Exception Handling

-handling mechanism which is easy to understand ang

implement. Java treats exceptions as objects and E'lll the exc.epttonsh(.ell‘lt;m:icz;iz::';ga:dma
hierarchy. Its features include exception propagation, f?andlmg.mu lPt erte wiif 1 g on
inheritance hierarchy and providing user-defined exceptions. Tlus chapter s : Cover; % n_era]
discussion of exception-handling in object oriented programming WEERRERS 5 Aots

concepts of Java’s exception-handling features.

Java offers an excellent exception

¢ 5.1 Introduction

An exception is an abnormal condition occurring during the execution of a program that causes it
to deviate it from the normal execution path. When an exception occurs, 1t makes further execution

of the program impossible. An exception can be defined as follows:

An exception is an event that may cause abnormal termination of the program during its
execution.

Different types of error—user errors, logic errors or system errors—can cause exceptions.
Examples of errors include division by zero, out of array bounds, running out of virtual memory,
opening an invalid file for reading and trying to read from an empty stack.

Whenever an error occurs during the execution of a program, it throws an exception. If the
exception is not handled properly, the program execution is abruptly terminated, causing serious
problems. In some books, the phrased ‘throws an exception’ is also sometimes replaced by ‘raises
an exception’ or ‘triggers an exception’.

Run-tin{]e erTor management in programming languages is a challenging task. In traditional
programming languages s'uch as C, Pascal and Fortran, common errors are handled by providing
if-else statements. Detection o.f €Irors and handling them is often confusing, tedious and time
consuming. On OtheI.' Fland, ObjBC-t oriented programming languages such as C++ and Java treat |

errors (or error conditions) as objects and provide exception handlers that g

. re separate from the
basic code so that the errors can be tackled efficiently. P

What is involved in handling exceptions? Exception handling is a mechanism that enables
programs to detect and handle errors before they occur rather than allowing them to occur and

suffering the consequences. It is designed for dealing with synchronous errors such as an attemp!
to divide by zero.



Exception Handling ~149%

The need for error handling can be better understood by studying Program 5.1 and analysing
the outputs corresponding to different inputs.

l Program 5.1 A common exception: dividing by zero.

public class Divide

{
public static void main(String[ ] args)
{
System.out.printin(“\nProgram starts here\n”);
int a,b,c;

a = Integer.parselnt(args[0]);

b = Integer.parselnt(args[1]);

c = a/b;

System.out.printin(c + “=" + a +"/”+b);
System.out.printin(“\nProgram Ends here”);

) . ES

Program 5.1 shows the following outputs for two different sets of input:

C:\javatest>java Divide 4 2
Program starts here
2=4/2

Program Ends here

C:\javatest>java Divide 4

Program starts here

Exception in thread “main”

java.lang. ArrayindexOutOfBoundsException
at Divide.main(Divide.java:10)

C:\javatest>java Divide a 4

Program starts here

Exception in thread “main” java.lang. NumberFormatException: a
at java.lang.Integer.parselnt(Integer.java:426)
at java.lang.Integer.parselnt(Integer.java:476)
at Divide.main(Divide.java:9)

* CAjavatest>java Divide 4 0
Program starts here




B0 Object Oriented Programming through Java

Exception in thread “main” java.lang. ArithmeticException: / by zero

at Divide.main(Divide.java:11)
C:\javatest>
The program will be exccuted successtully (as in the case of the first run, that is, java Divide 4 2

if two conditions are met:

1. If number of arguments passed at run-time are two
2. 1f the arguments passed are both valid numbers

A run-time error occurs if any of the following takes place:
1. If the number of arguments passed is less than two (more precisely, not equal to two)

2. If any of the arguments passed is not a number
3. If the second argument is zero

So when the program terminates abnormally, the last statement,

printin(“Program Ends here”)

1s never executed.
To prevent interruptions of the normal flow of a program from exceptions, such as the ones

discussed above, exception handlers in the program identify the exceptions and handle them

' appropriately. Exception handlers provide applications with many benefits, more than the
traditional error-handling mechanisms. If there is no user-provided exception handler, the Java
run-time system provides a default mechanism to terminate the program.

What is an exception handler? An exception handler is a picce of code used to deal with the
exceptions, either to fix the error or abort execution in a sophisticated way. It is invoked when
an exception is encountered. Exception handlers catch the exceptions raised during the execution
of the code and handle them according to the instructions given in the handler code. In Java,

exception handlers are represented as catch blocks.
The catch block in Java is used to handle exceptions that are raised during program

execution.

§ 5.2 Basics of Exception Handling in Java

The strong capability of Java to handle exceptions makes it possible for the programmer to monitof
- the program for exceptional conditions within it and transfer contro] during such conditions to?

special exception-handling code that he or she provides along with the main code.

- Java’s exception-handling mechanism is geared to situations in which the method that detects
~an error is unable to deal with it. Such a method will throw an exception. There is no guarant¢®
- that there will be an ‘Exception Handler’ that is specifically designed to process that particular

;:_:;ception. If there is, the exception will be caught and handled.




Exception Handling £ s

A catch block contains Java code to handle exceptions so that the program will not terminate
_abnormally. Look at the following code:

public static float Divide(float a , float b)

{

float c;
try
{
c = a/b;
}
catch (Arithmetic Exception e)
{
System.out.printin(“The exception is” +e);
}
}

In the above method, divide(), when the statement in the try block attempts to divide by zero
(by passing zero value for b), the exception ArithmeticException will be raised. Immediately,
the catch block catches this exception and handles it. The catch block displays the string in the
printin() method.

When an exception occurs, as described in the previous paragraph, Java creates an exception
object and performs an action called ‘throwing an exception’. The run-time system searches
through the carch block, which is a block of code that is designed to handle the exception. It
searches, starting from the method in which the exception occurred and searches backwards up
to the call stack. This search continues till the run-time system finds a method that contains an
appropriate exception handler. An exception handler is said to be appropriate if the type of the
exception thrown is the same as the type of exception that can be dealt with by the handler or
one of its sub-classes. The way to handle an exception is first to look for an appropriate handler
associated with the block that has been thrown. If there is no appropriate handler, within that
block the search progresses up through the call stack until an appropriate handler is found which
can handle the exception. If no appropriate exception handler is found, the run-time system stops
and the program terminates.

Once an exception is thrown, the block in which the exception is thrown expires and control
cannot return to the throw point.

That is, it is an unconditional transfer of control. Thus Java uses the termination model of
exception handling rather than the resumption model. In the resumption model, control would
return to the point at which the exception was thrown and the program would resume execution.
(This is similar to a function call.)

- When an exception occurs, it is possible to communicate information to the exception handler
:‘-j['rom the vicinity of the location of the exception. The exception object generally contains




Object Oriented Programming through Java

i ogram when the excep;:
information about the exception, such as its type and the state of the pr gre the followine Pigy
:)ccurrcd The three important features that an exception usually carries a :

i i ject.
1. The type of exception—determined by the class of the exception obje
2. Where the exception occurred—the stack trace. ‘ .
3. Context information—the error message and other state information.

¢ 5.3 Exception Hierarchy

When a condition causes an exception to be thrown, that exception is thrown el_ther !3)’ the .Java
virtual machine or by the Java throw statement. Exceptions are represented by objects instantiateg
from the class java.lang. Throwable or one of its sub-classes. Java also-allow‘s users to define ClaSSf:'S
that can throw their own (user-defined) exception objects as needed in their design; however, thjs
new class must extend the throwable class or one of its sub-classes.

5.3.1 Throwable class hierarchy

Figure 5.1 shows a class hierarchy diagram that illustrates some of the exception handling
classes and the relationships between them. The Throwable class is a super-class in the exception
hierarchy. There are two sub-classes of Throwable class: Error and Exception. The difference
between the two is that the Error class deals with exceptional events from which it is generally
not possible to recover, whereas the Exception class deals mostly with events from which it is
possible to recover. _

An exception of the Error type is non-recoverable and should not be caught. Applications
should not try to catch the objects of Error class. They usually cause the Java virtual machine

Java.lang.object

A

Java.lang. Throwable

/ ‘\_
i /p\

VirtualMachineError RuntimeException

/ / IOException

StackOverflowError

NullPointerException

NumberFormatException

. Fig. 5.1 Exception inheritance hierarchy (partial).



Exception Handling 48377

to display a message and then exit. These type of exceptions indicate a serious problem in the
application and causes abnormal termination without handling. An example of a non-recoverable

error is out of memory. These errors are operating system and hardware-dependent and hence
cannot be handled by programmers.

An exception of the Exception type indicates an abnormal condition that must be properly
handled to prevent program termination. An example of this type of error is divide by zero.

In rest of the chapter, unless specified otherwise, we focus on the class Exception compare and
its sub-classes.

The Java Exception class is represented as follows:

Public class Exception extends Throwable
{
public Exception()
{
super();
}
public Exception(String s)
{
super( s);
}
}

Thereareseveral sub-classes of the Error class and the Exception class. Many of these sub-classes
themselves have numerous sub-classes. For instance, the class ArithmeticException is a sub-class
of RuntimeException which is again a sub-class of Exception. Similarly, VirtualMachineError is
a sub-class of Error which indicates that the JVM is broken or has run out of resources necessary
for it to continue operating. Figure 5.1 shows the inheritance hierarchy between a few classes that
are meant for throwing exceptions. (A comprehensive list of exceptions is given in section 5.10.)
Classes in Java are organized in the form of groups, and each group forms a sub-tree of the
inheritance tree.

