Files and I/0 Streams

Input and output (I/O) are the most commonly used operations in any program. Reading data from
the keyboard and writing data on to the monitor form the basic input and output operations. It is
essential that a programmer know how to read the data from files and write data to files. Java uses
streams to handle data input and output. Input streams act as sources of data and output streams act
as destinations of data. The java.io package defines various classes and methods for reading and
writing files and handling data streams. This chapter describes various input and output streams
provided in Java for reading and writing data.

¢ 7.1 -An overview of I/0 Streams

A flow of data is often referred to as a data stream. A stream is an ordered sequence of bytes that
has a SOURCE (input stream) or a DESTINATION (output stream). In simple terms, a stream
can be defined as follows:

A stream is a logical device that represents the flow of a sequence of characters.

Programs can get inputs from a data source by reading a sequence of characters from the input
stream. Similarly, programs can produce outputs by writing a sequence of characters on to an
output stream.

A stream can be associated with a file, an Internet resource (For example, a socket), to a pipe
or a memory buffer. Streams can be chained together so that each type of stream adds its own
processing to the bytes as they pass through the stream. For the purpose of letting information
flow, a program opens a stream on an information source (whether it be a file, memory, a network
socket or any other source) and reads the information sequentially and uses it in the program. All
streams behave in the same way even though the physical device connected to them may differ. A
program can send information to an external destination by opening a stream to a destination and
writing the information out sequentially. *

In previous chapters, we used the following two methods for taking inputs and giving
outputs:

System.in.read()
System.out.printin();

These two form the basic input and output streams, which are managed by the System class;
they use the standard input and standard output streams, respectively.

Object Oriented Programming through Java

¢ 7.2 Javal/o

package defines a collection of stream

resented in Java as classes. The java.io
Streams are rep). To use these classes, a program needs

classes that support input and output (reading and writing
to import the java.io package, as shown below:

import java.io.* ;
s character streams and the byte

i into tw es known a
In general, streams are classified into two typ handle character and byte

streams. The java.io package provides two sets of class hierarchies to
streams for reading and writing:

1. InputStream and OutputStream classes are operated on bytes for reading and writing,
respectively. | N -
2. Classes Reader and Writer are operated on characters for reading and wnting, respectively.

There are two other classes that are useful for handling input and output. These are File class
and RandomAccessFile class.

A brief description of these four classes of java.io package are given in Table 7.1.

7.2.1 Character streams

Reader and Writer are abstract super-classes for streaming 16-bit character inputs and outputs,
respectively. Methods of these classes throw the IOException exception under error conditions.
- All the methods in the Writer class have return type void.

Table 7.1 Description of the four classes in the package java.io.

~.Description

Reader, Writer Supports read/write 16-bit Unicode characters
(specified in Java 2). Used for only text data.

InputStream, OutputStream Define basic methods for input and output streams

of data. These classes are used only for binary(byte)
data.

File Enables creating, deleting and renaming files,
na}ngatmg through the file system, testing file
existence and finding information about files.

RandomAccessFile Enables the program to read/write from/to any
; location in the file, not just the beginning/end
of the file, is the case as in the usual sequential

access. The file works as a random-access disk
file,

DL [
2157

Files and 1I/O Streams
Reader
r | | | | |
BufferedReader | | CharArrayReader | |InputStreamReader FillterReader | |PipedReader | | StringReader
I | l
LineNumberReader FileReader PushbackReader

LFig. 7.1 _Reader class hierarchy classes in italic are of type (i), the rest are of type (ii).

Writer

BufferedWriter

CharArrayWriter

OutputStreamWeriter

FillterVWriter

PipedWriter

StringWriter

FileReader

l Fig. 7.2 Writer class hierarchy classes shown in static are of type (i), the rest are of type (ii).

Character streams are normally divided into two types. (i) Those that only read from or on
' write on to streams and (i1) those that also process the data that was read/written. Figures 7.1 and
7.2 show the class hierarchies for the Reader and Writer classes.

The descriptions of Reader and Writer classes are summarized in Table 7.2.

Table 7.2 Various Reader and Writer classes and their description.

Classname ' Description

BufferedReader Supports the buffering of the characters. It is a filter stream.

BufferedWriter Increases the performance by buffering input/output.

CharArrayReader Supports reading/writing of characters from/to a character array.
CharArrayWriter |

InputStreamReader - Supports reading/writing of characters from/to a byte input stream.
OutputStreamWriter

FileReader Supports reading/writing of characters from/to a file. These classes uses
FileWriter default character encoding.

(Table 7.2 Contd.)

Wﬁﬂ Object Oriented Programming through Java

(Table 7.2 Continued)

Class name - 'Description

FilterReader These two are abstract classes for characters Filter stream.

FilterWriter
PipedReader Supports the inter-thread communication. In pipe streams, the output from
PipedWriter one method could be piped into the next one.

Reads/writes into the string. In StringReader the source f?r reading_is String.
Stringwriter writes the output into the StringBuffer. StringBuffer is further

converted into String.

StringReader
StringWriter
LineNumberReader ~ Character input stream that keeps track of the line number.

PushBackReader Allows one-character pushback buffer for Reader. That is, after a character
was read from reader, it is pushed back into the reader.

The example below illustrates how to read characters using the FileReader class.

FileReader fr = new FileReader("filename.txt”); //Create a FileReader class from the file
filename.txt.
inti = fr.read(); //Read a character

Internally, to represent characters in computers, a character-encoding scheme (for example,
ASCII) is generally used and every platform has a default character-encoding scheme. Java uses
16-bit Unicode character-encoding scheme to represent characters internally. The Reader classes
support conversions of Unicode characters to internal character storage. Besides using default
encoding. Reader and Writer classes can also specify which encoding scheme to use.

Most programs use Reader and Writer streams to read and write textual information. This is
because they can handle any character in the Unicode character set. On the other hand, the byte
streams are limited to ISO-Latin-1 8-bit bytes.

7.2.2 Byte streams

Byte streams are used in a program to read and write 8-bit bytes. InputStream and OutputStream
are the abstract super-classes of all byte streams that have a sequential nature. InputStream and
OutputStream provide the Application-Program Interface (API) and partial implementation
for input streams (streams that read bytes) and output streams (streams that write bytes). These
streams are typically used to read and write binary data such as those related to ima .es and
sounds. Methods of these two classes throw the IOException. All methods of the :
will have the return type void.

The hierarchies of InputStream class and OutputStream class are shown in Figures 7.3 and
7.4. All the sub-classes of InputStream and OutputStream work only on bytes. Ngote tha-t b?)nth

OutputStream

Files and I/O Streams ok by o SoTelE e

InputStream
I [|
FilelnputStream ByteArraylnputStream SequenclnputStream StringBufferinputStream
PipelnputStream FilterlnputStream ObjectinputStream

[] T |
IEeNumbe rinputStream DatalnputStream BufferedinputStream| | PushBacklnputStream

I Fig. 7.3 InputStream class hierarchy.

OutputStream

I
| I | I |

FileOutputStream| |PipedOutputStream| |FiliterOutputStream ByteArrayOutputStream DbjectOutputStream

| |

DataOutputStream BufferedOutputStream PrintOutputStream

J] Fig 7.4 OutputStream class hierarchy.

InputStream and OutputStream are inherited from the Object class. Since InputStream and
OutputStream are abstract classes, they cannot be used directly.

A brief description of classes in the InputStream and OutputStream hierarchies are given in
Table 7.3.

Two other classes that are available are ObjectinputStream and ObjectOutputStream, which
are used for object serialization. These are the sub-classes of InputStream and OuputStream which
internally implement the Objectinput and ObjectOutput interfaces, respectively. These classes
are covered in section 7.7. We cover the most useful stream classes in the rest of this chapter.

7.2.3 Working with the I/ 0 super-classes

The classes Reader and InputStream define similar APIs but for different data types. Reader
contains the methods described in Table 7.4 for reading characters and arrays of characters.
Similarly, InputStream defines the same methods but for reading bytes and arrays of bytes.
These are listed in Table 7.5.
Both Reader and InputStream provide methods for marking a location in the stream, skipping
input and resetting the current position. The following code illustrates reading a character.

