Java Language
Fundamentals

This chapter familiarizes readers with the fundamentals of Java programming language. The first
part of the chapter deals with various data types in Java, literals, identifiers, operators and so on.
The second part gives an overview of various control statements and arrays in Java.

¢ 3.1 The Building Blocks of Java

/ ;
Java as a programming language follows a set of rules that define any programming language)

using the language elements. A semantic E?eﬁ;m‘zon specifies the meaning of syntactically legal
constructs:

3.1.1 Lexical tokens

Low-level language elements are called /exical tokens. These tokens are building blocks for more
complex constructs. Identifiers, operators and special characters are all examples of tokens that
can be used to build high-level constructs such as expressions, statements, methods and classes

——

3.1.1.1 Identifiers

Identifiers are program elements (such as a variable, function/method, class and so on). Java has
certain rules for naming identifiers. The naming rules are given below:

» Digits, letters, underscore or currency symbols (3, ¢, £ or ¥) are allowed

* The first letter of any identifier cannot be a digit.

e An identifier name must not be a reserved word

* Since Java programs are written in the Unicode character set, the definitions of letter and
digit are interpreted according to this character set.

e Java is case-sensitive, label and Label are two different identifiers.

Légal Identifiers: number, Number, sum_$, average
Illegal Identifiers: 48sum, all/clear, end-to-end

Object Oriented Programming through Java

¢ -
v

j 3:.1:1.2 Keywords

Programming languages have certain words, usually termed reserved ‘-t‘w'ﬂ’-f or h‘-’_ﬂ}’f{ftig, that
convey special meanings to the compiler. These keywords can be used only _‘ﬁ..!f their intended
action and they cannot be used for any other purpose. Java has a richer set ol kevwords than C
or C++,

The keywords in Java are given in Table 3.1.

Note that in addition to the keywords in the table, names of the built-in class, packages and
interfaces are also words that cannot be used as identificrs.

3.1.2 Literals

In Java technology a literal denotes constant value. This implies that 0 1s an integer hteral and
¢ is a character literal. Reserved literals true and false are used to represent boolean literals. “A
simple java program’ is a string literal. In addition there is the null literal (null) which represents
the null reference.

3.1.2.1 Integer Literals

Integer literals are the primary literals used in Java programming. Integer literals can be of
decimal, hegadccimal and octal formats. Decimal (base 10) literals appear as ordinary numbers
with no special notation. Hexadecimal (base 16) literals are prefixed with a leading Ox or 0XC Octal
(base 8) literals appear with a leading O in front of the digits.

Table 3.1 Keywords in Java.

abstract Boolean break byte case catch
char class const * continue default do

double else extends final finalty float

for goto * if implements import instanceof
int interface long native new null
package private protected public return short
static strictfp super switch synchronized this

throw throws transient try void volatile

while

* It is important to note that const and goto are not currently in Em
* Also it should be remembered that Java language is case sensitive. so even _] -
All the Java technology keywords are in lower case. ; _ though WP&r.ls a keyword, Super is

Java Language Fundamentals

For example, the integer literal for 12 can be represented in the following ways:

e 12 in decimal format
* 0xC in hexadecimal format
* 014 in octal format

3.1.2.2 Floating-point literals

(\Floa}’ingﬁ-pqint l_iterals represent decimal numbers with fractional parts, such as 3.145. They can
be expressed in either standard or scientific notation, meaning that the number 563.84 can also be
expressed as 5.6384e2. Unlike integer literals, floating-point literals default to the double type,
which is a 64-bit value. Programmers can also use the smaller, 32-bit float type if they know that
the full set of 64 bits is not required. This is achieved by appending an f or F to the end of the
number, as in 5.6384e2f. The programmer can also explicitly state that he or she wants a double
type as the storage unit for literal, as in 3.142d. However, this addition is not required as the
default storage for floating-point numbers is already double.

