
ously without any downtime (another related metrics). A Service Level Agreement is established with
the customer for setting an agreed level of availability depending on the stability of the system. If
the system is more stable without any downtime, we can fix the agreed limit of availability as 100%.
If the system is not stable, then there will be frequent system shut downs and the target availability
needs to be reduced accordingly (e.g., 95% or 90%).

Performance Robustness
Availability Security
Maintainability Scalability
Portability Testability
Reliability Usability

Figure 2.4 Nonfunctional Requirements Characteristics

S S i e e e e L e =

a . e g i

. 45

Requirements Engineéring Principles

System 1 System 2

Figure 2.5 Interface Specification Characteristics

Approaches to NFRs NFRs can be approached in two ways- product—oriented and process-oriented
approaches. As the names suggest, the product-oriented approach concentrates on the product and
its associated NFR aspects. while the process-oriented approach concentrates on the process and its
associated NFR aspects. Second, the NFRs can be approached qualitatively and quantitatively. The
qualitative approach concentrates on non-numeric-related NFRs, whereas the quantifative approach

focuses on the numeric aspects of the NFRs.

2.4.3 Interface Specification

Most of the software systems do not work alone and need to interact with other systems in order to
work (Figure 2.5). They interact with many other systems 10 receive and send data, get help in pro-
cessing logic, store information in other systems, etc. The interaction requirement of one system with

another is defined in the interface specification.
Interface specification helps in building different systems in such a fashion that they can

seamlessly interact with each other to produce the desired outcome. Let us consider our previ-

" ous example of the retail shop billing system, It may interact with another system — an inventory

system — to ensure that the warehouse keeps track of the stock of the material at hand. The proto-
col of how these two systems interact with each other are captured in the interface specification

document.

POINTS TO PONDER

Functional requirements define what the system must do to fulfill the user’s needs, nonfunctional require-
ments put forth the constraints on design and architecture, whereas interface requirements define how the

system will interact with other external systems.

2.5 STEPS INVOLVED IN REQUIREMENTS ENGINEERING

Although the requirements engineering process may vary based on the application domain, a few
generic steps are common across all types of software projects.

Requirements engineering includes requirements development and requirements management
(Figures 2.6 and 2.7). The basic aims of the requirements engineering process are to provide a

- A

Requirements Engineering Principles * 47

2.5.1 Feasibility Study

Feasibility study is the first step of the requirements engineering process. The worthiness of the pro-
posed software system should be determined before spending efforts on building the system.

A feasibility study (Figure 2.8) helps in deciding whether the proposed system is worthwhile and
has the following characteristics:

« Whether the system contributes to organizational objectives

» Whether the system can be developed using the current available technology and within the
specified time and budget

» Whether the system can easily be integrated with other surrounding systems as required by the
overall architecture i

Thus, feasibility can be classified into three broad categories (Figure 2.9): operational feasibility,
technical feasibility and economic feasibility.

Operational feasibility: This checks the usability of the proposed software. 1f the operational
scope is high, then the proposed system will be used more ensuring the acceptance from the sponsors

~of the project.

Technical feasibility: This checks whether the level of technology required for the development
of the system is available with the software firm, including hardware resources, software develop-
ment platiorms and other software tools.

Requirements Engineering

/\

Requirement Development Requirement Management

'-"‘-.-—-—:r_--__-‘-_""l-

< ~ Feasibility >

-.___-___—____/
« Elicitation

+ Analyze
« Specification
« Validation

Figure 2.8 Requirements Feasibility

Failure

Feasibility Types

» Operational Feasibility
» Technical Feasibility

+ Economic Feasibility

Success

Figure 2.9 Feasibility Types

48 - Software Engineering

‘Economic feasibility: This checks whether there is scope for enough return by investing in this
_software system. All the costs involved in developing the system, including software licenses, hard-
“ware procurement and manpower cost, needs to be considered while doing this analysis. The cost—

benefit ratio is derived as a result and based on the justification the stakeholders make a decision of

going ahead with the proposed project.

POINTS TO PONDER

Before investing in any project, the sponsors will be keen to know whether the investment is worth and the
project can succeed technically as well as economically. Thus, a feasibility study step provides an insight to
all stakeholders at the very beginning.