T5218 Object Oriented Programming through Java

FilelnputStream inp = new FilelnputStream(*filename.txt);
while ((input = inp.read()) != null)

{

System.out.printin(input);

Table 7.3

Classes in the InputStream and OutputStream hierarchies.

Name of class

‘Description

FilelnputStream and
FileOutputStream

FilterlnputStream and
FilterOutputStream

PipedinputSteam and
PipedOutputStream

ByteArraylnputStream and
ByteArrayOutputStream

SequencelnputStream
StringBufferinputStream

DatalnputStream and
DataOutputStream

BufferedinputStream and
BufferedOutputStream

LineNumberinputStream

PushbacklnputStream

PrintStream

Read/write data from/to a file on the native file system. These work (_)nly on
bytes. FileOutputStream allows creating a file if the file does not exist.

Abstract streams that are used to add new behaviours to existing stream

classes.
Used to read from or write to another stream. When a filter stream is created,

it must be specified as to which stream it attaches to.

Used for inter-thread communications.

These classes implement the input and output components of a pipe.
Pipes are used to channel the output from one program (or thread) into
the input of another. A PipedinputStream must be connected to another
PipedinputStream.

Read data from or write data to a byte array in memory.

Concatenate multiple input streams into one input stream
Allow programs to read from a StringBuffer as if it were an input stream.

Allows programs to read and write primitive Java data types such as int,
long, boolean and char in a machine-independent format.

Allows buffering of the data during reading or writing.
These classes are used to buffer the data to speed up the reading and writing

process. Buffering reduces the number of accesses required on the original
data source and thus increasing the speed of the process.

Input stream that keeps track of line numbers while reading

Allows one-byte pushback buffer for an input stream. That is, after a byte
was read from an input stream, it is pushed back on to the input stream

An output stream used to display the text.

Files and 1/O Streams 2905

Table 7.4 Methods contained by the Reader class, for reading character arrays.

Name of method Description

int read() Returns the integer specifying the next available character in
the input stream. Otherwise, it returns —1, that is, the end of
the file.

int read(char cbuf[]) Allows reading up to the buffer and returns the number of

characters read. Otherwise, it returns —1.

int read(char cbuf], int offset, int length) Attempts to read number of characters specified by length
from the offset. Otherwise, it returns —1.

Table 7.5 Methods contained by the InputStream class, for reaching arrays of bytes.

Name of Method : Description

int read() Returns integer specifying the next available byte in the input
stream. Otherwise, it returns —1, that is the end of the file.

int read(char cbuff]) Allows reading up to the buffer and returns the number of
bytes read. Otherwise, it returns —1.

int read(char cbuff], int offset, int length) Attempts to read the number of bytes specified by
length from the offset. Otherwise, it returns —1.

Similarly, Writer and OutputStream are parallel concepts. Like Reader and InputStream,
Writer (or OutputStream) defines the following methods for writing characters (or bytes) and
arrays of characters (or arrays of bytes):

void write(int ¢)
void write(char cbuf[])
void write(char cbuff], int offset, int length)

These methods are used to write into the invoking stream. The first method writes a single
character (or byte, in the case of OutputStream) to the invoking output stream. The second method
writes the complete array into the invoking output stream. The final method writes the sub-range
of the length of characters (or bytes, in the case of output stream) starting from the offset value
of the buffer to the invoking stream.

All of these stream classes, namely, Reader, Writer, InputStream and OutputStream are
automatically opened when they are created. A stream can be closed either implicitly or explicitly.
When the stream object is no longer referenced, the garbage collector can implicitly close it.
Alternatively, the close() method can be used to close the stream explicitly.

In addition to read(), write() and close() methods, Table 7.6 lists some other methods that
belong to InputStream and OutputStream classes.

Object Oriented Programming through Java

Table 7.6 Other methods in InputStream and OutputStream classes.

"1 Name of method ' P i N U ' Description B
InputStream Rro
long skip(long n) Skips 7 bytes in the input stream. It returns the num ytes
skipped.
int available() Returns the number of bytes still available in the input stream.
Synchronized void reset() Returns thé file handler to the marked position that was previously

set in the stream.

Synchronized void mark(int n) Marks a position in the stream that will be valid till the next » bytes

are read.
boolean markSupported() Returns true if the stream supports mark or reset, otherwise returns
false.
OutputStream
Void flush() Flushes any buffered output to be written.

¢ 7.3 File Streams

A file can be created using File class.

File f;
f = new File (string filename);

The File class is defined in the package java.io The File class is used to store the path and name
of a directory or file. But this class is not useful in retrieving or storing data. The File object can
be used to create, rename or delete file or directory it represents. A directory is treated as a file that
contains a list of files. Each file (or directory) in Java is an object of the File class. A File object is
used to manipulate the information associated with a disk file, such as last modification date and
time, directory path and also to navigate through the hierarchies of sub-directories.

The File class has three constructors that are used to create a file object. They are the following;

. File(Siring pathname);

/I pathname could be file or a directory name
* File(String dirPathname, String filename);

/I specify directory where the file is created
// and file name

/I file object as the directory path
These constructors return the reference to the file object.

The File class provides several methods that deal with the files, fi

: le system, properties of the
file and tests on the files. Some of the important methods that serve these purposes are listed in
Table 7.7.

* File(File directory, String filename);

Files and 1/0 Streams

Table 7.7 Some methods in the File class and their description.

” Name of method-

‘Description .~ S e

string getName()
string getPath()

string getParent()
boolean exists()
boolean canRead()
boolean canWVrite()
boolean isFile()
boolean isDirectory()

boolean i.sAbsqute()

long length()
long lastModified()
String[] list()

Returns the name of the file excluding the directory name.

Returns the path of the file.

Returns the parent directory of the file.

Returns true if the file exists and returns false if the file does not exist.
Returns true if the file is readable, otherwise returns false.

Returns true if the file is writable, otherwise returns false.

Returns true if the object is a file, otherwise returns false.

Returns true if the object is a directory, otherwise returns false.

Returns true if the file path is the absolute path, otherwise it returns false,
indicating that it is a relative path.

Returns the length of the file (in bytes).
Returns the date on which the file was last modified

Returns the list of all files and directories that exist in the current directory

There are other methods also which are useful for handling file operations such as renaming a
the file and deleting a file. The syntax of these two methods is the following:

boolean renameTo(File new file name);
boolean delete();

The following methods are used to create a directory:

boolean mkdir(File newdirectoryname)
boolean mkdirs(File newdirectoryname)

The first method creates a directory and returns true if it is successful. If the directory cannot
be created, it returns false. In addition to creating a directory, the second method creates all its

parent directories.

The path of the directly to be created will be passed as a parameter to the mkdirs method. If
the program fails to execute the mkdirs() method fully, it may be successful in creating partial
directories list from the user specified path. The method mkdirs() returns true if the directory was
created with all the necessary parent directories, otherwise it returns false.

Directory is the name of an object in the File class with an extra property referred to as ‘list’
?vhich is examined by the IistO method. This method returns the string array with all files that exist
in the directory. Program 7.1 illustrates the list() method.

iy Object Oriented Programming through Java

] Program 7.1 Using the methods list() and isDirectory().

import java.io.;

class ListOfFiles

{

public static void main(String a[])
{

String name = arg[0];

File file1= new File(name);

if (file1.isDirectory())

{

string arr[] = file1.list();
for (inti = 0;i < arr.length; i++)
{
if(arr[i].isDirectory()) _
System.out.printin(arr[i]+“is directory”);
else
System.out.printin(arr[i]+“is file”);

= a4

Program 7.1 illustrates the isDirectory() method, which returns the value true if the invoking
file object is a directory and returns the value false if it is a file. This program is run with the
command line arguments in which arg[0] specifies the name of the directory. The output of the
program consists of a list of all the files and directories in the present directory that is, the
directory given as the input. |

¢ 7.4 FilelnputStream and FileOutputStream

The File class explains only the file system. Java provides two special types of stream called
the FilelnputStream and FileOutputStream to read data from and write data into the file. These
classes operate on the files in the native file system. FilelnputStream and FileOutputStream are
sub-classes of InputStream and OutputStream, respectively. Usually, we use FilelnputStream (for
byte streams) or FileReader (for character streams) for reading from a file and FiIeOutputStréa?n
(for byte streams) or FileWriter (for character streams) for writing into a file.