3.1.2.3 Boolean Literals

(\ Boolean literals are commonly used in Java programming. A reason for their frequent use is that
ry type of control structure,’Boolean literals are needed to represent

a condition or state that has only two possible values. Boolean values can be denoted using the

: g
reserved literals true or false.
,'--""".

3.1.2.4 Character Literals

Unicode is a standard universal character encoding representation. It uses two bytes (16-bit
character set) and also represents all international languages as character sets in Java. Unicode
is language-independent and is maintained by the Unicode Consortium. This encoding standard
provides the basis for processing, storage and interchange of text data in any language in all

modern software and information technology protocols.

Table 3.2 Special characters.

: 7,_‘--"p¢§ériptioﬁ' Ty 'Represéﬁtatio_hﬂ Description Repregentaﬁon
Backslash 2\ Newline \n
Continuation \ Single quote N

Backspace \b Double quote \’

.Carriage return \r Unicode character \udddd
Form feed \f o Octal character \ddd

- Horizontal tab \t

WIN38 Object Oriented Programming through Java

Character literals are represented by 16-bit Unicode character and appear ‘}”th_m 2P 0f51.ngle
quotation marks. An example of a Unicode character literal is \u0048, _Nthh is a hexadecimal
representation of the character H. This same character is represented in octal as \110. Some
special characters (control characters and characters that cannot be printed) are represented by a
backslash (\) followed by the character code. A good example of a special character is \n, which

forces the output to a new line when printed. Table 3.2. shows the special characters supported
by Java.

3.1.2.5 String literals

A string literal is a sequence of characters, that are given within quotation marks and must occur
on a single line. Escape sequences as well as Unicode values can appear in string literals:

. _E'.xé_n_i'p'lei :
“This is a tab.\t This is a second one \u0009!”

The tab character is specified using the escape sequence and the Unicode value, respectively.
The output is

This is a tab. This is a second one!
‘Example 2
“What's your option?”

The single apostrophe need not be specified using the escape sequence character in strings, but
it would be if specified as a character literal (\").
The output is

What'’s your option?
Exampis s
*“\"String literals are double-quoted.\"”

The double apostrophes in the string must be escaped using backslash (\).
The output is

“String literals are double-quoted.”

- Program 3.1 illustrates the use of string literals described above:

[_Program 3.1 Using string literals.

“public class TestString

{

~ public static void main(String(] args)

Java Language Fundamentals oy S

char ch =\ %,

String line1 = “This is a tab.\tThis is a second one \u0009!”;
String line2 = “What’s your option?”;

String line3 = “\“String literals are double-quoted.\"”;
System.out.printin(line1);

System.out.println(“A statement” +ch+ “s character literals are enclosed in
single quotes”); |

System.out.printin (line2);

System.out.println (line3);

) S5

The output of Program 3.1 is the following:

This is a tab. This is a second one!

A statement’s character literals are enclosed in single quotes
What's your option?

“String literals are double-quoted.”

As character literals are enclosed in single quotes in the second println statement, an escape
sequence (\) should be included in order to print a single quote as a character literal. In the third
println statement, the string is delimited by double quotes, thus there is no need of escape sequence
(\) for single quote. g

3.1.3 Whil_:e_ spaces

QA white space is a sequence of spaces, tabs, form feeds and line-terminator characters. Line
terminators can be newline, carriage return or carriage return—-newline sequences in a Java
source file)A Java program is a free-format sequence of characters, which is tokenized by
the compiler, that is, broken into a stream of tokens for further analysis. Separators and
operators help to distinguish tokens, but sometimes white spaces have to be inserted explicitly.
Table 3.3 explains how different white spaces can be generated in a program.

For example, the identifier classroom will be interpreted as a single token unless a white space
is inserted to distinguish the keyword class from the identifier room. White space aids not only in
separating tokens, but also in formatting the program so that it is easy for programmers to read.
The compiler ignores the white spaces once the tokens are identified.