Note that the Throwable class is the super-class in the inheritance hierarchy. The classes
Throwable, Error and Exception are found in the java.lang package. Some exception classes such
as |OException and FileNotFoundException are defined in packages such as java.io.

The most commonly used exceptions are mentioned and described in Table 5.1.

¢ 5.4 Constructors and Methods in Throwable Class

5.4.1 Constructors

There are four constructors in the Throwable class:

* Throwable()
* Throwable(String message)



Object Oriented Programming through Java

Table 5.4 Commonly used exception classes.

: Exc-éptlo_n Name S - Description- ek i
ArrayOutofBoundsException An array index is out of bounds.
FileNotFoundException. The requested file is not found.
InterruptedException. A thread has been interrupted.
ClassNotFoundException A class cannot be found.

NullPointerException A field or method access for a null object
NumberFormatException A number is in illegal format
NegativeArraySizeException A negative number was used for an array size.
ArithmeticException An arithmetic exception like division by zero.

* Throwable(String message, Throwable cause)

* Throwable(Throwable cause)

The first two allow constructing an exception object with or without a String message
encapsulated in the object.

5.4.2 Methods

There are several methods in the Throwable class. Three useful methods of the Throwable class
that provide information about an exception are the following:

* getmessage( )—Returns the message that was encapsulated when the object was initiated.
It returns null, if there is no message.

* tostring()—returns a brief description about the exception of throwable object.
» printstacktrace( )—prints the stack trace.

StackTrace is a list of the methods executed in sequence that lead to the exception and it is
typically used to show the (unhandled) run-time errors on the screen.
The methods of the Throwable class that deal with StackTrace are the following:

* filllnStackTrace()

» getStackTrace()

* printStackTrace()

» setStackTrace(StackTraceElement[ ] stackTrace)

~ When an exceptional condition occurs within a method, the method may instantiate an exception
object and hand it to the run-time system to deal with it. This is called throwing an exception.



Exception Handling #5555

(55 Unchecked and Checked Exceptions

Based on the severity of the error, Exception classes are categorized into two groups: unchecked
exceptions and checked exceptions.

Unchecked exceptions are those that can be either handled or ignored. If the programmer
ignores an unchecked exception, the program will terminate when such an error occurs. On the
other hand, if a handler is provided for an unchecked exception, the result of the occurrence
of such an error will depend on the code written in the exception handler. An example of an
unchecked exception is the class RuntimeException (and its sub-classes), which is a sub-class of
the class Exception. It is a very important class in Java programming.

Checked exceptions are a type of exceptions that cannot be ignored. These exception classes
represent routine abnormal conditions. The programmer should anticipate and catch them to avoid
abnormal termination of the program. These exceptions are checked for by the compiler and thus
the program code must handle or declare checked exceptions, otherwise the program will not
compile. Thus, checked exceptions should be treated more carefully.

All exceptions instantiated from the Exception class, or from sub-classes of Exception except
RuntimeException and its sub-classes, must be dealt with in one of the following ways:

* They must be handled with a try block followed by a catch block, or
* they must be declared in the throws clause of any method that can throw them.

¢ 5.6 Handling Exceptions in Java

Exception handling in Java is accomplished by using five keywords: try, catch, throw, throws
and finally.

In Java, the code that may generate (or throw) an exception is enclosed in a try block. The try
block can be followed immediately by one or more catch blocks with a finally block as the last
block. The try block can also end without a catch block, and the catch blocks need not always
have finally as the last block.

Each catch block specifies the type of exception it can catch and contains an exception handler
code. After the last catch block, an optional finally block provides code that is always executed
regardless of whether or not an exception occurs. If there are no catch blocks following a try
block, the finally block is required.

When an exception is thrown, program control goes out of the try block and the catch blocks
are searched in the order described earlier for an appropriate handler. If the exception type thrown
matches the parameter type in one of the catch blocks, the code for that catch block is executed.
If no exceptions are thrown in the try block, the exception handlers (catch blocks) for that block
are skipped and the program resumes execution after the last catch block. If a finally block appears
after the last catch block, it is executed, whether or not an exception is thrown.
~ We can specify with a throws clause the exceptions a method throws. An exception can be
thrown from statements in the method or from a method that is called directly or indirectly from
the try block. The point at which the throw is executed is called the throw point,



156 Object-O}'i ented Programming through Java

The Java statements that deal with exception handling are described in the fol]owmg secti

5 Ofkr 3
The general syntax of try-catch-finally statement is as shown bglow. _

try

{ . . S
// java statements capable of throwing exception

}

catch( Exception_1 e)

{ I -
// java statements to handle the exception Exception_1

}

finally

{
Il cleanup code or exit code (optional)

}

5.6.1 Try block

The statements in a program that may raise exception(s) are placed within a try block. A try bloc
is a group of Java statements, enclosed within braces { }, which are to be checked for exceptions,
A try block starts with the keyword try.

To handle a run-time error and monitor the results, we simply enclose the code inside a try
block. If an exception occurs within the try block, it is handled by the appropriate exception
handler (catch block) associated with the try block. If there are no exceptions to be thrown, then
try will return the result of executing the block. A try block should have one (or more) catch

block(s) or one finally block or both. If neither is present, a compiler error occurs which says ‘try
without ‘catch’ or ‘finally’.

Exception handlers are put in association with a try block by providing one (or more) catch
block(s) directly after the try block.

5.6.2 Catch block

A catch block is a group of Java statements, enclosed in braces { } which are used to handle
specific exception that has been thrown. catch blocks (or handlers) should be placed after the try
block. That is, a catch clause follows immediately after the try block.

When an exception occurs in a try block, program control is transferred to the appropriatt
catch block. This transfer of control is unconditional, in the sense that the control will not retum
to the statement just after the throw point in the try block.
A catch block is specified by the keyword catch follow

“parentheses (). The argument type in a catch clause is from
_sub-classes. Java initializes the argument (parameter) to refer
illustrates the use of the try-catch statements.

ed by a single argumént With_jn
the Throwable class or one of ifs
to the caught object. Program 52



Exception Handling ~ A8T55

l Program 5.2 Using the try-catch statements.

public class Divide
{
?ublic static void main(String[ ] args)
System.out.printin(*\nProgram Execution starts here\n”);
int a,b,c;
try
{
a = Integer.parselnt(args[0]);
b = Integer.parselnt(args[1]);
c = a/b;
System.out.printin(a + */" + b+ “="+ c);
}
catch(Exception e)
{

System.out.printin(e);

}

System.out.printin(“\nProgram Execution completes here”);

The output of the above program is as follows:

C:\javatest>java Divide 4 2
Program Execution starts here
4/2=2

Program Execution completes here

C \|avatest>java Divide a 1

Program Execution starts here
java.lang. NumberFormatException: 2
Program Execution completes here

C:\javatest>java Divide 4 0
A Program Execution starts here

'-fjava lang.ArithmeticException: / by zero
' Program Execution completes here

C.\javatest>]ava Divide 4



%Bﬁ Object Oriented Programming through Java

java.lang. ArraylndexOutOfBoundsException
Program Execution completes here

C:\javatest>

Once the code in the catch block is completely executed, program control is passed tq the
executable statement immediately following the catch block, which is a print statement, iy y,
above example. -

Note that while writing multiple catch statements, super-class exception types should foljg,

the sub-class exception types, otherwise the unreachable code exception will arise during compjj,
time.

5.6.3 Finally block

The final step in setting up an exception handler is providing a mechanism for cleaning up the
program before control is passed to different part of the program. This can be achieved by enclosing
the clean-up logic within the finally block. This is described in the following way.

The code within the finally block is always executed regardless of what happens within the try
block. That is, if no exceptions are thrown, then no part of the code in the catch blocks is executed
but the code in the finally block is executed.

If an exception is thrown, first the code in the corresponding catch block (exception handler)
is executed and then the control is passed to the finally block and the code in the finally block is

executed. Note that there is only one finally block per one try block. Program 5.3 illustrates the
use of the try-catch-finally statements.

] _Program 5.3 Using the try-catch-finally statements.

public class Divide

{

public static void main(String[ ] args)
{

System.out.printIn(“\nProgram Execution starts here\n");
int a,b,c;
try
{
a = Integer.parselnt(args[0]);
b = Integer.parselnt(args[1]);
c = a/b;
System.out.println(a + /" + b + “=" + ¢ ),
Y

c-atch(Exce'pti'o'n e)



oot e

Exception Handling 159

{
System.out.printin(e);
}

finally
{

}

System.out.printin(“\nProgram Execution completes here”);

}
) BN

The output of Program 5.3 is given below:

System.out.println("Finaliy blocks always get executed”);

C:\javatest>java Divide 4 2
Program Execution starts here
4/2=2

Finally blocks always get executed
Program Execution completes here

C:\javatest>java Divide 4 0

Program Execution starts here
java.lang.ArithmeticException: / by zero
Finally blocks always get executed
Program Execution completes here

C:\javatest>

Generally the finally block is used to close the files that have been opened, connections to the
databases that have been opened, sockets in the networks that have been opened or for releasing
any system resources. Note that if the code in the catch block terminates the program by executing
System.exit(0), the code in the finally block will not be executed.

In the above code listing, a temporary file is created in the try block and the block also has
some code that can potentially throw an exception. Irrespective of whether the try block succeeds,
the temporary file has to be closed and deleted from the file system. This is accomplished by

closing and deleting the file in the finally block.

5.6.4 Multiple catch blocks

Java allows having multiple catch blocks with one try block. Program 5.4 illustrates the use of
multiple catch blocks associated with a single try block.