We can create a file stream by giving the file name as a parameter in the form of string, File
object or FileDescriptor object. FileWriter and FileOutputStream will create a new file b ,that
name if the file does not already exist. _ >4

Files and 1/0 Streams

The constructors of these two streams are:

* FilelnputStream(String filename); FileOutputStream(String filename);

* FilelnputStream(File fileobject); FileOutputStream(File fileobject);

* FilelnputStream(FileDescriptor fdesobject); * FileOutputStream(FileDescriptor
fdesobject);

FileDescriptor is an object that holds the information about a file.
A FilelnputStream object can be created in the following manaer:

FilelnputStream fin = new FilelnputStream(string filename);
Alternatively, it can be created with the following set of statements:

File f = new File(string filename);
FilelnputStream fin = new FilelnputStream(f);

A FileOutputStream object can be created as follows:

FileOutputStream fout = new FileOutputStream(string filename);

R
2235

Note that in the case of FileOutputStream if it is opened on a file that does not already exist

then a new file by that name is created.

Program 7.2 implementing the class CopyFile uses FilelnputStream and FileOutputStream

[Program 7.2 Using CopyFile, FilelnputStream and FileOutputStream.

import java.io®

public class CopyfFile
{

public static void main(String[] args) throws IOException
{
if(args.length<2)
System.out.printin(“\n No sufficient parameters”);
else

{
File inputFile = new File(args[0]);

File outputFile = new File(args[1]);

FilelnputStream in = new FilelnputStream(inputFile);
FileOutputStream out = new FileOutputStream(outputFile);
int c;

while ((¢ = in.read()) != -1)

out.write(c);

to copy the contents of inputFile to outputFile: inputFile and outputFile are the command line
arguments arg[0] and arg[1].

9924 Object Oriented Programming through Java

in.close();
out.close();

}

} £S5

¢ FilelnputStream and another file outputFile
an error because

}

In Program 7.2, the file inputFile is opened usin :
is opened using FileOutputStream. If inputFile does not exist, the program gIves :
FilelnputStream cannot work if the file does not exist. On the other hand, if outputFile does not
exist, then a file by that name will be created. The program continues to read characters from
FilelnputStream as long as there are inputs in the input file and writes these characters on to
FileOutputStream. When all the inputs have been read, the program closes both FiIeInputSf:ream
and FileOutputStream. Program 7.2 can also be written using FileReader and FileWriter with the
small changes shown below:

File inputFile = new File(args[0]);
FileReader in = new FileReader(inputFile);

This code creates a File object that represents the named file on the native file system. File is
a utility class provided by java.io. Program 7.2, the CopyFile program uses this file object only
to construct a FileReader on a file; however, the program could also use the input file to get
information about the file, such as its full path name.

If we run Program 7.2, an exact copy of inputFile (args[0]) will be found in a file named
outputFile (args[1]) in the same directory. It should be remembered that FileReader and FileVVriter
read and write 16-bit characters; however, most native file systems are based on 8-bit bytes.
These streams encode the characters as they operate according to the default character-encoding
scheme. The default character-encoding scheme can be found by using System.getProperty(“file.
encoding”). To specify an encoding scheme other than the default, we should construct an
OutputStreamWriter on a FileOutputStream and specify the encoding scheme.

It is important to note that the FileOutputStream object does not support the means to append

a file. If the file exists already, FileOutputStream only overwrites and cannot add content to an
end of the file.

¢ 7.5 Filter Streams

The java.io package provides a set of abstract classes that define and partially implement Filter
streams. A Filter stream filters data as it is being read from or written to the stream The two filter
streams for reading and writing data are FilterInputStream and FilterOutputStream respectively.

A filter stream is constructed on another stream. That is, every filtered stream must be attached
to another stream. This can be achieved by passing an instance of In

to a constructor. This implies that filter streams are chained. Mul
chaining them to a stream of bytes.

PutStream or OutputStream
tiple filters can be added by

Lol o

Files and 1/0 Streams ~ 22875505

The read method in a readable filter stream reads input from the underlying stream, filters it
and passes on the filtered data to the caller. The write method in a writable filter stream filters the
data and then writes it to the underlying stream. The filtering done by the streams depends on the
stream. Some streams buffer the data, some count data as they go by and others convert data from

the original form to a different one.
Most filter streams provided by the java.io package are sub-classes of FilterlnputStream and

FilterOutputStream, and are listed below:

* DatalnputStream and DataOutputStream

* BufferedInputStream and BufferedOutputStream
* LineNumberlnputStream

* PushbacklnputStream

* PrintStream

The java.io package contains only one sub-class of FilterReader known as PushbackReader.
To create filter input or output stream, we should attach the filter stream to another nput or
output stream. For example, we can attach a filter stream to the standard input stream 1n the

following manner:

BufferedReader d = new BufferedReader(new InputStreamReader(System.in));
String input;
while ((input = d.readLine()) != null)

vvvvv

The above code is useful for reading the data from the console. Here, InputStreamReader is
attached to BufferedReader which acts as the filter stream.

7.5.1 DatalnputStream and DataOutputStream
DatalnputStream (DataOutputStream) is a filtered input (output) stream and hence must be
attached to some other input (output) stream. DatalnputStream handles reading in data as well

as lines of text.
Program 7.3 stores the data which are read from the console in tabular format using

DataOutputStream. After that, the program reads the data using the DatalnputStream.

l Program 7.3 Using DataOutputStream and DatalnputStream.

import java.io.®;
class SampleStream

{ [2

public static void main(String a[]) throws IOException

i F . .
55226 Object Oriented Programming through Java

{

DataOutputStream out = new DataOutputStream(new
FileOutputStream(“file.txt”));
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
char sep = System.getProperty(“file.separator”).charAt(0);
for (inti=0;i<5;i++)
{
System.out.print(“Read the item name:”);
String item=br.readLine();
out.writeChars(item+separator);
out.writeChar(‘\t’);
System.out.print(“Read the quantity:”);
int qun=Integer.parselnt(br.readLine());
out.writelnt(qun);
out.writeChar("\n’);
}
out.close();
DatalnputStream in = new DatalnputStream(new
FilelnputStream(“file.txt”));
try
{
char chr;
while (in.available()>0)
{
StringBuffer item1 = new StringBuffer(20);
while ((chr = in.readChar())!= sep)

{
}

System.out.print(item1);
System.out.print(in.readChar());
System.out.print(in.readint());
System.out.print(in.readChar());

item1.append(chr);

}

}

catch (EOFException e)

{
}

Files and I/0 Streams

in.close();
}

) LS
Running Program 7.3 gives the following output:

Read the item name: Mouse
Read the quantity: 4

Read the item name: Keyboard
Read the quantity: 3

Read the item name: Monitor
Read the quantity: 2

Read the item name: Modem
Read the quantity: 4

Read the item name: Hub
Read the quantity: 4

Mouse 4
Keyboard 3
Monitor 2
Modem 4
Hub 4

The above example stores the items required and the quantity of the item. Although the data
are read or written in binary form, they appear on the console as characters.

DataOutputStream is attached to a FileOutputStream that is set up to write to a file named
file.txt. DataOutputStream writes the data in the file.txt file by using specialized writeXXX()
methods. Here, XXX represents a Java data type. Next, SampleStream opens a DatalnputStream
on the file just written to read the data from it by using DatalnputStream’s specialized readXXX()
methods.

In general, we use null or —1 to indicate the end of the file. Some methods such as readString()
and readChar() in the DatalnputStream do not identify null or —1 as an end of file marker. Thus, a
programmer must be careful while writing loops using Data Input stream for reading characters
from a file.

The available() method of DatalnputStream, which returns the number of bytes remaining, can
be used to check whether there are any data remaining to read.