2.5.2 Requirements Elicitation
Requirements elicitation is the second step of the requirements engineering process (Figure 2.10).

In this phase, the source for all the requirements are identified and then by using these sources,
the user’s needs and ‘all the possible problem statements are identified. Although it looks simple, this
phase is often iterative and at the end of each iteration the customer needs may become clearer and
new needs may emerge. The stakeholders involved during this phase include end users, managers,

development and test engineers, domain experts and business analysts.

2.5.2.1 ldentifying Stakeholders

Before the requirements are gathered for a system, it is important to know the people who can.

contribute and help gather the requirements. If key stakeholders are not identified during the
requirements elicitation phase, it can lead tononidentification of important requirements causing
rework at a later stage. Thus, stakeholder identification is the first step in starting the requirements

elicitation.

r Requirements Engineering 1

Requirement Development l Requirement Management \

Y

+ Feasibility
[~ Elicitation >
» Analyze

» Specification
» Validation

Figure 2.10 Requirements Elicitation

s ine

Requirements Englneering Principles * 49

Stakeholders are people or entities (organizations) actively involved in the projects. They are
affected by outcomes of the defined project.

project?
L

2,

3.

. | S

2.5.2.2 Characteristics of Stakeholders

Stakeholder intecests may be either positively or negatively impacted by the performance of the proj-
ect. Stakeholders may have an influence on the project and its results. Thus, it is important for the
project manager to identify all the stakeholders and their requirements (sometimes requirements may
be implicit and not explicitly stated — the project manager should also try to understand such require-
ments). Stakeholders may have conflicting interests and objectives; therefore, managing them may not
be easy. Involving stakeholders in the project phases improves the probability of success of the project.

Stakeholder involvement is always situation-specific; what works in one situation may not be
appropriate in another. Ask a few simple questions to identify appropriate and re quired stakeholders.

Although it is not intended to provide an exhaustive list of questions here, this will give you a fare
idea of the type of questions appropriate for this purpose:

Who are the people likely to be affected/benefited?

Who'is responsible for what we intend to do?

Who is likely to move for or against what is intended?

Who can make what is intended better?

Who can contribute to financial and technical resources?

L 1) e
. - 3

S

h

POINTS TO PONDER
Properly identifying stakeholders and managing the stakeholder’s expectation hold the key to success of any
project. Maintaining a prioritized list of stakeholders according to their say in the project helps in avoiding
the bottlenecks created by them at the later stages of the project.

2.5.2.3 Problems in Eliciting Requirements

There are several problems which can surface while eliciting requirements, which are discussed

below (Figure 2.11).

. Users not sure about the requirements: This situation arises very often when the system to
be_devclope_d is a completely new system and there is no corresponding manual system or any

50 » Software Engineering

2.

Suppose you are the end user
Java-based software. The requirements engineers from this new company have approached y
requirements for the new system? How you will ensure that they have noted down all your reqt

L

Problems in Eliciting Requirements

+ sers not sure ?
+ Communication Gap

= Conflicting requirements

» Volatile requirements

Figure 2.11 Problems in Eliciting Requirements

previous software system that can be analyzed to get the requirement. In this situation, the users
will be looking for either similar systems developed elsewhere or mock-up screens, workflows,
prototypes, etc. during the requirements gathering stage, which will aid their imagination in
coming up with the requirements for the new system.

Communication gap: Even if the end users and stakeholders are clear about the need for
developing the new system, they may find it difficult to express it in a concreie manner due to

their less exposure to the computing systems. They may state the requirements in an ambiguous
or nontestable fashion. Sometimes the obvious basic requirements may be omifted and they
concentrate on explaining the peripheral requirements. The system engineer needs to drive the
stakeholders in the right direction throughout the requirements gathering stage so that they
focus only on the most important requirements.

Conflicting requirements: This problem increases with the number of stakeholders involved
in the project. There may be conflicting needs and priorities for each stakeholder based on the
business areas they are covering. For example, a stakeholder from the marketing team will try
to provide requirements that will expedite the creation of new products, while the end users
of the system will look for efficient screens that help easy data capture. During the analysis
phase, the requirements analyst and the client should collaboratively discuss and resolve any
conflicting requirements from multiple stakeholders.