460 Object Oriented Programming through Java

[ Program 54 Using multiple catch blocks.

public class Divide

{

public static void main(String] ] args)

{

- "y,
System.out.printin(“\nProgram Execution starts here\n”);

int a,b,c;
try :
{

a = Integer.parselnt(args[0]);

b = Integer.parselnt(args[1]);

c = a/b;

System.out.printin(a + “/” + b + “=" + c);

}

catch(NumberFormatException e)

{

System.out.println(“‘Arguments passed should be valid Numbers”);

}

’ catch(ArithmeticException e)

{

System.out.printin(“Second Argument Should not be Zero”);

}
catch(ArraylndexOutOfBoundsException e)

{

System.out.printin(“Pass Proper Arguments”);
}

System.out.printin(“\nProgram Execution Completes here”);
}
} | &
To see how Program 5.4 responds to different inputs, the reader can run the program by giving
inputs such as (4, 2), (4, a), (4, 0) etc. (The output of Program 5.4 can be seen at http://www.
universitiespress.com/downloads/books/81-7371-572-6.pdf)
When an exception occurs in the try block, the catch clauses are checked sequentially. A catcf |
clause catches the exception if the thrown object is an instance of the type that is specified in the
- catch clause.
When multiple statements in a single try block throw different exceptions, different catch +
_bloc}(s must be written, one for each type of exception. On the other hand, each statement the!
- might throw exception can be put into different try-catch blocks. Alternately, a single catch block

" can be defined as its parameter type, which is a super-class of all the exceptions that ar¢ ¥
" be handled. In some way, we have to identify particular exceptions and catch them within th¢

e



Exception Handling 16150

catch block. This can be achieved by using the instanceof operator as shown in the following
example:

catch (Exception e)

{

if (e instanceof ArithmeticException)

-----

-----

If a single statement throws multiple exceptions, it is better to have multiple catch blocks
associated with the try block.

( The order of catch blocks is very important when there are multiple catch blocks. )

This has been discussed earlier at the start of section 5.6.

5.6.5 Nested try statements

The try statement can be nested. That is, one try statement can be placed inside the block of
another try. Each time a try statement is entered, the context of that exception is pushed on the
stack. If an inner try statement does not have a catch handler for a particular exception, the stack
is unwound and the catch handlers belonging to the next try statement are inspected for a match.
This continues until one of the catch statements succeeds, or until all the nested try statements
-are exhausted. If no catch statement matches, then the Java run-time system will handle the
exception. In Program 5.5 a pair of nested try statements have been used.

.jrogram 5.5 Using nested try-catch statements.

publfc class Divide
{.

public static void main(String[ ] args)



' 62 . ébjecr Oriented Programming through Java

{

System.out.println(“\nProgram Execution starts here\n”);
int a,b,c;
try
{
a = Integer.parselnt(args[0]);
b = Integer.parselnt(args[1]);
try
{
c = a/b;
System.out.printin(a+ “/” +b + “=" + ¢ );

}

catch(ArithmeticException e)

{
System.out.println(“Second Argument Should not be Zero”);
14 . }
1
}

catch(NumberFormatException e)

{

System.out.printin(“Arguments passed should be valid Numbers”);

}
catch(ArraylndexOutOfBoundsException e)
{

System.out.printIn(“Pass Proper Arguments”);

}

System.out.printin(“\nProgram Execution Completes here”);

o B

5.6.6 The keyword throw

An exception can be caught only if it is identified, or, in other words, thrown. Exceptions can b¢
thrown by the Java run-time system for the code that has been written. This can be achieved als?
by using the throw statement explicitly.

This statement starts with the keyword throw followed b
must be an object instantiated from the Th rowable class or it
throw statement 1s the following:

Y a single argument. The argument
8 sub-class. The syntax for using th¢ .

throw <Exception object>



Exception Handling 48355

In a specific case where an instance of ‘Exception object’ is to be thrown, it takes the following
form: i

throw new <Exception object>

~ Usually the above statement is used to pass a string argument along with the exceptional
object, so that the string can be displayed when the exception is handled.

Example
throw new IndexOutOfBoundsException(“Index out of range”);

The throw statement is generally written with a conditional statement such as an if statement
and switch statement. It is more useful when it comes to throwing user-defined exceptions which

cannot be recognized by the Java run-time system. This aspect is dealt with in section 5.8.
Program 5.6 illustrates the use of conditional statements:

[ Program 5.6 Using throw keyword.

public class TestThrow

{

public static void main(String args[ ]) throws Exception

{
int number1 = 15, number2 = 10;
if(humber1 > number2) // Conditional statement.
throw new Exception(“number1 is 15”);
else
System.out.printin(*number2 is 15”);

b £S5
The output of Program 5.6 is

Exception in thread “main* java.Exception: number1 is 15
at TestThrow.main(TestThrow.java:8)

In Program 5.6 the keyword throw is used to throw an exception with the message. With
throw, the programmer is allowed to throw the exception and the system prints the messages and
terminates the program.

t5-7 Exception and Inheritance

| An exception handler designed to handle a specific type of object may be preempted by another
“handler whose exception type is a super-class of that exception object. This happens if the
_exception handler for that exception type appears earlier in the list of exception handlers. That is,




I'_t'\

7464 Object Oriented Programming through Java

while using multiple catch statements, it is important to be aware of the order of exception Clasgy,
and arrange them correctly.

C The exception sub-classes must come before any of their super-classes. j

If a super-class exception is coded first in the catch block then, when an exception occur
the super-class exception gets, executed whereas the sub-class exception catch block never g
executed. In Java, this is considered a compile-time error. Hence, the order of the catch blocks
important. Thus, the catch blocks that are written to handle exception types that are far from the
root of the hierarchy should be placed first in the list of catch blocks, and the classes nearer g

the root must be placed last. That is, the leaves come first and the root is last in the catch block
order.

The programmer must take care when providing handlers with exception types at different
levels in the inheritance hierarchy.

Look at Program 5.7, which gives a compile time error because the general Exception is
caught before Arithmetic Exception. Reversing the order of the catch blocks would ensure that

the correct exception handler catches the exception. It is important to handle the right exception
in the right context.

lProgram 5.7 Incorrect ordering of catch blocks.

public class Divide

{
public static void main(String[ ] args)

{

System.out.printin(*\nProgram Execution starts here\n”);
int a,b,c;
try
A
a = Integer.parselnt(args[0]);
b = Integer.parselnt(args[1]);
¢ = a/b; |
System.out.printin(a + “/" + b + “=" + ¢ )
} | |
catch(ArithmeticException e)
{
}

System.out.println(“Exceptibn caught:"+e);



Exception Handling 4865 7%

catch(Exception e)

{
}

) £

¢ 5.8 Throwing User-defined Exceptions

System.out.printin(“*Second Argument Should not be Zero”);

User-defined exceptions are useful to handle business application-specific error conditions. For
example, when performing a withdrawal from a bank account, it is required to validate the minimum
balance in that account. To handle this requirement, a user-defined exception MinimumBalance
may be created. The user-defined exceptions can be generated using throw statement and caught
them in the similar way as normal exceptions. When creating user-defined exceptions, the name
of the exception type should not be a reserved exception type name. User-defined exceptions are
provided by an application provider or a Java API provider.

We can write our own exceptions and throw and catch them wherever it is necessary. Some steps
are followed in defining our exceptions. Generally, all the exceptions are sub-classes of the class
Throwable. Also, Throwable already has two sub-classes—Exception and Error. User-defined
exceptions should be sub-classes of Exception.

Specifying class names of user-defined exceptions should be done carefully so that it does
not match already existing exceptions.

If it is the same as predefined exception class names, a compilation error occurs.
An user-defined exception can be created as an instance of the class Throwable as follows:

Throwable UserException = new Throwable( );
or
Throwable UserExcepton = new Throwable(‘This is user exception Message’);
Alternatively, the user-defined exception can be defined using the keyword extends as
follows:

class UserException extends Exception

{
public UserException()

{
}

public UserException (String str)



m : .Obie‘cf Oriented Programming through Java

{

}

Program 5.8 defines an user-defined exception UserException which extends the Clasy
Exception. Since there should be only one public class in a file, the class UserExceptgon i8 takey
as default specifier. In Program 5.7 whenever the second parameter passed at run-time g zeny

then an instance of UserException is created and is thrown by using the keyword throw ang itis
caught by the catch block.

. Program 5.8 Creating user-defined exceptions using extends.

class UserException extends Exception

{
public UserException(String s)
{
super(s);
System.out.printin(“From User Exception Constructor”);
}
po s }
public class Divide
{
public static void main(String[ ] args)
{
System.out.prinﬂn(“\nProgram Execution starts here\n”);
inta,b,c;
try
{

a= lmeger.parseInt(ar‘gS[U]);
b= lmeger.parselnt(args[1]);
if (b==0)

{

)
¢ = alb;
System.outprintln(a + /" + b + “=" 4 );

throw new UserException(“Second Argument should not be Zero--

}

; catﬁh(Use_rExcept’ion e).




m-*m‘:l‘

Exception Handling ~A87.265

System.out.printin(“From UserException catch Statement”);
System.out.printin(e);

}

catch(Exception e)

{
System.out.printin(e);
}

System.out.printin(“\n Program Execution Completes here”);

}

} B

The output of Program 5.8 is the following:

C:\javatest>java Divide 4 0

Program Execution starts here

From User Exception Constructor

From UserException catch Statement

UserException: Second Argument should not be Zero...
Program Execution Completes here

C:\javatest>

Note that if a user-defined exception class is a sub-class of RuntimeException, it would not be
a checked exception. If it is a sub-class of Exception but not a sub-class of RuntimeException it
will be a checked exception.