7.5.2 PushbackinputStream

Pushback is used on input streams to allow a byte to be read from and returned to the stream. Like
all filter streams, PushbacklInputStream is also attached to another stream. It is typically used for

50228 Object Oriented Programming through Java
some specific implementation, for example, to read the first byte of the data from a stream for the
purpose of testing the data.
For example, it is mostly required in the case of designing pars
a glance on the next set of input data. Data must be read, and if not
placed back into the input stream, which may be read again and processe
A PushbacklnputStream object can be created as follows:

PushbacklInputStream inpb = new PushbackinputStream(new InputStream);

In order to satisfy the requirement of pushing back a byte (or bytes) of an array into the input
stream, this stream has the special method called the unread() method.

ers, while reading data, to have
found appropriate, it should be
d normally.

void unread(int ch);
void unread(bute buff]);
void unread(byte buf[], int offset, int numchars);

The first form pushes back the lowest-order byte of ch, which is returned as the next byte when
another byte is read. The second and the third forms of the method return the byte in a buffer with
the difference that the third method pushes back the number of characters (numchars) starting
from the offset. PushbackReader also does the same thing on the character stream.

¢ 7.6 RandomAccessFile

Sequential files can read/write only at the beginning/end of the file. On the other hand, random
access files allow us to read from or write to any location in the file. The class RandomAccessFile
offers methods that allow specified mode accesses such as ‘read only’ and ‘read — write’ to files.

Since RandomAccessFile is not inherited from InputStream or Output Stream it cannot be
chained unlike filtered stream classes; however, RandomAccessFile implements both Datalnput
and DataOutput which deal with Java’s primitive data types. It must be noted that DatalnputStream
implements Datalnput whereas DataOutputStream implements DataOutput.

The Randc mAccessFile class is a very useful class for file handling. The constructors of these
classes are the following:

RandomAccessFile(String filename, String mode);
RandomAccessFile(File file, String mode);

Thus, RandomAccessFile objects can be created either from a string containing the file name or
from a File object. The mode represents the type of access to the file, for example, ‘r’ for read and
‘rw” for read and write. There are two other modes, namely, ‘rws’ and ‘rwd’, ‘rws’ opens the file
as read and write and stores the updations made on the file data or metadata in the synchronized
way, whereas, ‘rwd’ deals with the file data but not the metadata. Here, metadata refers to the data
about the files. RandomAccessFile throws an IOException if an I/O error has occurred.

Program
7.4 illustrates the use of RandomAccessFile.

Files and I/O Streams 229

[_Program 7.4 Using RandomAccessFile.

import java.io.¥;

class RandomAccessExample

{
public void method_B()
{
try
{
RandomAccessFile rafile = new RandomAccessFile(“file.txt”,”rw”);
System.out.print(*Content of the file is :");

for (iinti= 0; 1 < rafile.length() —1; i++)
{
if ((i%2) == 0)
{
rafile.seek(i);
char myc = rafile.readChar();
System.out.print(myc);
}
}

rafile.seek(rafile.length());

rafile.writeChars(“ Append”);

System.out.printin();

System.out.print(“Content of the file is after append:”);

for (int i =0; i < rafile.length() —1; i++)

{
if ((i%2) == 0)
{
rafile.seek(i);
char myc = rafile.readChar();
System.out.print(myc);
}
}
}
catch(IOException ioe)
{
System.out.printin(“error:” + ioe.getMessage());
}

}

0 Object Oriented Programming through Java

void method_A()
{
try
{

String s = new String(“RandomAccess Example”);)
FileOutputStream fos = new FileOutputStream(*“file.txt”);
DataOutputStream dos = new DataOutputStream(fos):

dos.writeChars(s);

}

catch(IOException ioe)

{

System.out.printin(“error:"+ioe.getMessage());

}
}

public static void main(String args[])

{

RandomAccessExample rae = new RandomAccessExample();

rae.method_A();
rae.method_B();

}
) y2s%
The output of Program 7.4 is the following:

Content of the file is: RandomAccess Example
Content of the file is: RandomAccess Example Append.

In Progr::n 7.4, the method seek(long number) points the file pointer to the location specified
by number.

d 7.7 Serialization

Serialization is the technique most commonly used for network applications and persistent storage
of objects, in order to maintain the reference of a remote object.

Storing the state of the object into a file is often referred to as serialization. whereas, reading
the object state from a stored file is referred to as deserialization.

The streams ObjectOutputStream and the ObjectInputStream are used for object serialization
and deserialization, respectively. These classes allow us to read/write objects from to streams
converting from internal to external 8-bit representation. These two classes throw the exceptions
IOException and StreamCorruptedException.

Files and I/O Streams

The two methods that are useful for object serialization are readObject() on ObjectInputStream
and writeObject(Object obj) on the ObjectOutputStream. To make any object serializable, the
object of the class must implement the serializable interface of the java.io package. That is, we
have to specify implements Serializable in the definition of the class, the objects of which we
would like to read/write from to files.

Any variable in a class having the transient modifier will not be saved in the file (that is, that
variable is not serializable). Similarly static variables are not serializable. There is an interface
called Externalizable, which is used to control the serialization process of the object.

Program 7.5 implementing the SerializationExample class illustrates the use of the object
serialization, which stores the object state in a file called object.txt and deserializes it.

. Program 7.5 Using object serialization and deserialization.

import java.io.*;

class ObjectSerialization implements Serializable
{
String Employeename;
String designation;
ObjectSerialization (String number,String designation)
{
this.Employeename=number;
this.designation =designation;
}
public String toString()
{
System.out.printin(“Employee name is:”+Employeename);
System.out.printin(“Designation is:”+designation);

}
}
public class SerializationExample
{ public static void main(String args[])
{
try
{

ObjectSerialization obj = new ObjectSerialization (“Kumar”,
"Projectleader”);

FileOutputStream fos=new FileOutputStream(“object.txt”);

ObjectOutputStream oos=new ObjectOutputStream(fos);

88232 Object Oriented Programming through Java

oos.writeObject(obj);
oos.flush();
oos.close();

FilelnputStream fis=new FilelnputStream(*object.txt”);
ObjectinputStream ois=new ObjectlnputStream(fis); .
ObjectSerialization obj2=new (ObjectSerialization) ois.readObject()

System.out.printin(“value of the obj2: "+0bj2);

}

catch(NotSerializableException e1)

{
}

catch(StreamCorruptedException e2)

{

}
catch(IOException e3)

{

System.out.printin(“ioexception has occurred:"+e1.getMessage());

System.out.printin(“ioexception has occurred:"+e2.getMessage());

System.out.printin(“ioexception has occurred:”+e3.getMessage()):
}
}

) £5
The output of Program 7.5 is the following:

Value of the obj2:
Employee name is: Kumar
Designation: ProjectLeader

FilelnputStream and FileOutputStream are used to read/write the object from/to a file
respectively. In Program 7.5, when we have problems with stream classe :
caught by the try block may be IOException or StreamCorruptedExcepti

NotSerializableException will arise if the class that is going to be serializable
the serialization interface.

s, the exceptions
on. The exception
does not implement

(Sample programs involving cohcepts introduced in this chapter can be found at

universitiespress.com/downloads/books/81-7371-572 http://www.

-6.pdf, section 7.8 Sample Programs)

\

Files and I/O Streams 233755

Objective type questions

P,
.

10.

i 7

I A R S

is a logical entity that either produces or consumes information.

The and are abstract classes used to handle character streams.
The

class tops the hierarchy of input byte-stream classes.
When working with files the

package is imported.

The read method in FilelnputStream class returns —1 when occurs.

FilelnputStream class throws exception apart from |OException.
The static stream objects ‘out’and ‘err’of System class are actually objects of type

All the methods in Writer class have the return type.

The class allows reading of binary representations of Java primitives from an
input byte stream.

Which encoding scheme does Java support to represent characters internally?
a. 16-bit Unicode b. 8-bit Unicode c. 8-bit ASCII d. 16-bit ASCII

What happens when the following code is executed?

import java.io.*;
public class Question12

{

public static void main(String args[])
{
InputStream is=new InputStream(“test.txt”);
int i=is.read();
while(i'=—1)
{
System.out.printin(i);
i=is.read();
}

is.close();

}

a. Prints the contents of file test.txt to standard output.
b. The code will not compile because the ‘unreported exception java.io.|OException; must be

caught or declared to be thrown’.