Object Oriented Programming through Java

Table 3.3 Types of white spaces.

" No of Spaces | cursor position

_ White Space Representation
Space ‘ single space
" Tab “\t° 4 spaces
New-Line A Starting position in the
newline
Carriage-return “r’ or ‘\0’ Current position in the
new line

3.1.4 Comments

L_A.program can be documented by inserting comments at relevant places. The Java compiler
ignores these comments. Java provides three types of comments:

* Single-line comment All characters that follow // until the end of the line constitute a
single-line comment. For example,

/I This comment ends at the end of this line.

* Multiple-line comment A multiple-line comment, as the name suggests, can span several
lines. Such a comment starts with /* and ends with */. For example,

/* A comment on several

lines.
*/

* Documentation comment A documentation comment is a special purpose comment which
when placzd at appropriate places in the program can be extracted and used by the javadoc
utility to generate HTML documentation for the program. Documentation comments are
usually placed in front of class, interface, method and variable definitions. Groups of special
tags can be used inside a documentation comment to provide more specific information.
Such a comment starts with /** and ends with */. For example,

/**

* This class implements open an account
* @author PRRao.

* @version 1.0

*/

Comments cannot be nested. The comment-start sequences (/l, I¥, P*) are not treated
- differently from other characters when occurring within comments.

Java Language Fundamentals

¢ 3.2 Data Types

A data type defines a set of values and the operations that can be performed on them.

Unlike C++, Java is a strongly typed language.

There are seven primitive data types. Some details of these are given in Table 3.4. For example,
short occupies two bytes (16-bits) and hence the minimum value is — 2% = — 32,768 and the
maximum value is 2' — 1 = 32,767. The generalized formula for minimum value is — 2" and
for maximum value is 2~ — 1, where » is the number of bits.

Data types in Java can be divided into three main categories: integral, floating point and
boolean. These types are described in the following sections.

3.2.1 Integral data types

Integral data types consist of integers and characters: of these, integers are described as follows.

3.2.1.1 Integers

Integer data types are byte, short, int and long. They represent signed integers.
Some examples of defining integer data types are given below.

e inti=-215

« int max = Ox7fffffff (hexadecimal integer literal with a value of 2,147,483,647)

* int min = 0x80000000 (hexadecimal integer literal with a value of —2,147,483,648)
« long distance = 05402202647L (octal long literal) -

long zipcode = 55584152L (long literal)

3.2.1.2 Characters

In Java, the character data type is represented by char. Unicode character encoding is used by
Java. The unicode standard was selected because it would help in internationalization of Java as

Table 3.4 Primitive data types, their widths and ranges.

'Data Types Wldtﬁ_ (in bytes) Minimum Value Maxim’ﬁfr_n Value

byte 1 =27 p L |

short 2 =215 2151

int 4 =231 p L B

longl 8 —28 268 .1

char 2 0x0 . Oxfif

float 4 1.401208e 3.402823¢"

double 8 3.940656e% .1,797693¢*3%8 I

Object Oriented Programming through Java

a programming language. The char data type represents symbols in the Unicode charactgr o
such as letters, digits and special characters. It encompasses all the 65536 (2'°) characters in the
Unicode character set which are written in the form of 16-bit values. The first 128 characters of
the Unicode set (0—127) are the same as the 128 characters of the 7-bit ASCII character set, anf]
the first 256 characters of the Unicode set (0—255) correspond to the 256 characters of the 8-bit
ISO Latin-1 character set.

3.2.2 Floating-point numbers

This category includes the data types float and double. They represent fractional and signed

numbers.
Examples of these are the following:

+ float pi = 3.14159F
« double p = 313.159e-2
« double fraction = 1.0/3.0

3.2.3 Boolean data types

Boolean data type is used to represent logical values that can be either true or false. All relational,
conditional and logical operators return boolean values. They are primarily used to keep track of

the flow during program execution. _
At this point it is essential to note that boolean values cannot be converted to other primitive .
data values, and vice versa. Primitive data values are afomic and are not objects. Each primitive
data type defines the range of values in the data type and special operators in the language define
operations on these values. Each primitive data type has a corresponding wrapper class that can
be used to represent a primitive value as an object.
Program 3.2 demonstrates the use of various data types.