( 5.9 Redirecting and Rethrowing Exceptions
5.9.1 Redirecting exceptions using throws |

Recall that the code capable of throwing an exception is kept in the try block and the exceptions
- are caught in the catch block. When there is no appropriate catch block to handle the (checked)
exception that was thrown by an object, the compiler does not compile the program. To overcome
this, Java allows the programmer to redirect exceptions that have been raised up the call stack, by
using the keyword throws. Thus, an exception thrown by a method can be handled either in the
method itself or passed to a different method in the call stack.
To pass exceptions up to the call stack, the method must be declared w1th a throws clause.
_ A_ll the exceptions thrown by a method can be declared with a single throws clause; the clause



EIA6H Object Oriented Programming through Java

_consists of the keyword throws followed by a comma-separated list of all the €XCeption, ..

shown below:
Void RedirectExMethod( ) throws Exception_A, Exception B, Exception C

Program 5.9 illustrates two methods redirecting an exception Exception from the methey
throwing it, that is, ConvertAndDivide, to the calling method, main. '

. Program 5.9 Redirecting exceptions.

public class Divide

{
public static void main(String[ ] args)
{
System.out.printin(“\nProgram Execution starts here\n");
try
{
convertAndDivide(args[0].args[1]):
}
catch(Exception e)
{
System.out.printin(e.getMessage()+“\n");
e.printStackTrace();
}
System.out.printin(*\nProgram Execution Completes here™);
}
static void convertAndDivide(String s1,String s2) throws Exception
{
int a,b,c;
a = Integer.parselnt(s1);
b = Integer.parselnt(s2);
c = divide(a,b);
System.out.printin(a +“/" +b + “="+ ¢ );
-}
 static int divide(int x, int y) throws Exception
A

if (y==0)



Exception Handling #6955

{

}
return xfy ;
}

throw new Exception(“Second Argument is Zero...”);

The output of Program 5.9 is the following:

C:\javatest>java Divide 4 0

Program Execution starts here

Second Argument is Zero...

java.lang.Exception: Second Argument is Zero...
at Divide.divide(Divide.java:35)
at Divide.convertAndDivide(Divide.jaya:Z?)
at Divide.main(Divide.java:9)

Program Execution Completes here

C:\javatest>java Divide 4 a

Program Execution starts here

a

java.lang.NumberFormatException: a
at java.lang.Integer.parselnt(Integer.java:426)
at java.lang.Integer.parselnt(Integer.java:476)
at Divide.convertAndDivide(Divide.java:26)
at Divide.main(Divide.java:9)

Program Execution Completes here

C:\javatest>

The method getMessage() in Program 5.9 just prints the message that is given at the time of the
throw statement. If no message is given, then the data value that is responsible for the exception
is shown; printStackTrace() prints the all the names of the methods that are called in generating
the exception. The method names are printed in the reverse order of their call.

While defining exception handlers, it is instructive to take into account the scope of a method.
The scope of the exception-handling mechanism is not limited to the exceptions that can be thrown
by the code written into the method; it extends to the methods that called the method in which the

exception is thrown. That is, the scope also includes exceptions thrown by methods called by that
| method and so on.



A0 Objecf Oriented Programming through Java

5.9.2 Rethrowing an exception

An exception that is caught in the try block can be thrown once agai.n and can be. handleq Theit
try block just above the rethrow statement will catch th.e %‘ethrown object. If there is no try blogy
just above the rethrow statement then the method containing the rethrow statement 'handles it 7,
propagate an exception, the catch block can choose to rethrow the exception b?/ using the thrg,
statement. Note that there is no special syntax for rethrowing. Program 5.10 illustrates hoy, 1

exception can be rethrown.

[} Program 5.10 Rethrowing exceptions.

public class Divide
{
public static void main(String[] args)
{
System.out.printin(“\nProgram Execution starts here\n”);
int a,b,c;
try
{
a = Integer.parselnt(args[0]);
b= Integer.parselnt(args[1]);
try
{
¢ =alb;
System.outprintin(a + “/” + b + “=" 4 ¢ );
}

catch(ArithmeticException e)
{

System.out.printin(“Second Argument Should not be Zero”);

System.out.println(“Rethrowing the object again”);
throw e;

}
i
}
catch(NumberFormatException e)
A . . .
~ System.out.println(“Arguments Passed should be valileumbersu);

} .
catch(ArraylndexOutOfBoundsException e)

1
}

,-Sys-t_:em.out.println(“Pass Proper Arguments”); |



Exception Handling 1=

System.out.println(“\nProgram Execution Completes here”);
}
) | 2%

Often first-time readers may get confused about the use of the three keywords: throw, throws
and Throwable. It is therefore useful to dwell on the three concepts together in order to clarify
their meaning.

Throwable is a class. Though the Throwable class is derived from the java.lang.Object class in
the Java class library, Throwable is the super-class of all classes that handle exceptions.

The keyword throw is a statement that throws an exception. Note that an exception can be
thrown either by the throw statement or when an error occurs during the execution of any other
statement.

The keyword throws is a clause specified in the method definition which indicates that the

method throws the exceptions mentioned after the keyword throws, which are handled in the
called methods.

‘ 5.10 Advantages of the Exception-Handling Mechanism

The main advantages of the exception-handling mechanism in object oriented programming over
the traditional error-handling mechanisms are the following:

* Theseparation of error-handling code from normal code  Unlike traditional programming
languages, there is a clear-cut distinction between the normal code and the error-handling
code. This separation results in less complex and more readable (normal) code. Further, it
is also more efficient, in the sense that the checking of errors in the normal execution path
is not needed, and thus requires fewer CPU cycles.

* A logical grouping of error types  EXceptions can be used to group together errors that are
related. This will enable us to handle related exceptions using a single exception handler.
When an exception is thrown, an object of one of the exception classes is passed as a
parameter. Objects are instances of classes, and classes fall into an inheritance hierarchy in
Java. This hierarchy can be used to logically group exceptions. Thus, an exception handler
can catch exceptions of the class specified by its parameter, or can catch exceptions of any
of its sub-classes. |

* The ability to propagate errors up the call stack Another important advantage of
exception handling in object oriented programming is the ability to propagate errors up the
call stack. Exception handling allows contextual information to be captured at the point
where the error occurs and to propagate it to a point where it can be effectively handled.
This is different from traditional error-handling mechanisms in whxch the return values are
checked and propagated to the calling function.



Object Oriented Programming through Java

The following is a list of exceptions under the Throwable class:

" Throwable
i Error _
AWTError

LinkageError
ClassCircularityError
ClassFormatError
ExceptionInlInitializerError
IncompatibleClassChangeError
NoClassDefFoundError
UnsatisfiedLinkError
VenifyError

ThreadDeath

VirtualMachineError
InternalError
OutOfMemoryError
StackOverflowError
UnknownError

Exception
AcINotFoundException
ActivationException

UnknownGroupException
UnknownObjectException
AlreadyBoundException
ApplicationException
AWTException
BadLocationException
ClassNotFoundException
CloneNotSupportedException
ServerCloneException
DataFormatException
ExpandVetoException
FontFormatException
GeneralSecurityException
CertificateException
CRLException
DigestException _
InvalidAlgorithmParameterException
InvalidKeySpecException



- InvalidParameterSpecException
KeyException
KeyStoreException
NoSuchAlgorithmException
NoSuchProviderException
SignatureException
UnrecoverableKeyException

IllegalAccessException
InstantiationException
IntrospectionException
InvalidMidiDataException
InvocationTargetException
IOException
ChangedCharSetException
CharConversionException
EOFException
FileNotFoundException
InterruptedlOException
MalformedURLException
ObjectStreamException
ProtocolException
RemoteException
SocketException
SyncFailedException
UnknownHostException
UnknownServiceException
UnsupportedEncodingException
UTFDataFormatException
ZipExcept
LastOwnerException
LineUnavailableException
MidiUnavailableException
MimeTypeParseException
NamingException
AttributeInUseException

AttributeModificationException

‘CannotProceedException
CommunicationException
ConfigurationException
. ContextNotEmptyException
InsufficientResourcesException

T

Exception Handling TS5



BEYZ& Object Oriented Programming through Java

InterruptedNamingException
InvalidAttributeldentifierException
InvalidAttributesException
InvalidAttribute ValueException
InvalidNameException
InvalidSearchControlsException
InvalidSearchFilterException
LimitExceededException
LinkException
NameAlreadyBoundException
NameNotFoundException
NamingSecurityException
NolnitialContextException
NoSuchAttributeException
NotContextException
OperationNotSupportedException
ReferralException
SchemaViolationException
ServiceUnavailableException
NoninvertibleTransformException
NoSuchFieldException
NoSuchMethodException
NotBoundException
NotOwnerException
ParseException
PartialResultException
PrinterException
PrinterAbortException
PrinterIOException
PrivilegedActionException
RemarshalException
RuntimeException
ArithmeticException
ArrayStoreException
CannotRedoException
CannotUndoException
ClassCastException
CMMException _ :
- ConcurrentModificationException . .
- EmptyStackException
Illegal ArgumentException



Exception Handling

IllegalMonitorStateException
HlegalPathStateException
lllegalStateException
ImagingOpException
IndexOutOfBoundsException
MissingResourceException
NegativeArraySizeException
NoSuchElementException
NullPointerException
ProfileDataException
ProviderException
RasterFormatException
SecurityException
SystemException
UndeclaredThrowableException
UnsupportedOperationException
SQLException
BatchUpdateException
SQLWarning
TooManyListenersException
UnsupportedAudioFileException
UnsupportedFlavorException
UnsupportedLookAndFeelException
UserException
AlreadyBound
BadKind
Bounds
CannotProceed
InconsistentTypeCode
Invalid
InvalidName
InvalidName
InvalidSeq
InvalidValue
- NotEmpty
NotFound
PolicyError
TypeMismatch :
UnknownUserException
~ WrongTransaction .