Volatile requirements: Requirements may get changed during the elicitation stage due to the
entry of new stakeholders who have different perspectives of the system. Although this is helpful
in clarifying the requirements better, it sometimes creates friction between the requirements
engineer and the stakeholders due to continuous change in the scope.

Requirements Engineering Principles * 51

2.5.2.4 Requirements Elicitation Techniques

Several techniques (Figure 2.12) can be employed for eliciting the requirements as listed below.
Based on the project scope, domain, customer preparedness, etc., one or a combination of techniques
needs to be used for gathering the requirements in an organized manner.

* Interviewing

« Focus groups

+ Faolitated workshops

+ Prototyping

+ Questionnaires

+ Brainstorming

« Direct observation

« Apprenticing

Interviewing Begin the interviews with the stakeholders who are believed to have complete under-
standing of the requirements. Face-to-face interactions with users through individual interviewing 1s
the primary source of requirements (Figure 2.13).

Interviewing

Apprenticing Focus Groups

Elicitation

Observation |€—— ——————> | Work Shops

Techniques

Brainstorming

Prototyping

52 - Software Engineering

Let me start doing the interview to clarify few
doubts related to the requirement,

Figure 2.13 Interviewing Technique

Interviewing is an important and effective way to gather and validate the requirements Interview-
ing is used when the requirements are detailed and differing opinions are likely or are sought. In
distributed agile projects, interviewing is the main technique used to gather requirements. Even if the
team and the customer are collocated, we can use interviewing to clarify doubts. During the execu-
tion of the project, at any point in time, interviews may happen with the product owner to clarify

doubts.

Focus Groups A focus group is similar to the interviewing technique, but has a group of 6 to 10 peo-
ple at a time. We can get a lot of information during a focus group session because of the enhanced

level of discussion among the group members.

Types of Focus Groups There are several types of focus groups that facilitate group discussions, which
are discussed below.

Two-way focus group: As the name suggests, two focus groups are used. One focus group will con-
tinuously watch the other focus group so that the interaction happens as per the predefined rules and
proper discipline is followed.

Dual moderator focus group Model 1: Instead of two different focus groups as in the above
model, two moderators do the job. One looks into the discipline and the other looks into the content

flow. This will ensure the smooth progress of the session as well as the entire topic of discussion 1s
covered.

Dual moderator focus group Model 2: In this model also two moderators are present but they take
completely opposite stands, that is, if one says that something is possible, the other says why it is not
possible. This is more helpful in finding the pros and cons of both views and will be helpful to make

a final decision.

Requirements Engineering Principles * 53

Respondent moderator focus group: Respondents are asked to act as the moderator temporarily

and because of this they take ownership of the session. Hence, we can collect the requirements suc-
cessfully and the outcome will be helpful (Figure 2.14).

Client participant focus group: Client representatives participate in the discussion and will ensure
ownership from the client on the decision taken. Most of the projects fail at the last stage of the proj-
ect life cycle, particularly in the User Acceptance Testing phase. The reason being the client may not
take ownership as the end users have more ownership at that stage. However, client participant focus
groups help overcome these kinds of problems.

Mini focus group: Groups are restricted to four or five members rather than 8 to 12 and is helpful to
avoid confusion and manage and gather the requirements quickly.

Teleconference focus group: Telephone network is used to facilitate the discussion sessions.

Online focus group: Computers connected via the internet are used to facilitate the discussion
sessions.

Facilitated Workshops Workshops (Figure 2.15) can be used for rapidly pulling together a good sct
of requirements. A workshop is a very quick and best way to gather requirements compared with
all other techniques. A workshop is expensive because it involves many people, but it saves a large
amount of time. Requirements are discussed at a high level. Workshops are useful in situations where

Lets use the Focus Group Technique
to clarify the requirement.

2 =~
— . 5

Moderator 17 % 7T\ ’g‘ igderator 2:jff =ik
2" - wly ' w =il

Figure 2.14 Focus Group Technique

54 - Software Engineering

SRRl O F VA M PP T L

This is one of the solution we have provided
to similar kind of customers like you.