. Program 3.2 Using different data types.

class Testdatatypes
{
public static void main(String[] args)
{ ' ~ /I Range of various data types
byte b = 10; 11 -128 to 127
short s = 45; 1/ -32,768 to 32,767
int x = 50; Il -2,147,483,648 to 2,147,483,647

long 11 = 2359878 // -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807
float f=3.142f, // 3.4e-038 to 3.4e+038
~ double d =1.98e8; // 1.7e-308 to 1.7e+308

" Java Language Fundamentals ~ B0

char ch = ‘3 /1 0 to 65,536
boolean bo = false; // true or false

System.out.println(b);
System.out.printin(s);
System.out.println(x);
System.out.println(l1);
System.out.printin(f);
System.out.printin(d);
System.out.printin(ch);
System.out.println(bo);

} 25

¢ 3.3 Variable Declarations

3.3.1 Declaring, initializing and using variables

Variables are defined by giving the name of the data types before the variable name. In Java,
variables must be defined prior to their use. A variable stores values of data types. A variable has a
particular size and a value associated with it. In Java, variables can only store values of primitive
data types and references to objects. For example,

int i;
double d;
char c;

Several variables of the same type can also be declared in the same line; however, they need
to be separated with a comma (,). For example,

int X, y, z;
double 4, f;

Variables can also be initialized at the time of data type declaration, as in the following
examples.

inti=10;

intx =10, y =20;

char c, st1 = ‘A%

long big = 2147483648L,;

3.3.2 Variable types in Java

Java defines the three types of variable given below. Each variable can store values of primitive
"~ data types or references to objects only.

Object Oriented Programming through Java

are instantiated for each object

Instance variables These variables are members of a class and : ‘
- s will have their own instances

of the class. In other words, all instances, that is, objects, of the clas : _ :
of these variables, which are local to the object. The values of these va.n.ables at any gl\;en tm];e
constitute the state of the object. The data type should be specified explicitly for a variable at the
time of declaration.

. : e
Static variables or class variables These variables are also members of 2 class, but these are not

instantiated for each object of the class and therefore belong only to the class:

When a variable is declared static, it can be accessed before any objects of its ClaSS- are created,
without reference to any objects. Instance variables declared as static are, essentially, global
variables when objects of its class are declared; no copy is made of a static variable. Instead, all
instances of the class share the same static variable.

C It is illegal to refer to any instance variable inside a static method.)

Program 3.3 explains the use of instance and static variables.

. Program 3.3 Using instance and static variables.

class TestStaticlnst

{
int age =12;
String name= “Hyderabad”; /linstance variable
static int a=34; [/static variable
static int b;

static void smethod(int x)

{
System.out.printin(“x = "+x);
System.out.printin(“a= "+a);
System.out.printin(“b= "+b);

}

public void mmethod()

{
}

static

{

System.out.printin(“Name and age are Instance variable”+ name +age);

System.out.printin(“static block initialized”);

Java Language Fundamentals = #3555

=a+2;
}
public static void main(String[] args)
{

TestStaticlnst p1 = new TestStaticlnst ();

/lp1 is a variable of type TestStaticlnst class.
p1.mmethod);
smethod(32);

}
) E5
The Output of the program is given below

static block initialized
Name and age are Instance variable Hyderabad12

x =32
a=34
b=36

Local variables (method automatic variables) These variables are declared in methods and in
blocks and are instantiated for each invocation of the method or block. In Java, local variables
must be declared before they can be used.