1757
L o {gi:'-



Multithreading

Multithreading is a powerful programming tool that makes it possible to achieve concurrent
execution of multiple units of a program. Each portion of a program——designated a thread-—may
execute concurrently with others. Multithreading basically enables a program to do more than one
task at a time and also to synchronize these tasks. Java builds thread support directly into the language.
Muitithreading support for Java includes thread creation, thread priontizing, thread scheduling.
resource locking (thread synchronization) and establishing inter-thread communication.

¢ 6.1 Introduction: an Overview of Threads

A thread is a single sequential flow of control within a program. It differs from a process in that
a process is a program executing in its own address space whercas a thread is a single stream of
execution within a process.

( A thread can be defined as a process in execution within a program. )
y

A thread by itself is not a complete program and cannot run on its own. But it runs within a
program; however each thread has a beginning, and an end, and a sequential flow of exccution at
a single point of time. At any given instant within the run-time of the program, only onc thread
will be executed by the processor.

Multithreading allows a program to be structured as a set of individual units of control that
run in parallel; however, the Central Processing Unit (CPU) can only run one process at a time.
The CPU time is divided into slices and a single thread will run in a given time slice. Typically,
the CPU switches between multiple threads and runs so fast that it appears as if all threads are
running at the same time. It is better, as a programming practice, to identify different parts of the
program that can perform in parallel and implement them into independent threads.

Multithreading differs from multitasking: multitasking allows multiple tasks (which can be

processes or programs) to run concurrently whereas multithreading allows multiple units within a

program (threads) to run concurrently. . . |
Unlike the processes in some operating systems (for example, Unix), the threads in Java are

‘light-weight processes® as they have relatively low overheads and share common memory space.
This facilitates an effective and inexpensive communication between threads.



82 .Objeéf Oriented Programming through Java

¢ 6.2 Creating Threads

In Java, threads are objects and can be created in two ways:

1. by extendihg the class Thread
2. by implementing the interface Runnable

In the first approach, a user-specified thread class is created by extending the class Threy
and overriding its run() method. In the second approach, a thread is created by implementing the
Runnable interface and overriding its run() method. In both approaches the run() method has 1,
be overridden. Usually, the code that is to be executed by a thread is written in its run() methog
The thread terminates when its run() method returns.

In Java, methods and variables are inherited by a child class from a parent class by extending
the parent. By extending the class Thread, however, one can only extend or inherit from a sing,
parent class (in this case, the class Thread is the parent class). This limitation of using exten¢;
within Java can be overcome by implementing interfaces. This is the most common way to crezte
threads. A thread that has been created can create and start other threads.

6.2.1 Creating a new thread extending Thread

The first method of creating a thread is simply by extending the Thread class. The Thread class s
defined in the package java.lang. The class that inherits overrides the run( ) method of the parent
Thread for its implementation. This is done as shown in the code fragment given below. By its
side a representation of the inheritance that is being implemented.

public class SampleThread extends Thread

{
public SampleThread(String name) Thresd |
{ I
super(name);
} s
public void run() .M
{
// code to be run when this thread is started
}
}

A thread can be started by applying the start() method on the thread object. The following cod
segment creates an object of the thread class and starts the thread object.

class StartThreadClass

{

public static void main(String args[ ])



Multithreading A83737

SampleThread st = new SampleThread();
st.start();

}

Here, the thread object st of the thread class SampleThread is created as
SampleThread st = new SampleThread();

To start the thread object st, the start() method can be applied on this object as
st.start();

When the above statement is executed, the run() method of the SampleThread class is invoked. The
start() method implicitly calls the run() method. Note that the run() method can never be called
directly.

Look at Program 6.1, which creates a thread class ThreadExample which extends the class
Thread and overrides the method Thread.run(). The run() method of this program is where all
the work of the ThreadExample class thread is done. This instance of the class is created in the

ExampleT class. The start() method on this instance starts the new thread. The child thread prints
the values from O to 5.

l Program 6.1 Using extends to write a single-thread program.

import java.lang.®;
- class ThreadExample extends Thread

{
public ThreadExample(String name)

{
super(name);

}

public void run()

{ .
System.out.printin(Thread.cu rrentThread());
for(int i=0;i<=5;i++)
~ System.out.println(i);

}

}

public class ExampleT



EA88 Object Oriented Programming through Java

K
public static void main(String args[ ])
{ e "
ThreadExample t = new ThreadExample(“First”);
t.start( );
System.out.println(“This is :" + Thread.currentThread());
}
}

The output of Program 6.1 is as follows:

This is :Thread[main, 5, main]
Thread[First, 5, main]

o, WON =0

The first line of the output shows the name of the thread (main), the priority of the thread (5)
and the name of the ThreadGroup (main). In the second line, First, 5 and main are the name,
priority and name of the ThreadGroup of the child thread.

The created thread does not automatically start running. To run a thread, the class that creates
it must call the method start() of the Thread. The start() method then calls the run() method
When applying the start() method on a thread object, a new flow of control starts processing the
program. The start() method can be invoked either from the constructor or any method in which
the thread is created. Figure 6.1. shows the running of both main and child threads.

In Program 6.1 the main method creates an object a thread class ThreadExample. After

executing the statement

ThreadExample t = new ThreadExample(“First");

Mainl

Mainclass [ &  — %----- -

New
A thread class

Thread object Ll -
Run

. Fig. 6.1 Running the ‘'main’ thread and newly created thread.



Multithreading 18577

thread object 7 is i.n the newborn state of the thread life cycle (see section 6.3). When a thread is
in newborn state, 1t does not hold any system resource and the thread object is said to be empty.
A thread can be started only when it is in the newborn state by calling the start() method. Calling
any method other than the start() method will cause an exception lllegalThreadStateException.
The start() method creates the necessary system resources to run the thread, schedules the thread
to run, and calls the thread’s run() method. The thread object t calls the start() method of the
ThreadExample class. Thread object t’s run method is defined in the ThreadExample class. After
execution of t.start() statement, the thread is in the runnable state. Henceforth, both the thread
object as well as main thread are in the runnable state.

Every Java applet or application is multithreaded. For instance, main itself is a thread created
by extending the Thread class.

6.2.2 Creating a thread implementing Runnable interface

The interface Runnable is defined in the java.lang package. It has a single method—run().

public interface Runnable

{
}

If we want multithreading to be supported in a class that is already derived from a class other
than Thread, we must implement the Runnable interface in that class.

The majority of classes created that need to be run as a thread will implement Runnable since
they may be extending some other functionality from another class. Whenever the class defining
run() method needs to be the sub-class of classes other than Thread, using Runnable interface is
the best way of creating threads. The syntax and the inheritance structure are given below.

public abstract void run();

public class SampleThread extends
OtherClass implements Runnable

{
..... ‘ - Runnable Otherclass
public void run()
; | \ /"
/| code to be run when this thread is started SampleThread

}

‘The class Thread itself implements the Runnable interface (package java.lang) as expressed in
the class header: '

public class Thread extends Object implements Runnable



m Object Oriented Programming through Java

As the Thread class implements Runnable interface, the code that controls the threar_] 1S place ’
in thr.: run() method. In order to create a new thread with Runnable interface, we need to instan; "
the Thread class. This thread class will have the following constructors:

public Thread(Runnable obj);
public Thread(Runnable obj, String threadname);
public Thread(ThreadGroup tg, Runnable obj, String threadname);

Here, obj is the object of the class which implements the Runnable interface, threadname is the
name given to the thread and tg is the name of the ThreadGroup.
Program 6.2 illustrates the creation of threads using Runnable interface.

. Program 6.2 Using Runnable interface to write a single-thread program.

class ThreadExample implements Runnable

{
Thread ¢;

public ThreadExample(String threadname)
{
t = new Thread(this, threadname);

}
publi¢ void run()

{

System.out.printin( Thread.currentThread() );
for (int i=0;i<=5; i++)
System.out.printin(i);
}
} .
public class ExampleT2
{

public static void main(String args[ ])

{

ThreadExample obj = new ThreadExample(“First”);
Obj.t.start( );

System.out.printin(“This is ;" + Thread.currentThread());

.The- qutput of '!I’rogram 6.2 is as shown below,

.~ Thisis :Thread[main,5,main]
o L _.I'_'I'._hr_(-_:ad[First.5,ma'i n]



Multithreading A8

A WN SO

In Program 6.2, in place of the Thread class constructor parameters we passed this and First.

Here this refers to the ThreadExample class on which the thread is created. Here, the abstract run()
method is defined in the Runnable interface and is being implemented.

By implementing Runnable, there is greater flexibility in the creation of the class
ThreadExample.

In the above example, the opportunity to extend the ThreadExample class, if needed, still
exists.

The method of extending the Thread class is good only if the class executed as a thread does
not ever need to be extended from another class.