¢. The code will not compile because the ‘unreported exception java.io.FileNotFoundExcept

ion; must be caught or declared to be thrown.’

d. The code will not compile because abstract class InputStream cannot be instantiated.

Applets

An applet is a software component that enables client-side programming and facilitates text,
graphics, audio, imaging, animation and networkin g, besides live updating and securing two-way
interaction in web pages\ This chapter introduces applets, applet methods and applet life-cycle.

¢ 8.1 Introduction

6ne of the main features of Java is the applet. Applets are dynamic and interactive programs.
Applets are usually small in size and facilitate event-driven applications that can be transported

over the w]e@

An applet is a Java code that must be executed within another program. It mostly executes in
a Java-enabled web browse&n applet can be embedded in an HTML document using the tag
<APPLET> and can be invoked by any web browser. Parameters can be passed to an applet using
the tag <PARAM> in the HTML document’ Applets can also be executed using the appletviewer
utility provided in the J2SDK Kkit.

The Applet class is defined in the package java.applet. All the basic capabilities of applets are
provided in this class. To write Java applets, the class Applet present in the java.applet package
must be extended. The Applet class has to be imported as shown below:

import java.applet,Applet"‘k./

A Java applet must be a public class. Thus, the Applet class can be accessed when the applet is
run in a web browser or in the Appletviewer. The applet code will be compiled even if the class is
not declared as public, but the applet will not run.

@_fqpplet. ‘ffiie looks as shown below:

,% import java.applet.*;
. public class SampleApplet extends Applet

{
// applet code

}
Look at the following simple applet code that displays a string:

import java.applet.Applet;
import java.awt.Graphics;

public class SimpleApplet extends Applet

7238 Object Oriented Programming through Java

{
public void paint (Graphics g)
{
g.drawString (“Simple Applet Code”), 30, 43);
}
}

@ike any other Jaz program, the applet’s class name must match with the name of the file in

which it is written. .

“ékhpplets do not contain the main() that is required to run a Java ﬂpplicatl(.m and thu% ll}“)’
cannot run on its own; however, usually applets run in a container that provides the missing
code. The main features of applet include the following:

* It provides a GUI
* facilitates graphics, animation and multimedia
* provides a facility for frames
* enables a event handling e
* avoids a risk and provides a secure two-way interaction between web pagy
main() method)

Note that it is possible to execute applets using the Java interpreter (using th
if the class is extended with Frame.

An applet can reside anywhere on the web and can be downloaded on any computer. Applets
have limited access to the resources of the client into which they are installed from an Internet
server. For this reason, applets avoid the risk of viruses or breaking the data integrity problems
at the client. Applets provide security by reverifying the generated byte code and no memory
space is allocated till the reverification process completes. Generally, a virus cannot be hidden
in uninitialized memory. If the reverification process is not complete, the applet will be rejected.
Further, applets cannot do the following:

* Read or write clicnt file system (disks) unless specified explicitly; in such cases, the applet
is allowed only in certain directories

* Access the source code of the applets; the applet’s source code can be accessed only from
the original server

* Execute local programs/libraries/ DLLs on the client

* Opening network connections other than to a HTTP server: applets only talk to the server
that they live on

* Finding information about the user such as user name, dircctories and applications
installed

Applets are very useful for the presentation and demonstration of a concept in an effective
manner. For example, an applet designed for explaining the bubble sort algorithm shows visually
how the bubble is moved during each pass of the algorithm. Usually, applets interact with the
AWT controls and it is necessary to import the awt package (java.awt*) and also the event package

Applets 2395500

|Applet Byte code I

L

(Re)Verification

Client
Execution Access Restricted
Memo i
Byte code ry Allocation

[l Fig. 8.1 Byte code of an applet running at a client.

(java.awt.event.¥) for event handling. Input/Output streams are not commonly used for applets for
the purpose of I/O. Figure 8.1 illustrates the byte code of an applet running at a client.

¢ 8.2 Java Applications Versus Java Applets

Java programs consist of applications and applets. Java applications are stand-alone programs and
typically executed using the Java interpreter. On the other hand, Java applets are executed in a
web browser or in a special window known as the Appletviewer; however, the compilation stages
of both are the same.

The structure of applets differs from that of application programs; for example applets do
not have the main() method. Applets do not interact with the console operations (that is, I/O
operations) like application programs do. Applets allow the user to interact through the AWT .

Applets differ from applications in the way they are executed. An application is started when
its main() method is called. In the case of applets, an HTML file has to be created, which tells the
browser what to load and how to run the applet. Java, however, allows a programmer to create
software code that can function both as a Java application and as a Java applet using a single class
file. Table 8.1 illustrates the similarities and differences between Java applications and applets.

¢s:3 Applet Life-cycle

Applets need not be constructed externally. The run-time environments associated with the applets
context, either the browser or the applet viewer, automatically construct them. Every applet must
extend the Applet class. Unlike application programs, Java applets have a special programming
structure.

An applet has a life-cycle, which describes how it starts, how it operates and how it ends.
Figure 8.2 shows the life-cycle of an applet. The life-cycle consists of four methods: init(), start(),
stop() and destroy(). These methods are used as follows:

* init() It is called only once when the applet is first loaded and created by the browser.
* start() It runs whenever the applet becomes visible.

240 Object Oriented Programming through Java

Table 8.1 Similarities and differences be

tween applications and applets.

. Java applications

Javaapplets

These run on stand-alone systems.
These run from the command line of a computer

Parameters to the application are given at the
command prompt (for example, args[0], args[1]
and so on)

In an application, the program starts at the main()
method. The main() method runs throughout the
application

These have security restrictions.

They support GUI features.

These are compiled using the javac command

These are run by specifying at the command prompt
as follows:

java classFileName

These run in web pages.
These are executed using a web browser.

Parameters to the applet are given in the HTML
file.

In an applet, there is no main() method that is
executed continuously throughout the life of an

applet.
These have security restrictions.

They support GUI features too. Java—compatible
browsers provide capabilities for graphics, imaging,
event handling and networking.

These are compiled using the javac command also.

These are run by specifying the URL in a web
browser, which opens the HTML file. Or run using
the appletviewer by specifying at the command
prompt:

appletviewer htmlFileName

| Creation I

Init() Initialization
Start() | Start/restart
Stop() - Stop

destroy() | Destruction

B Fig. 8.2 Applet life-cycle.

Return Web Page
Reload, or Resize the Web page

Applets 241770

* stop() It is called when the applet becomes invisible.
* destroy() It is called when the applet is shutdown.

A better understanding of these methods and how they reutilized in the applet can be got from
the following description of the applets life-cycle.

In addition, there is a method paint() which is used to draw the applet for display, Note that the
paint() method is not actually part of applet life-cycle as defined in Figure 8.2, but without display
an applet is not always useful. Hence it is understood to be a part of the life-cycle.

When an applet is loaded (or reloaded), the browser creates an instance of the applet into a
browser and then initializes it before starting the applet. When a user leaves (or minimizes) a web
page, the browser stops the applet and when the user returns to the page the browser starts the
applet again.

The default implementations of the init(), start(), stop(), destroy() and paint() methods do
not have any code and, thus, do nothing at all. All the life-cycle methods can be overridden to
add specific features of applet program. The following is a brief description of the life-cycle
methods:

8.3.1 The init() method

The syntax for using init() is the following:
public void init { }

The init() method of the Applet class provides the capability to initialize the applet variables.
That is, this method can be overridden to perform basic initialization of an applet. The method
init() is called when the applet is created and loaded for the first time into a browser (or reloaded).
This method is called only once in the applet’s life-cycle.

The browser calls the init() method after the constructor of the applet is called. Usually,
most of initialization is done in the init() method instead of the constructor. This is because,
the constructor may be called before the hosting program is ready to provide all of the services
needed for initialization.