R
n"""-.rr;..
q';:.‘l‘.l._; ’_

15y
4 =l$’_\ 'i’r\
e x

1

G

. »
x = _‘ L ‘-.
W E

Figure 2.15 Facilitated Workshop Technique

the requirements are focused on one area of business in which the participants have knowledge and
consensus is being sought. In workshops, different alternatives are given to the customers so that thev

choose the appropriat

€ options.

Prototyping The word “prototype™ is derived from the Greek word “prototypon.” Prototypes and
models are the best ways of presenting ideas to users. They give users a glimpse of w hat they nught
get. More requirements are likely to emerge when users are able to see what they will get as an out-
come of their suggestion. This technique aims to get users to express their requirements. Prototyping
is used to get feedback from users. Business logic may not be coded in prototyping and experimental
systems ma'ﬁﬁnﬁototyping. It is actually the initial version of the system.

. POINTS TO PONDER

prototype normally ¢

During the requirements phase, the prototype is generally document-based, where the user interface de-
sign, use cases, overall look and feel, navigation, etc. are discussed with the end users. The scope of a working

omes at the construction phase.

Types of Prototypes As discussed in Chapter 1, prototypes are classified into two broad categories,

namely, evolutionary |

prototype and throw away prototype, The former type is reused and the changes

are implemented in t

hat particular prototype. The new changes and corrections are updated in the

wos - T

S Tl R ST T W RS

Requirements Engineering Principles * 55

existing prototype until the final list of requirements is obtained, without wasting the used resources.
The latter type, as the name suggests, destroys the wrong prototypes. Throw away prototypes are
proven to be wrong and thus the new prototypes are developed in the subsequent stages. The re-
sources used in the previous prototypes are either freed or rejected.

Figure 2.16 shows the different types of prototypes, which are discussed below.

Proof-of-principle prototype (bread board): Only the intended design is tested and visual appear-
ance is not 1n the scope of this prototype. For understanding purposes, a few working codes are part
of this prototype.

Form study prototype: Only visual appearance is considered and the functionalities are not
considered. utcs? I

Visual prototype: It jimulates the appearance, color, fonts and surface textures of the intended prod-
uct, but it does not represent of the final function(s) of the final product.

Functional prototype: It is also called 2 working prototype. which means it simulates the actual
functionality of the intended work.

Questionnaires Questionnaires can be used to collect input from multiple stakeholders quickly.
which can be consolidated to create a list of requirements. As the stakeholders targeted for the ques-
tionnaire WSically present with the requirements elicitation team, this process can be
run with a large number of participants in quite an inexpensive fashion.

However, the questionnaires have their own limitations such as designing an exhaustive question-
naire becomes difficult especially if the complexity of the system is high. As the stakeholders are not
in direct contact with the elicitation team, there may be ambiguity in questions that lead to erroneous
responses. Moreover, the response rate may be low and may need a lot of follow-up for getting suf-
ficient input through this technique.

Brainstbrming Brainstorming is a powerful technique using which a large number of requirements or
Wﬂlﬁm ried of time,

« Inthese sessions, members meet _fgce-to—f ace and rely on both verbal and nonverbal interactions
to communicate with each other.

» The main purpose of the brainstorming technique is to get as many ideas as possible to obtain
different views of the requirements, thereby helping to capture better requirements.

Types of
Prototypes

P |]

Figure 2.16 Typesof Prototypes

Requirements Engineering principles * 61

| 2.5.4.3 Checklist for Writing a Good SRS Document

The consumers of the SRS document are all the stakeholders of the project - the customer, end users, .
project engineers, interface developers, managers, etc. Thus, ensuring correctness and completeness
of this document is crucial for the success of each stage of the project. The checkpoints listed in
Figure 2.21 provide a guideline on how to create an SRS document that serves its purpose.

1. Correctness

| a) Will the requirements meet the customer’s need?

/ b) Do the requirements capture how the system should transform, produce and provide the
[exact outcome expected from the system?

; ¢) The correctness of requirements typically refers to the accuracy of the requirements and
' whether everything agreed is delivered.

. 2. Completeness

_ a) Are all the requirements captured which will form a system that fully provides a solution to
" the customer’s problem?

b) Are each requirement detailed enough and supported by necessary diagrams, figures, data
and use cases so that all the stakeholders get their necessary input from the requirement?