6.2.3 Stopping threads: the join() method

Generally, when the execution of a program starts the thread main is started first. Child threads
are started after the main thread. So it is unusual to stop the main thread before the child threads.
The main thread should wait until all child threads are stopped. The join() method can be used to
achieve this. The syntax of this method is as follows:

final void join() throws InterruptedException

The join() method waits until the thread on which it is called terminates. That is, the calling
thread waits until the specified thread joins it. A thread (either main thread or child threads) calls
a join() method when it must wait for another thread to complete its task. When the join() method

task or is not alive. A thread can be in the not alive state due to any one of the following:

* the thread has not yet started,
* stopped by another thread,
* completion of the thread itself

The following is a simple code that uses the join() method:
try
{

- tijoin();



A88  Object Oriented Programming through Java

t2.join();
t3.join();
}
catch(interupptedException e)
=
}

Here t(1), t(2), t(3) are the three child threads of the main thread which are to be term

before the main thread terminates. If we check the isAlive() on these child threads after the join
method, it will return false,

inateg

There is another form of the join() method, which has a single parameter that specifies hoy
much time the thread has to wait. This is the following:

final void join(long milliseconds) throws InterruptedException
6.2.4 Naming a thread

By default, each thread has a name. Java provides a Thread constructor to set a name to a thread
The name can be passed as a string parameter to this constructor, in the following manner:

Thread t = new Thread(“First”);
Thread t = new Thread(Runnable r, “SampleThread”);

The setName method of the Thread class can also be used to set the name of the thread, in the
following manner:

void setName(String threadname);

§ 6.3 Thread Life-Cycle

A thread is always in one of five states: newborn, runnable, running, dead and blocked. Figure 6.2
shows the life-cycle of a thread.

6.3.1 The newborn' state

When a thread is called, it is in the newborn state, that is, when it has been created and is not ¥
.running. In other words, a start() method has not been invoked on this thread. In this state, systel
resources are not yet allocated to the thread. When a thread is in the newborn state, calling any
method other than start() method causes an lllegalThreadStateException.

6.3.2 The runnable state

. : ; 3
A thread in the runnable state is ready for execution but is not being executed currently. Oncﬂm
- thread is in the runnable state, it gets all the resources of the system (as, for example, acces’



Mulithreading  ABSE

sleep()
wait()
suspend()

run method over

notify()

resume()

ljig. 6.2 Life-cycle of a thread.

the CPU) and moves on to the running state. All runnable threads are in a queue and wait for CPU
access. When the start() method is called on the newborn thread, it will be in the runnable state. It
is not in the running state yet because system resources such as the CPU (which might be serving
another thread at that point) are not available.

6.3.3 The running state

After the runnable state, if the thread gets CPU access, it moves into the running state. The thread
will be in the running state unless one of the following things occur:

* It dies (that is, the run() method exits).

* It gets blocked to the input/output for some reason.
* It calls sleep().

* It calls wait().

* It calls yield().

* Itis preempted by a thread of higher priority.

* Its quantum (time slice) expires.

A thread with a higher priority than the running thread can preempt the running thread if any
of the following situations arise:

* Ifthe thread with the higher priority comes out of the sleeping state.
* The I/O completes for a thread with a higher priority waiting for that I/O.
* Either notify() or notifyAll() is called on a thread that called wait.




%gﬂ Object Oriented Programming through Java
When a thread calls the wait() method it goes in the waiting state. To wake up this thread, om |
other running thread should notify it.

6.3.4 The dead state

A thread goes into the dead state in two ways: .

 Ifits run() method exits.
* Astop() method is invoked.

The run() method exits when it finished execution naturally or throws an uncaught exceptipy |
The stop() method kills the thread. A thread in the dead state cannot be executed further.

6.3.5 The blocked state
A thread can enter the blocked state when one of the following five conditions occurs:

* When sleep() is called,

* When suspend() is called,

*  When wait() is called,

e The thread calls an operation, (For example, during input/output, a thread will not retum
until the I/O operation completes.),

* The thread is waiting for monitor.

A thread in the blocked state waits for some action to happen so that it can get ready. That s, '
if the thread requires some of the I/O operation, it will enter into the blocked state by giving the
access to the CPU to another thread. After completion of the I/O operations it will enter into the
runnable state.

A thread must move out of a blocked state into the runnable (or running) state using the
opposite of whatever phenomenon put it into the blocked state.

* If a thread has been put to sleep(), the specified timeout period must expire.

* If a thread has called wait(), then some other thread using the resource for which the first
thread is waiting must call notify() or notifyAll().

e Ifa thread is waiting for the completion of an input or output operation, then the operation
must finish.

6.3.6 Manipulating threads

Table 6.1 lists some of the methods used to manipulate threads, :

[n addition to the methods described in Table 6.1, there are some which need to be discussed
briefly. They include the sleep(), suspend(), resume(), wait(), notify(), n otifyAll() and yie a0
methods..



Multithreading 49470

Table 6.1 - Some methods that are provided in the Thread class to manipulate threads

—

‘Name of the method Rk Function
‘——g;tNameO returns the name of the thread
setPriority() to set the priority of the thread
getPriority() returns the thread priority
isAlive() determines whether the thread is still running or not; isAlive()

returns true if the method is running, runnable or blocked. It
returns false if the method is a new thread or dead

join() wait for a thread to terminate
run() entry point for the thread
start()

start a thread by calling its run method

stop() terminate the thread abruptly

6.3.6.1 sleep()

A thread being executed can invoke sleep() to block the thread for some time and free the CPU.
This thread goes into the sleep (blocked) state for the specified amount of time, after which it
moves to the runnable state. The sleep method has the following prototypes:

public static void sleep (long millisec) throws InterruptedException;
public static void sleep (long millisec, int nanosec) throws InterruptedException;

6.3.6.2 suspend() and resume()

The Thread class has a method suspend() to stop the thread temporarily and a method resume()
to restart it at the point at which it is halted. The resume() method must be called by some
thread other than the suspended one. The suspend() method is not recommended in application
programming.

6.3.6.3 wait(), notify() and notifyAll()

When a running thread calls wait(), it enters into a waiting (blocked) state for the particular object
on which wait was called. A thread in the waiting state for an object becomes ready on a call
10 notify() issued by another thread associated with that object. All threads waiting for a given

object become ready when receiving a call to notifyAll() from another thread associated with that
object.



?192 Object Oriented Programming through Java

6.3.6.4 yield()
ad may prevent other threads from being eXecul

Some CPU-intensive operations of one thre
xecute by in'.'ul.;jng b
1

To prevent this from happening, the first one can allow other threads to ¢
yield() method. This method allows another thread of the same priority to be run. The thread fr,,,

which yield() is invoked moves from the running state to the runnable state.
The methods sleep() and yield() are static methods.

¢ 6.4 Thread Priorities and Thread Scheduling
ates it. That is, when a new thread
d. Every Java threy

Each new thread inherits the priority of the thread that cre
created, the new thread has priority equal to the priority of the creating threa
has a priority between 1 and 10, and by default each thread is given normal priority. thatis, 5. The

constants defined in the Thread class are the following:

e Thread.MIN_PRIORITY 1 (minimum priority)
e Thread. MAX_PRIORITY 10 (maximum priority)
e Thread NORM_PRIORITY 5 (default)

Higher the integer value assigned, higher is the priority of the thread.

6.4.1 setPriority and getPriority

A thread’s priority can be set with setPriority method, which takes an int argument. getPriorty
method returns the thread’s priority. If the argument to the setPriority method is not in the ranz

from 1 to 10, it throws an lllegalArgumentException.

6.4.2 Time-slicing

Some Java platforms support a concept called time-slicing and some do not. Without time-slicing
each thread in a set of equal-priority threads runs to completion (unless the thread leaves the
running state and enters the waiting, sleeping or blocked state) before that thread’s peers get*
chance to be executed. For more than two threads having equal priority the thread will be select®
on round robin scheme. With time-slicing, each thread receives a brief amount of processor i
called a quantum, during which that thread can execute. At the end of the quantum, even if that
thread has not been executed fully, the processor is taken away from that thread and given t0 the
next thread of equal priority if such a thread is available. Note that, in this context, ‘the thre?
peers’ refers to the active threads (which are alive). The ‘next thread’ means the next thread that
ready for execution. The scheduler decides which one is the next thread for obtaining processor i

6.4.3 The scheduler
hight™"

A

._ _:When many threads are ready for execution, the Java run-time system selects the 'highcst
‘runnable thread: (fixed priority scheduling). The job of the Java scheduler is to keep 2



Multithreading 493 77

priorily thread running at all points in time. If time-slicing is available, the scheduler ensures that
several threads of equal priority each get executed for a quantum in a round robin fashion. That
is, if there is more than one thread with the same priority, each thread gets a turn in round robin
order. Lower priority threads are not run as long as there is a runnable higher priority thread. Java

scheduling 1s als-o preemp?ive, that is, a higher priority thread preempts the lower priority one.
Thus, a thread will run until one of the following conditions occurs:

* A higher priority thread becomes runnable.,
+ [t yields, or its run method exits.

» lts time slice has expired (only on systems that support time-slicing).

¢ 6.5 Thread Synchronization

When more than one thread has to use a shared resource, Java finds a way of ensuring that only
one thread uses the resources at one point of time; this is called synchronization.