”

8.3.2 The start() method

The syntax for using start() is the following:
public void start() {...}

The start() method is called to start (or restart) the execution of the applet The browser can
call this method after the init() method is completed.

The start() method runs whenever the applet becomes visible That is, this method is called each
time the applet is going to be displayed on the screen. For example, while navigating through the
web, whenever a user returns to a web page in which the applet is written, the applet is restarted.
Thus, unlike the init() method, an applet can start many times throughout its life-cycle.

R
:

242 Object Oriented Programming through Java

The start() method can also be called if the applet is stopped and to start animation and play
sounds. A single start() method can start up one or several threads.

8.3.3 The stop() method

The syntax for the stop() method is the following:
public void stop() {....}

The stop() method stops the applet and makes it invisible. This method can also be used to
stop specific features of an applet, such as animation. For example, the stop() method runs when
the user leaves the current web page. An applet can be invisible typically when a user moves to
another web page or when the browser is minimized. The stop() method keep the applet running
in the background. The stop() method also stops all the threads running on the applet.

8.3.4 The destroy() method

The syntax for the destroy() method is the following:
public void destroy(){ ... }

The destroy() method is called to terminate an applet. This method runs either before the
applet exits or before the browser exits. It is useful for clean-up actions, such as releasing memory
after the applet is removed, killing off threads and closing network/database connections. Thus,
this method releases all the resources that were initialized during an applet’s initialization.

When the destroy() method is called, the applet is removed from the memory. A call to the

destroy() method will call the stop() method to execute. This method can be overridden if any
specific resources have to be released.

8.3.5 The paint() method

The syntax for the paint() method is the following:
public void paint(Graphics g) {....}

The paint() method is used for applet display on the screen. The display includes text, images,
graphics and background. The paint() method is called whenever a window is required to paint or
repaint the applet. It can also be called when a browser window is maximized or when the applet
is shown that was covered by another window. Thus, this method can be called several times
during an applet’s life-cycle. In general, every applet program will have a paint() method, which
is overridden to display the applet. To override paint(), we have to import the java.awt.* libraries,
which include the Graphics class that enables display of information and graphics in an applet’s
display area. -

- Unlike the other four methods of an applet, Paint() has one argument of type Graphics. Hence,
to use paint(), the graphics class must be imported. Whenever paint() is called, an instance of

Applets 2437775

Table 8.2 Applet methods.

. iﬁiame'of method

Features

init()

start()

stop()

destroy()

Paint()

The first method to be called.
Runs once at the time of initialization before the applet starts. That is, it is called
when the applet is first loaded and created by the browser.

This method is employed to initialize variables. It is also used to load images and
fonts.

Runs whenever the applet becomes visible. That is, it is called when an applet
starts or restarts after being stopped.
Occurs after init(). '

Runs whenever the applet becomes invisible. That is, it is called when the applet
leaves the web page.

Runs only once when the browser exits.

The applet will be removed from the memory.

Reclaims resources that were allotted during initialization and, thus, it is used for
deallocating, closing and cleaning up resources.

Runs whenever the applet needs to be drawn or displayed.

the graphics class is created by the browser and handed over to the applet. Further, paint() is not
defined in the Applet class. Applet inherits paint() from the Component class, a super-class in
Applet’s long chain of inheritance, which goes from Applet to Panel to Container and finally to

Component.

The repaint() method is called if the applet wants to be repainted again. Note that repaint()

internally calls paint().
A brief summary of sections 8.3.1 to 8.3.5 is presented in Table 8.2.

¢ 8.4 Working with Applets

Applets can be executed in two ways : from Browser or from Appletviewer. The JDK provides

the Appletviewer utility.

Browsers allow many applets on a single page, whereas applet viewers show the applets in

separate windows.

Program 8.1, named SampleApplet, demonstrates the life-cycle methods of applets:

. Program 8.1 A demonstration of life-cycle methods of applets.

import java.applet.*;
import java.awt.X;
import java.awt.event.®;

g
e

T5N244 Object Oriented Programming through Java

PF<APPLET code = “SampleApplet” width=300 height=150> </APPLET> */
public class SampleApplet extends Applet implements ActionListener
{
Button b=new Button(“Click Me");
boolean flag=false;
public void init()
{
System.out.printin(“init() is called");
add(b);
b.addActionListener(this);

}

public void start()

{

System.out.printin(*start() is called”);

}
public void destroy()

{

System.out.printin(“destroy() is called”);

}
public void stop()

{

System.out.printin(“stop() is called");

}

public void actionPerformed(ActionEvent ae)

{
flag=true;
repaint();
}
public void paint(Graphics g)
{

System.out.printin(“paint() is called”);

If(flag)

g-drawString(“This is a simple Applet”,50,50);
}

) Z5

For executing the program using the AppletViewer or the web browser, first the program is to
be compiled in the same way as the Java application program as shown below:

C:\>Javac SampleApplet.java

Applets 245755

8.4.1 Running the applet using AppletViewer

AppletViewer is a program which provides a Java run-time environment for applets. It accepts
a HTML file as the input and executes the <applet> reference, ignoring the HTML statements.

Usually, AppletViewer is used to test Java applets.

To execute any applet program using AppletViewer the applet tag should be added in the
comment lines of the program. These comment lines will not be considered when the programs
are compiled. The command AppletViewer <appletfile.java> is used to view the applet. To execute

Program 8.1, we can invoke the same as follows:
c:\>appletviewer SampleApplet.java
The reader can thus execute Program 8.1. It is suggested as an exercise.

The drawstring() method draws the String “This is a sample applet’ on the applet panel,starting
at the coordinate (50, 50). Note that the applet panel provides a graphical environment in which
the drawing will paint rather than print. Usually, the panel is specified in terms of pixels in which
the upper left corner is the origin (0, 0).

As mentioned earlier, applets interact with the user through AWT. In Program 8.1 we have
used one AWT component—button. Observe the SampleApplet class header:

public class SampleApplet extends Applet implements ActionListener

The ActionListener interface is implemented by a class to handle the events generated
by components such as buttons. The method actionPerformed() available in this interface is
overridden so that some action is performed when the button is pressed. In Program 8.1, it can
be observed that when the applet is first executed, the paint() method does not display anything
on the applet window. This is because flag is set to false. When the button is pressed (observe the
actionPerformed() method) the flag is set to true and repaint() method is called. This time since
the flag is set to true, the repaint() method will display the string ‘This is a simple applet’.

In Program 8.1 we use the System.out.printin() method to.print the sequence of the methods
executed when the applet is running.

The output shown in the console is in the following :

init() is called;
start() is called;
paint() is called;
stop() is called;
start() is called;
paint() is called;
stop() is called;
destroy() is called;

When the applet program is first executed, three methods—init(), start(), paint() are executed.
Later, if the applet window is minimized, the stop() method is executed. If the applet window is

Object Oriented Programming through Java

maximized again, the start() and the paint() methods will be executed simultan?eously. When the
applet window is closed, the stop() and the destroy() methods will be called simultaneously.

8.4.2 Running the applet using the web browser

The browsers that support applets include Netscape Navigator, Internet E).cpl_orer and Hot Java.
The applet can be viewed from a web browser by writing the APPLET tag within tpe HTML code.
To the run Program 8.1 in the web browser, the following html code has to be written:

<html>

<he_ad>

<title> A sample Applet</title >

</head>

<body> _

<applet code="SampleApplet” width=200 height=200>
</applet>

</body>

</html>

To run the applet, the browser, which could be the Internet Explorer for instance, has to be
opened, the options File - Open have to be selected. Then, the applet code HTML file is opened
by using the Browse button.

To show the difference between running the applet in the applet viewer and the web browser
Program 8.1 is modified a little to the form shown in Program 8.2:

[Program 8.2 An alternate way of running an applet.

import java.applet;

import java.awt.*;

public class SampleApplet extends Applet
{

- i,

String msg = "
public void init()

{
msg = msg+“init();”;
}
public void start()
{

msg = msg+“start();”;

}

public void destroy()

{
msg = msg+“destroy();";
}
public void stop()
{
msg = msg+“stop();";
}
public void paint(Graphics g)
{

msg = msg+ “paint();”;
g.drawString(msg,10,20);

} } | £S5

The button is removed and the life-cycle methods are displayed on the applet window instead
of on the console. The difference between the output of the above applet when called using the
AppletViewer and the web browser is in Figure 8.3. '

The output of Program 8.2 shows the applet with the sequence of the methods executed. When
the applet program is first executed, the init(), start() and paint() methods are called .