¢) Are all functional, nonfunctional and interface requirements captured for the system?

o

. Consistency
a) Are there requirements that conflict with each other? This may happen when multiple stake-
holders have different views of the proposed system and provide requirements that create
conflicts while grouped together.
b) Are the terminology, diagrams, tables and figures consistent and provide a consistent view
of the proposed system?
4. Verifiability
1) Are the requirements verifiable - that is, will the test engineers be able to check whether
the requirement fulfills the customer’s need in entirety before the product is shipped to the

customer.

e ot

Figure 2.21 Checklist for Writing a Good SRS Document

62 * Software Engineering

b) Are the requirements validated and verified by all the stakeholders before they are baselined
for consumption of downstream processes?

5. Clarity

a) Is the requirements statement explicit enough and can be interpreted only in one way? Along
with unambiguous language, it is important to take help of pictorial representations such as
diagrams, figures and use cases to eliminate ambiguity in requirements.

b) Will the design and construction engineer be able to determine the single way of imple-
mentation from the requirements document? In case there are multiple interpretations of a
requirement possible, then there is a possibility that it is implemented in a way not desired
by the customer and thus causes rework.

6. Priority
a) Is the relative priority of the requirements vis-a-vis the others captured? Prioritization of the

requirements is important as it drives the plan for implementing these. In the case when the

project is under time or budget constraint, the priority of the requirements becomes impor-
tant as it will provide a clear guideline of which requirements should be tackled first, and
which requirements are less important,

7. Modifiability

a) How much dependency does the requirement have on other requirements? This will depict how
easily the requirements can be modified. A requirement that has dependency on several other
requirements should be structured in a fashion so that the impact of any modification to this
requirement across other requirements can be easily traceable. There are several requirements
management tools such as Doors and RequisitePro that are available which help in this regard.

POINTS TO PONDER

Note the seven points to be taken care of in a good SRS document ~ correctness, completeness, consistency,
verifiability, clarity, priority and modifiability.

2.5.5 Validating Requirements

Validating requirements (Figure 2, 22) is.an important step as invalid requirements may cost more to
rectify at later stages of the project life cycle. The main aim of requirements validation is to ensure
that the customer needs are captured completely, clearly and consistently,
The validation step should provide enough confidence to all the stakeholders that the proposed
system will provide all the features required and will be completed within the time and budget allo-
cated for the project. The different stakeholders who should be involved in the validation process are:

B e]

1. Customer
2. End user
3. Domain expert
4, Architect
s 5 Cmuucmnandtestenﬁﬂm’
' -party Wm' lntameting with the proposed system

Requirements Engineering Principles * 63

Requirements Engineering |

|
Requirement Development i Requirement Management

.

« Feasibility ‘
|

+ Elicitation
« Analyze

e
el

'» Specification l
|

Figure 2.22 Validation Phase of Requirements Engineering
There are different approaches taken for validating the requirements, which are discussed below.

Walkthrough, Review and Inspection

There is some subtle difference between the validation processes — walkthrough, review and inspec-
tion (Figare 2.23).

Walkthrough: This is an informal process where the author of the document presents the document

to a group of people, and the observations or issues found by the group are reported and corrected
after the walkthrough session. Generally, minutes of the meeting are not maintained for the walk-
through sessions.

Walk Throughs
Inspections

Figure 2.23 Walkthrough, Review and Inspection

Requirements Engineering Principles * 65

it ’ i t Document
Change Control Board Agreed Changes R‘"’q"‘reﬂ’:d';ted

-

Figure 2.25 Requirements Management

&

2.5.6.1 Requirements Management Plan -

During requirements engineering, the plan for managing the requirements should mention how to
manage the following: e,

* Requirements identification
5 Reqummem change

86 - Software Engineering

1. The customer and the users of the system get more insight into the system as they see a few
working prototypes of the system. This leads to change in existing requirements and emergence
of new requirements. This is a very common phenomenon as no human being can forlesee a
future system fully just by thinking about it. Let us consider a simple example of desagﬂ_mg the
interior of your house. While providing the specification, you have to imagine how the different
furniture will be oriented, the colors of the walls, electrical fittings, etc. However, whcq you sge
the first model design created by the designer you get a more concrete idea on how things W‘!l
look and you make modifications to the design more confidently. The changes may occur until
the different pieces of the interior are built and fixed. In the similar way, as more insight comes
out of the system as we progress on the project, there may be changes or clarifications to the

existing requirements,
2. The market and the business needs are ever changing. To cope with the changing market needs,
the specification of the product to be developed may have to be changed.