In Java, each object is associated with a lock. The term lock refers to the access granted to
a particular thread that has entered a synchronized method. Monitor refers to a portion of the
code in a program. It contains one specific region (related to data or some resource) that can be
occupied by only one thread at a time. This specific region within a monitor is known as critical
section. A thread has exclusive lock from the time it enters the critical section to the time it leaves.
That is, the data (or resource) is exclusively served for the thread, and any other thread has to wait
to access that data (or resource). Some common terminology while using monitors is as follows:
entering the critical section is known as acquiring the monitor, working with the critical section
(data or resource) is known as owning the monitor and leaving the critical section is known as
releasing the monitor.

The key concept in synchronization is the monitor. The monitor holds exclusive lock that
can be owned by only one object at a time. The monitor allows only one thread to execute a
synchronized method on the object at one time. This is accomplished by giving the ownership of
the monitor to that object, or in other words, locking the object when the synchronized method is
invoked. An object thus locked is also denoted to have obtained the lock.

When there are several synchronized methods attempting to act on an object, only one
synchronized method may be active on an object at one instant of time and all other threads
attempting to invoke synchronized methods must wait. Thus, other threads that attempt to lock

the already locked monitor will be suspended. When the execution of that synchronized method
is complete, the lock on the object is opened and the monitor allows the highest-priority runnable
thread attempting to invoke a synchronized method to proceed. | R

A thread executing in a synchronized method may determlfle that it cannot proceed, so it
voluntarily calls wait(). This removes the thread from contention for the processor and from
contention for the monitor object. The thread now remains in the waiting state while other threads
try to enter the monitor object. When the thread executing the synchronized method completes,
it can notify a waiting thread to become ready again so that now that thread can attempt to obt‘ain

~ the lock on the monitor object again and be exccuted. The notify() method acts as a signal to the



22404 Object Oriented Programming through Java

sfied for running the waiting thread 1s satisfieq i

Then. the waiting thread can enter into the monitor. If a thread calls notifyAll(), then al| thfea;
waiting for the object become eligible to reenter the monitor (that is, they are- all placeg in:
runnable state). Only one of those threads can obtain the lock on the object at a time.

The methods wait(), notify() and notifyAll() are the methods of the class Object. Since gy,
user class inherits the class Object, these methods are available to all classes. Therefore, any
object can enter into a monitor. '

The monitor maintains a list of all threads waiting to enter the monitor object to exeqy,
synchronized methods. A thread is inserted in the list and waits for the object if that thread ca
a synchronized method of the object while another thread is already executing is a synchronz
method of that object. A thread is inserted in the list also if the thread calls the wait() methy
while operating inside the object. Threads executing synchronized methods explicitly call waiy)
inside the monitor upon completion of a synchronized method. Other threads that are blockeg
because the monitor was busy can now proceed to enter into the object. Threads that explicitly
invoked wait() can only proceed when they are notified by the notify or notifyAll methods called
by another thread. When it is acceptable for a waiting thread to proceed, the scheduler selects the
thread with the highest priority.

The keyword synchronized is used to synchronize the threads and there are two ways [0 doit
by using synchronized methods and using a synchronized statement.

waiting thread that the condition to be sati

6.5.1 Synchronized methods

If two or more threads modify an object, the methods that carry the modifications are declared
synchronized. Constructors need not be synchronized because a new object is created in only on¢
thread. The general syntax for declaring a method synchronized is the following:

Modifier  synchronized  <return_type> <method_name>(parameters)

To get a clear understanding of how this works, consider the Program 6.3.

lProgram 6.3 Using unsynchronized threads.

import java.io.;
class Class_A
{
void printValue()
{
try i
i |
for(inti = 0;i <= 5; i++)

{

System.out.print( ficke s



Multithreading 4957750

Thread.sleep(1000);

}
}
catch(InterruptedException)
{
}
}
}

class ThreadExample implements Runnable

{
Class_A ob1;

Thread t;
ThreadExample(Class_A c)
{

this.ob1=c;

t = new Thread(this);

}

public void run()

{
ob1.printValue();

}

public static void main(String[ ] args)

{
Class_A ca = new Class_A();

ThreadExample one = new ThreadExample(ca);

one.t.start();

ThreadExample two = new ThreadExample(ca);
two.t.start();

ThreadExample three = new ThreadExample(ca);
three.t.start();

) B

If we run the above example, we expect the following output:

01 2345012345
01 23 405

But the result is unpredictable; it may result in the following:

000144222333
47545415 5.5



i

o

&

The unpredictability of the output is a di
To see this and get the desired result let the printValue

Now, only one thread can execute in the method printValue

96 Object Oriented Progmzﬁmirig through Java

rect result of not synchronizing the printValue Methy,
() method be declared synchronizeq |

synchronized void printValue() |
( ) and the result will be 5

desired. _
The following points are to be noted when implementing synchronized methods

When a thread calls a non-static synchronized method, the thread acquires a lock on thy -

object. Any other thread that tries to call the same method enters into the wait state,
The synchronization of static methods is independent of the synchronization of non-stati;
methods. That is, if a thread calls a static synchronized method, the other threads are fry

to call non-static synchronized methods.
A sub-class can override a synchronized method in its super-class. The overridden methog

need not be synchronized.
If a non-synchronized method of an object uses the super() method to call a synchronized

method of its super-class, the object is blocked until the invocation has completed.

6.5.2 Synchronized statements

As an alternative to declaring a method synchronized, Java shows flexibility. The programme
can declare a part of the code as synchronized using synchronized statement. The general syntay

of declaring a set of statements synchronized is as follows:

synchronized <object><statement>

In the case of synchronized statements, we need to specify an object to act as a monitor for
this block. Each Java object can act as a monitor and hence any Java object can be specified

synchronized.
In the example considered in Program 6.3 we can achieve the desired output in another Wa):

that is by declaring the method synchronized by using synchronized statement. For this the code
is modified as in Program 6.4.

|} Program 6.4

import java.io.%;
class Class_A

b
void printValue()

B
try
{

for(inti=0;i <= 5; i++)




Multithreading 497

System.out.print( [ oY,
Thread.sleep(1 000);
}

}
catch(Interrupted Exception e)
{
}
}
}

class ThreadExample implements Runnable

{
Class_A ob1;

Thread t;
ThreadExample(Class_A c)

{

this.ob1=c;
= new Thread(this);

}
public void run()

{

synchronized(ob1)

{
obl.printValue();
}
}
public static void main(String[ ] args)
{
Class_A ca = new Class_A();
ThreadExample one=new ThreadExample(ca);

one.t.start();

ThreadExample two=new ThreadExample(ca);
two.t.start();

ThreadExample three=new ThreadExample(ca);
three.t.start();

i | TR
) | £5
- The output of Program 6.4 is the following:

0 1% 19: 345 O=12°"3°" 4 5
40 .12 -3%4 B



TABB  Object Oriented Programming through Java

'6.5.3 Deadlocks :
occasions. These can be classified into one of the two follo;, s

“Deadlocks occur on several
are waiting for two or more locks (o be freeq
3

situations, namely, when two or more threads
circumstances in the program are such that the locks will never be freed. |

Suppose one thread is a monitor of object A and another thread is monitor of the object g I
Figure 6.3, A and B are in the monitor because they are executing synchronized methods. Ay o 1
instant, if A tries to access the synchronized method of B and B tries to access the synchroniz
method of A then they will enter into the Deadlock state.
¢ each other to unlock a synchronized block of code, whey,
then this situation is called deadlock situatioy
hile writing the synchronizg

If two or more threads are waiting fo
cach thread relies on another to do the unlocking,
Deadlock situation occurs if the programmer is not careful w
methods. |

¢ 6.6 Daemon Threads

A daemon thread is a thread that runs only to serve other threads. Daemon threads run in the
background when CPU time is available that would otherwise go waste. For instance, the garbage |
collector in Java is a dacmon thread. Unlike conventional user threads, daemon threads do not

prevent a program from terminating.

A thread can be designated a daemon by calling the method setDaemon(true); A false

~_argument means that the thread is not a daemon thread. A program can include a combination of :

daemon threads and non-dacmon threads. When the program exits from execution then daemon
threads only exists in the program. If a thread is to be designated a daemon, it must be done before
1< start method is called. Otherwise, it throws an lllegalThreadStateException exception. To find
out whether a thread is a dacmon thread or not, the isDaemon() method can be used. This method
returns true if a thread is a daemon thread and returns false otherwise.

A daemon thread can only create a new daemon thread. Note that when the JVM starts, there s
a single non-daemon thread which typically calls the main() method of the class. Each thread hasa
daemon flag, which is initialized to whatever its parent’s flag was set to. Since the main thread of
an applet or application has its flag set to false, the only way a thread can be designated a daemon
thread is by invoking the following method:

setDaemon(true);

method_B()
resource

| . Fig 6.3 Deadlock state diagram.




A P
ey

Multithreading #9975

Dz?emf)“ lhread§ arfz just like normal threads except that they are not taken into account when
deciding if an application or applet has died. An application dies when all its non-daemon threads
have dled-. Thf‘f main purpose of daemon threads is to act as servers to the application/applet client.
when their client dies, they have nothing left to do, so it is reasonable to kill the daemons also
paemon threads are typically used in image loading among other things.

¢ 6.7 Thread Groups

sgmelime's it is.useﬁ.ll toidentify various threads as belonging to a thread group. Every thread object
created in java is amember of the ThreadGroup object. In Java, every thread and every thread group
joins some other thread group. That is, a thread which exists in a thread group can contain other
thread groups. This kind of arrangement forms a hierarchical thread-group structure as shown in
Figure 6.4.

As shown in Figure 6.4, the root of the thread-group structure is system thread group. JVM
created main thread group, which is a sub-thread group of system thread group. JVM may create
other threads under the system thread group based on the need. JVM also created a thread main
under the main thread-group. The main thread executes the byte instructions in the main() method.
By default, any created thread is a member of system thread group.