When the web browser is minimized, the paint() method is called, and when it is maximized,
paint() is called again. In the case of the applet viewer the stop(), start() and paint() methods are
called when the applet is maximized. The same things happen when the applet viewer and the web
browser are closed. That is, the stop() method and the destroy() method are called. When moving
from the web page containing the applet to another web page and back, the start() method in the

applet is called.

TR A e o

;pﬁi}ﬁO:pa’irit()*

Applet 575
init();start();paint()stop();start();paint();

Applet started

I Fig. 8.3 (a) Output using Applet Viewer; (b) Output using web browser.

i5248 Object Oriented Programming through Java

¢ 8.5 The HTML APPLET Tag

The APPLET tag of HTML i 15 ‘used to start an applet either from a web browser or an&lapplet viewer.
The HTML tag allows a Java applet to be embedded in an HTML document.

" A number of optional attributes can be used to control an applet’s appearance, - for example,
the dimensions of the applemﬂ Also, pa.réméters can be mdependently defined which can be
passed to the applet to control'its behaviour.

The complete syntax of the applet tag is given below:

<applet

code = “appletFile” -or- [object = serlahzedApplet”]
e Of width = “pixels” - ¢

height = “pixels” [codebase = “code?a;eLiliL”] e

“ [archive = “archiveList”] '

OTQ - Theb [alt = “alternateText”]

[name = “appletlnstanceName”]
il_’& INR — [align = “alignment”] >

[vspace = “pixels”]

[hspace = “plxels"]

>

[<param name = “appletAttribute1” value = “value”>]
[<param name = “appletAttribute2” value = “value”>]

[alternateHTML]

</applet>

8.5.1 Attributes in the applet tag.

The attributes code, width and height are mandatory and all other attributes are options, which are
shown in brackets ([]). The attributes need not follow the order that was specified in the above
syntax. The descnptlon of each attribute is given below:

.code Thename of'the Java applet Class ﬁle which’ contamg\the compiled applet code. This name
must be relative to the base URL of the Applet and cannot be an absolute URL. The extension in
the file name is optional.

width This refers to the width of the appiet panel specified in pixels in the browser window.

height This refers to the height of the applet panel specified in pixels in the browser window.

The width and height attributes specify the applet’s, display area. This applet area does not include
any windows or dialogue boxes that the applet shows.

Applets 28T

codebase This refers to the base URL of the applet. That is, the URL of the directory that
contains the applet class file. If this attribute is not specified then the HTML document’s URL
directory is taken as the CODEBASE.

archive There are one or more archive files containing Java classes and other resources that will
be preloaded. The classes are loaded using an instance of the AppletClassLoader class with the
given codebase. The archives in archivelist are separated by a comma (,).

alt This refers to text to be dlsplayed if the browser understands the applet tag but cannot run
Java applets

name This refers to a name for the applet instance which makes it possible for applets to
communicate with each other on the same HTML page. The getApplet() method, which is defined
in the AppletContext interface, can be used to get the applet instance using name.

align This refers to the alignment of the applet. The possible attribute values are LEFT, RIGHT,
TOP, BOTTOM, MIDDLE, BASELINE, TEXTTOP, ABSMIDDLE and ABSBOTTOM.

vspace This refers to the space, specified in number of pxxels, used as a margin above and below
the applet.

hspace This refers to the space, specified in number of pixels, used as a margin to the left and
right of the applet. -~

param The param tag, specifies an applet parameter as a name-value pair. The name is the
parameters name, value is its value. The values of these parameters can be obtained using the
getParameter() method.

alternateHTML This is ordinary HTML to be displayed in the absence of Java or if the browser
does not understand the applet tag. This is different from the alt attribute which understands the
applet tag but cannot run, whereas the alternateHTML tag is provided when a browser does not

support applets.

8.5.2 Passing parameters to applets

The applet tag helps to define the parameters that are to be passed to the applets. Programs 8.3
and 8.4 illustrate the method of passing parameters to an applef. In this example the first
parameter that is presented contains text whose location is specified by the other two parameters.
Program 8.3 is the HTML code for this. |

. Program 8.3 HTML code for the applet program for passing parameters.

<IDOCTYPE HTML PUBLIC “-//W3C//IDTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE>Example for Parameter passing to applet </TITLE>

Object Oriented Programming through Java

</HEAD> g

<BODY> \?Ma

<H3>This is an example for passing parameters to Applet</H3><p>

The parameters are<p>

text= Text Parameter<p>

x=50<p>

y=50<p>

<H5> THE TEXT PARAMETER WILL BE DISPLAYED IN THE APPLET AT THE
X, Y LOCATION</H5>

<APPLET CODE="ParamApplet.class” WIDTH = 300 HEIGHT=100 >

<PARAM NAME="text” VALUE="Text Parameter”>

<PARAM NAME="x" VALUE="50">

<PARAM NAME="y"” VALUE="50">

</APPLET>

</BODY>

</HTML> ' %

After writing the HTML code let us write the applet program that will retrieve the parameters
specified in the HTML tag by using the getParameter() method. This method has one argument,
which specifies the name of the argument and returns the value of the argument in the form of

a string. The Integer.parselnt() method is used to convert the parameters to the integer datatype
from the string datatype.

. Program 8.4 Passing parameters to an applet. '

import java.applet.;

import java.awt.¥;

import java.awt.event.®;

import java.net.*; _
public class Para Applet extends Applet

{
public void init()
{
}

public void start()

{}
public void destroy()

{}
public void stop()

{}

public void paint(Graphics g)

{
String text=getParameter(“text”);
g.drawString(text,50,50);

}

) &5

The output of Program 8.4 is the following:

3 Example for Parameter p1ssmg to applct Mlcmsof: Internet Explorer
3 File Edit Favarites § 5:Tools’ Help =~

i @ CO-RRG| S |lewm. ﬁ..ﬁ

This is an ple for passing par to Applet

The parameters are

Text=Text Parameter

*x=50

y=50

The text parameter will be displayed In the appiet at the x, y location

i cApplet PeramApplet saarted oy Lin R R e S SRR e T P e My Computar oo

¢ 8.6 The java.Applet package ,

The java.Applet package is one of the smallest packages in the Java APL It contains a single class,
the Applet class, and three interfaces: AppletContext, AppletStub and AudioClip. Applets use
many GUI components such as labels, checkboxes, buttons, radio buttons, lists, text components,
canvases and scroll bars defined in the java.awt package.

The Applet class The Applet class contains a single default constructor with no parameters.
This constructor is generally not used. Instead applets are constructed by the run-time environment
when they are loaded and do not have to be explicitly constructed.

(See http://www.universitiespress.com/downloads/books/81-7371-572-6.pdf, Table 8.3 for a
description of the methods in the Applet class.) -

The java.applet.Applet class is actually a sub-class of java.awt.Panel. Thus, an applet can be
used directly as the starting point for an AWT layout. Since an applet itself is a Panel, by default it
has a Flow Layout manager. The Applet class inherits the methods of the Component, Container
and Panel classes.

252 Object Oriented Programming through Java

et’s execution environment, Java
the methods of AppletContext.
cuments into view by calling
d getCodeBase() are used to
can be concatenated

The AppletContextinterface To get information from t'he appl
provides an interface called AppletContext. The following are
Within an applet, if its context is obtained then we can bring other do
the showDocument() methods.The methods getDocumentBase() an
get the URL objects of the HTML document and the applet class file. They PrR——
with a string that names the file you want to load. Program 8.5 illustrates the use of the methods
in the Applet Context interface.