3. The priority of the requirements may change due to change in market scenario, business prior-
ity change and change in viewpoint of the different stakeholders of the system.

A strong change management process is essential in tracking the changes in requirements. This will
ensure that all the changes are incorporated during the project and minimize the chance of missing
out on the new requirements or changes that have been found after the requirements phase of the
project. The stages of requirements change management are mentioned below.

Change Control Process Once the initial requirements are agreed upon with different stakeholders, it
is important that any change in these requirements are controlled well. Changes in requirements are
almost always related to change in project effort, timeline and cost. By introducin g a Change C' ontrol
_Board, all the stakeholders try to ensure that everyone gets good transparency on the changes agreed
upon. A change control board is a group of people comprising members from each stakeholder group
who are directly linked with the project outcome. This group sets forth the steps to be followed when-
ever a change or a new requirement crops up after the initial set of requirements are signed off by
cveryone.

2.5.6.4 Requirements Status Tracking

After the requirements gathering phase, the set of requirements get baselined, which can be modified
after the change control board approves a requirement for implementation. It is important to track the
status of all these requirements throughout the life cycle of the project, that is, until the requirements
are available to the customer. This is to ensure that at any point in time the stakeholders should be
able to find out the progress on these requirements. Figure 2.26 shows a sample of the change request
fracker.

2.5.6.5 Requirements Traceability

The most commonly used artifact to track the requirements in each stage of the project life cycle such
as design, construction, unit testing and system testing is a traceability matrix that maintains the trac-
ing information as shown in Figure 2.27. :

Note that each column of this table can be used to capture and maintain the traceability in the

downstream phases for particular business and system requirements. Forward traceability provides '

4

Requirements Engineering Principles = 67

Figure 2.26 Change Request Tracker

Requirements Engineering Principles ° 69

the ability to track a requirement up to the system test case and through backward traceability the
source for each of the system test or code or design can be traced back up to the requirements. This
ensures that ALL and ONLY the agreed upon requirements are delivered to the customer.

POINTS TO PONDER

Due to the complexities involved in handling the changes, there is a general tendency to try to avoid re-
quirement changes. But for a long-duration and complex project requirement change is inevitable, and thus
rather than pushing back the customer to resist the requirement change it more advisable to plan for a well-
structured change management process.

’i;;‘» *“%5‘\{-07\»-* T

Ao x@j&a 03 {.I}}-!—H s W1

The requirements engineering phase creates the foundation for any software development project. Thus, it
is important to follow a systematic approach in this phase to avoid issues with the software at later stages.

Feasibility study is conducted at the beginning to ensure that all the expectations of the stakeholders are
analyzed and a consensus is reached on how much of that can be created with the current time and cost

constraints of the project.

Requirements elicitation techniques are used to ensure that all the needs from the system are captured. The
different and conflicting viewpoints of the different stakeholders and user groups of the system need to be
merged and agreed upon before proceeding to the next step.

Modeling techniques are used to analyze the requirements and synthesize a solution, which becomes the
input to the design phase. System analysts will critically analyze the information flow and content, functional
behavior, data flow behavior and external system interfacing requirements to create a model with which

both the customer and the engineers are comfortable.

Specifying the requirements in a correct, complete, clear, verifiable and prioritized fashion is critical to
ensure that the outcome of the requirements engineering phase is useful for the subsequent stages of the
software development life cycle. Review and inspection methodologies are used to ensure the quality of the

SRS document.

Throughout the project life cycle, tracking the requirements for proper implementation and any change
is crucial. The requirement traceability matrix provides a standard way of tracking the requirements
throughout the project life cycle. Apart from this, a sound change management process and change tracker
is recommended to track the changes to the initial requirements and avoid requirements creep.

An SRS review checklistisa crihcal item in the requnrements phase of the pro;ect A sample checklist that covers the
aspects discussed in the SRS creation and validation sections is provided below.