The class ThreadGroup contains methods for creating and manipulating thread groups. When
creating the construction itself the group is given a unique name via a String argument. A thread

system
(thread group)

Y b Y N
main
(thread group) system threads
main ThreadGroupl ThreadGroup2
(thread) (thread group) (thread group)
~Threadl : _Th'réadz
(thread) (thread)

s Fig. 6.4 Hierarchical thread-group structure.



900  Object Oriented Programming through Java

ds as well as other thread groups. and it forms a hig:rarchit1 o
bject belongs to the same group as .thc Threaq ‘ha;
dealt with as a group. It is possible to inter, , :
ber threads to act collectively “’hen; bl

'gm'u;p can have as members threa
lavout, By default a newly created Thread 0
cr;:.atcs it. The threads in a thread group c:ml be )
11 the threads in a group. A thread group allows the mem : 3
fxi!c:!}:u;l::;h as sus:énd:). resume() or stop() 15 invoked. This is also true for its sub-groups, The b
is, these operations work in a recursive manner.
A thread group can be the parent (o a child thread group. Method calls sent to ‘a parent threyy
“group arc also sent to all the threads in that parent’s child thread groups. The class ThreadGroup e

provides the following two constructors.

« public ThreadGroup(String stringName)—constructs a ThreadGroup with name stringName
* public ThreadGroup(ThreadGroup parentThreadGroup, String stringName)—construc
a child ThreadGroup of parentThreadGroup called stringName.

The class Thread provides three constructors that enable the programmer to instantiate s
Thread and associate it with a ThreadGroup. They are the following:

+« public Thread(ThreadGroup threadGroup, String stringName)
[t constructs a Thread that belongs to threadGroup and has the name stringName. This
constructor is normally invoked for derived classes of Thread whose objects should b -
associated with a ThreadGroup.

+ public Thread(ThreadGroup threadGroup, Runnable runnableObject)
It constructs a Thread that belongs to the threadGroup and invokes the run method of
runnableObject when the processor is assigned to the thread to begin execution.

+ public Thread(ThreadGroup threadGroup, Runnable runnableObject, String stringName)
It constructs a Thread that belongs to threadGroup and that invokes the run method of
runnableObject when the processor is assigned to the thread to begin execution. The name

of this Thread is indicated by stringName. The class ThreadGroup contains many methods
for processing groups of threads.

The activeCount() method on ThreadGroup returns the total number of threads presently
active. 1t includes the total number of threads active in the parent ThreadGroup as well as child

ThreadGroups. The enumerate() method returns an array of Thread references of ThreadGroup-
- The syntax of enumerate() method is as follows:

int enumerate(Thread list[ ])
int enumerate(Thread list[ ], boolean value)

| If boolean value is true, then it will enumerate all the threads within the group and alse |
descendents of this ThreadGroup. If it was false, it will return only threads within this group:
The methods of a ThreadGroup include the list given in Table 6.2. i



Table 6.2 The methods of a ThreadGroup.

Name ofthe method e Fiinction
getThreadGroup( ) returns the reference of the ThreadGroup

_ getMaxPi'iority returns the maximum priority of a ThreadGroup
setMaxPriority s€ts a new maximum priority for a ThreadGroup
getName returns as a String the name of the ThreadGroup
getParent determines the parent of a thread group.

ParentOf(ThreadGroup t) returns value true if t is the parent of the ThreadGroup, .
otherwise it returns false

¢ 6.8 Communication of Threads

In Java, inter-thread communication is achieved using the wait(), notify(), and notifyAll() methods
of the Object class. These methods are final methods in the Object class and can be called only
from within a synchronized code.

* wait() tells the calling thread to give up the monitor and move to sleep until some other
thread enters the same monitor and calls notify().

* notify() wakes up the first thread that called wait() in the same object.

* notifyAll() wakes up all the threads that called wait() on the same ob_]ect The highest priority
thread will run first.

Consider an example of the queuing problem in which two queues are defined: one queue,
producer queue, which produces some data, and the consumer queue, which consumes the data.
Suppose the producer has to wait until the consumer is finished before it can generate more
data. The consumer would waste many CPU cycles while it waited for the producer to produce.
This may cause polling, which can be avoided by inter-thread communication. In I/O based
Pfogrammmg, threads will wait in a loop and keep on checking whether the task is accomplished
ornot. This is called polling. Program 6.5 illustrates this queueing problem.

Ijroblem 6.5 Using inter-thread communication I: Polling.

class Queue

{
intn;
synchronized int get()
{

System.out.printin(* Got:"+n);

L

Multithreading 2000



202  Object Oriented Programming through Java

S PREUTTY By s st ea s 10 2 %
s >
synchronized void put(int n) -
ot |
this.n=n;
System.out.print(" put:”+n);
}
}
class Producer implements Runnable
{
Queue q;
Producer (Queue q)
{
this.q = q;
new Thread(this, “producer”).start();

}

public void run( )

{
inti=0;
while(i < 10)
{
q.put(i++);
}
}
}
class Consumer implements Runnable
{
Queue q;
Consumer(Queue q)

{
this.q = g;

new Thread( this, “consumer” ).start( );
!
public void run()

{
intk=0;
while( k < 10)
{
q.get();



}

k++ :

class SamplelnterThread

{

S

public static void main(String a[ ] )

{

Queue sample = new Queue( );
Producer p =new Producer(sample);
Consumer ¢ =new Consumer(sample);
System.out.printin(“hai”);

The output of Program 6.5 is the following:

put:0
put:3
put:6
put:8

Got0  put1 Got:1  put2 Got:2

Got:3  putd Got4  put:5 Got:5

Got:6  put?7 Got:7 Got:i7  Got7

put:9 Got:9

Multithreading 203“”

Here the result obtained is not the correct one. After the producer put 7, the consumer started
and got the same 7 three times in a row. Then, the producer resumed and producer puts 8, 9
simultaneously and after that consumer consumes 9. Problem 6.6 gives the code that yields

correct results.

l Problem 6.6 Using inter-thread communication II.

class Queue

{

boolean flag = true;

int n;

synchronized int get()

{

if (! flag )

{

~ System.out.print( Got:"+n);
flag = true;



B204  Object Oriented Programming through Java

notify();
}
else
{
try
{
wait( );
I
catch(Exception e)
{
}
}

return n;

}

synchronized void put(int n)
{
if ( flag )
{
this.n = n;
System.out.print(“put:”"+n);
flag = false;

notify( );
}

else

{
try
{

wait( );
}

catch(Exception e)
{

}
}

}

class Producer implements Runnable
{
Queue g; -
Producer (Queue q)



{
this.g = q;
new Thread(this, “producer”).start( );

}

public void run()

{
inti=0;
while(i <10)
{

q.put(i++);

}

}

}

class Consumer implements Runnable

{
Queue q;
Consumer(Queue q)
{
this.q = q;
new Thread(this, “consumer”).start( );

}

public void run(

{
int k = 0;
while( k < 10)
{

q.get( );
k++;

}

class SamplelnterThread

{ . .
public static void main(String a[ ] )
. _ _
‘Queue sample = new Queue();
Producer p = new Producer(sample);
Consumer c = new Consumer(sample);

}

Multithreading 208757



1206 Objéc.f Oriented Progranmming through Java -

The output of Program 6.6 is as shown below:
put:0 Got0 puti Got:1  put:2 Got:2
put:3 Got:3  putd Gotd4  put:d Got:5
put:6 Got:6  put7 Got:7  put7 Got:7
put:8 Got:8  Put9 Got:9

This concludes the discussion on multithreading. More programs illustrating the applicagiy, o
concepts discussed so far are presented below. |

¢ 6.9 Sample Programs

l Program 6.7 Writing all the properties of a thread.

import java.io.®;
class Class_A extends Thread

{

Thread t;

public void startThread()

{
System.out.printin(*“Starting child Thread”);
start();

}

public void run()

{
t=Thread.currentThread();
System.out.printin(“Name of the thread is:”+t.getName());
System.out.printin(“Priority of the thread:"+t.getPriority());
System.out.printin(“Thread is Alive +isAlive());
t.setName(“First”);
t.setPriority(8);
System.out.printin(“Changed Name:”+t.getName());
System.out.printin(“Changed priority:”+t.getPriority());
tstop(); - s
System.out.printin(“Test whether thread is alive or not"+tisAlive();

}

class ThreadExample5 extends Thread




Multithreading 207
{
public static void main(String a[ ])
{
Class_A ob=new Class_A();
System.out.printin(*“Main thread name:"+Thread.currentThread().getName());
ob.startThread();
Thread maint=Thread.currentThread();
System.out.printin(“Test main thread is alive or not:"+maint.isAlive());
} %
}

The output of the Program 6.7 is the following:
Main thread name: main
Starting child Thread
Test main thread is alive or not: true
Name of the thread: Thread-1
Priority of the thread: 5
Thread is Alive: true
Changed Name: First
Changed priority: 8

l Program 6.8 Scrolling a sentence in an applet so that it looks like a moving banner.

import java.io.™;

import java.applet.;

import java.awt.®;

import java.awt.event.®;

/*<applet code="ExampleApplet” width=200 height=200>

</applet>
i
public class ExampleApplet extends Applet implements Runnable
{ i

String msg="Welcome to thread programming”;
Thread t=null;
int state;

~ public void init()

L _ |
System.out.printin(“This is init() method”);

e