] Program 8.5 Methods in the Applet Context interface.

import java.applet®;
import java.awt.®;
import java.awt.event.*;
public class ParamApplet1 extends Applet implements ActionListener
{

Button ok;

public void init()

{

ok=new Button(“OK");

add(ok);

ok.addActionListener();

}

public void start()

{

}

public void destroy()

{

}

public void stop()

{

}

public void paint(Graphics g)

{ :

b

public void actionPerformed(ActionEvent e)

{

if(e.getActionCommandy().equals(“OK”))
{
String str=getDocumentBase();
try{
URL url=new URL(str, “samplehtml2.html”);

getAppletContext().showDocument(url);
}catch(MalformedURLException e)
{

}
}
}
} &S
Table 8.4 gives a list of the methods in this interface and describes briefly how they can be used.

(See http://www.universitiespress.com/downloads/books/81-7371-572-6.pdf, Table 8.4 for a
description of the methods in the AppletContext interface.)

The AppletStub interface The AppletStub interface provides a way to get information from the
run-time browser environment.

(See http.//www.universitiespress.com/downloads/books/81-7371-572-6.pdf, Table 8.5 for a
description of the methods in this interface.)

The AudioClip interface To load audio clip into the applet the method getAudioclip() is called.

(See http://www.universitiespress.com/downloads/books/81-7371-572-6.pdf, Table 8.6 for a
description of methods in the AudioClip interface.)

¢ 8.7 Sample Programs

1. Program 8.6 shows the basic functionalities (init(), start() and paint()) of an applet. It also
illustrates the steps involved in processing the applet.

. Program 8.6 A simple applet program.

import java.applet.Applet;
import java.awt.Graphics;

public class Simple extends Applet

{

public void init()

{

System.out.printin(“Initializing...”);

public void start()

{

System.out.printin(“starting... “);

}

Object Oriented Programming through Java

public void stop()

{

System.out.printin(*‘stopping... “);
}
public void paint(java.awt.Graphics g)
{

g.drawString(“First Applet Demo to print text”,50,25);
System.out.printin(“First Applet Demo to print text);

}
}

[*<applet code="Simple.java” width=300 height=200></applet>*/
The output of Program 8.6 is shown below.

Applet Window Console Output

E:\>javac Sihple.iava

& Applet Viewer: Simplejava 5 '

E\>AppletViewer Simple.java
Initializing...

starting...

First Applet Demo to print text
First Applet Demo to print text

Applet 20T

First Applet Demo to print text

Applet started - stopping...
E\>

2. Program 8.7 shows the basic functionalities of the graphics class inherited from the java.awt

package.

. Program 8.7 The basic functionalities of the Graphics class.

/[This program is to illustrate the basic functionalities of Graphics class inherited
from awt package. This program prints out the drawings in an applet window.

import java.awt.Graphics;
import iava.a_pplet.Applet;

public class Draw extends Applet

{
public void paint(Graphics g)
{
g.drawString(“Drawing Demo”,10,10);
g.drawRect(35, 20, 125, 200);

Applets 255

g.fillRoundRect(250, 20, 125, 200, 15, 15);
g.drawOval(35, 250, 125, 180);
g.drawArc(250, 250, 125, 180, 90, 180);
int x[] = {250, 350, 150, 300, 200}

int y[] = {450, 520, 520, 600, 600};

int numPts = 5;

g.drawPolygon(x, y, numPts);
gfillPolygon(x, y, numPts);

}
[*<applet code="Draw.java” width=500 height=500 > </applet> */ %

The output of Program 8.7 is shown below:

" Appiet Viewer: Drawavag) 110 FF T
Applet

Drawing Demo
3. Program 8.8 illustrates the keyboard events of applets

Applet started

] Program 8.8 Keyboard events of applets.

I/ This program takes the key input and prints the characters keyed in on the applet
window.

import java.awt.Graphics;
import java.awt.event.KeyEvent;
import java.applet.Applet;

%256 Object Oriented Programming through Java

«tends Applet implements KeyListener

public class Keylnput €
{

String msg;

public void init()

{
addKeyListener(this);
requestFocus();
msg= L ﬂ;

}

public void keyPressed(KeyEvent ke)

{

showStatus("‘Key Down");

}
public void keyReleased(KeyEvent ke)

{

showStatus(“Key Released”);

}
public void keyTyped(KeyEvent ke)

{
msg +=ke.getKeyChar();
repaint();

}
public void paint(Graphics g)

{
g.drawString(msg,10,10);

}

}
[* <applet code= “Keylnput.class” width=300 height=300 > </applet> */

“The output of Program 8.8 is the following:

G AL A T — - —
g Ry g R Pl S oh g Ny N AR A * -y :
RN R e L C g p g S AP g 1L e S DR
¢ LA ""_‘-.:'k_l\"_l-' [AN 41.‘.‘1.:;=4 pRag g Lt T 3. AT e
A awLdl bt - hi) Seel) S g :
i d A] e 1 sdmhochubh Lo A0 d

This Applet Prints the text typed and shows the key events as status

Key Down

¥

Applers 2BTHED
4. Program 8.9 uses the available fonts in the system and prints them on the applet.

. Program 8.9 Printing the fonts available in the system.

import java.awt.Graphics;

import java.awt.Font;

import java.awt.GraphicsEnvironment;
import java.applet. Applet;

public class FontList extends Applet
{
* public void paint(Graphics g)
{

Fontf;
String s;
GraphicsEnvironment ge =
GraphicsEnvironment.g_etLocalGraphicsEhvironmentO;

String fontNames[] = ,
ge.getAvailableFontFamilyNames();
g.drawString(“Hello”,0,0); : _
. .-for(int iﬁO,i=10; i<fontNames.length; i++,j+=20)
{ _ | | -
g.drawString(fontNamesl[i],50,j); -
System.out.printin(fontNames[i]); -
s o ' |
"
[*<applet code="FontList.java” width=300 height=200 > </applet>*/ . : %

The output of Program 8.9 is as shown below: -

Book Antiqua

Bookman Old Sgyle -
Century Gothic

Comic Sans MS
Courier New

Defaule

Dialog

Dialoginput

Estrangelo Edessa
Franklin Gothic Medium

Applet started

%7958 Object Oriented Programming through Java

n applet and mouse action event-handling.
a

5. Program 8.10 demonstrates icons in

i -handling.
[Program 8.10 Using icons and mouse action event-handiing

import java.awt.®;
import javax.swing.™;
import iava.awt.event.ActionLnstener,

import iava.awz.event.ActionEvent; R)
fr<applet code="lconDemo” width=300 height=400></applet> /

public class IconDemo extends JApplet implements ActionListener

{
JButton ob1,0b2;

JLabel label;

JTextField tf,tf2;

static int flag1;

static int flag2;

public void init()

{
Container contentpane= getContentPane();
contentpane.setLayout(new FlowLayout());
Imagelcon ic1=new Imagelcon(*“open.gif”,"Java Logo”);
ob1=new |Button(ic1);
ob1.setActionCommand(“Open”);
ob1.addActionListener(this);

Imagelcon ic2=new Imagelcon(“close gif");
ob2=new |Button(ic2);
ob2.setActionCommand(“Close”);
ob2.addActionListener(this);

tf= new JTextField(15);

tf2= new |TextField(20);

label= new JLabel(“Total Number of Clicks”)
contentpane.add(ob1);
contentpane.add(ob2);

contentpane.add(tf);

contentpane.add(label);

contentpane.add(tf2);

}

public void actionPerformed

{

(ActionEyent ae)

if(ae.getACtionCOm mando,eq Ua|s(uopenu))

Applets 259°

flag1++;
else if(ae.getActionCommand().equals(“Close"))
flag2++;

tf.setText(ae.getActionCommand());
tf2.setText(“OPEN ="+flag1+ “CLOSE =" +flag2);

The output of Program 8.11 is shown below:

Objective type questions

The object of type is passed as a parameter to the paint method.

The method of applet is called first when the applet is minimized and again
restored.

The method of an applet is called only once in an applet’s life-cycle.

The showDocument() method with a single parameter of the AppletContext interface takes
objects of type as its argument.

a. Graphics b. URL c. String d. Object

What happens when the following code is executed with AppletViewer?

import java.applet.®;
import java.io.™;
import java.awt.®;

public class AppletEg extends Applet