A local variable is defined inside a method and is only visible from within the method. When
execution of the method starts, the variable is available, and when the method ends the variable
does not exist. For example, in the following code,

class T1
{
static int x;
public static void main(String a[])
{
int x=(x=2)*2;
System.out.printin(x);
}
}

Here the local variable x is assigned before it is used and hence prints 4 as output,

3.3.3 Object reference variables

An object reference provides a handle for an object. These references can be stored in variables.
In Java reference variables must be declared and initialized before they can be used. A reference

Object Oriented Programming through Java

; i declaration, in
! 1 ith it. A reference var iable .
variable has a name and a data type or class g i pe. This determines the object a

its simplest form, can be used to specify the name and the data ty
reference variable can denote. For example,
Stack intStack;

The above declaration enables variable intStack to reference objects bel'ongm% t?a;l;csziis
Stack. It is important to note that the above declaration will not create objects UACd laratior;
They only create variables, which can store references to objects of these classes. A dec o
can also include an initializer to create an object that can be assigned to the r eference variable.

(Constructors will be explained in chapter 4.)

|Example

Used to Reserve Memory for Object

T

Stack intStack = new Stack(10);, —>| Constructor of Stack Class

Now the reference variable intStack can reference objects of class Stack. The keyword new
together with the constructor Stack (10) creates an object of class Stack. The reference to this
object is assigned to the variable intStack. The newly created object of class Stack can now be
manipulated through the reference stored in this variable. For example, refer to the following code:

class ml
{
public static void main(String a[])
{
String name= new String(“Hyderabad”);
int num=30;

name= name+“city”’;
num=num+ 30;
System.out.printin (name + num);

}

Here, lines 5 and 6 indicate how an object and a reference variable are created. Lines 7 and 8
indicate how they are manipulated.

3.3.4 Default values for member variables

* If static variables in a class are not explicitly initialized, then when the
. are initialized to default values.

- * Instance variables are also initialized to default values when the class is instantiated. unless
.they are explicitly initialized to some other valye, d

class is loaded they

Java Language Fundamentals
* Areference variable is initialized to the valye null.
* Local variables are not initialized.
For example, see the following cases.

class Stack

{

/! Static variable

static int counter; // Default value 0 when class is loaded.

Il Instance variables
int size = 100; // Explicitly set to 100.

Vector stack; // Implicitly set to default value null.

}

The default values of variables of different data types are given in Table 3.5.

3.3.5 Initializing local variables of different data types

Local variables are not initialized when they are instantiated at the time of method invocation.

The javac compiler identifies local variables that are not initialized. Program 3.4 gives examples
of uninitialized local variables.

[l Program 3.4 Example of uninitialized local variables.

public class SampleClass

{

public static void main(String args[)

{
int weight = 10, price; // local variables
if (weight < 10) price = 100;
if (weight > 50) price = 5000;
if (weight >= 10) price = weight*10; // Always executed.
System.out.printin(“The price is:” + price);

}

} 25

In Program 3.4, the compiler reports that the local variable price in the printin statement is
initialized; however, the last if-statement in the program assigns a value of 100 to the local variable
price before it is used in the printin statement. The compiler does not perform a rigorous analysis
of the program in this regard. The program will compile correctly if the variable was initialized in
the declaration, or if an unconditional assignment is made to the variable in the method.

SIEd8 Object Oriented Programming through Java

Table 3.5 Default values of variables of different types.

 Default Value

HoSi i iDataType i Default Valus = ' DataType
Boolean false floating point (float, double) +0.0F or +0.0D
Char w0000’ object reference null

integer (byte, short, int, long) 0

3.3.6 Initializing local reference variables

Initialization rules that apply to local variables also apply to local reference variables. Program 3.5A
gives an example of initializing local reference variables.

l Program 3.5A Example of uninitialized local reference variables.

public class SimpleClass

{

public static void main(String args[])

{

String line; // local reference variable

System.out.printin(“The string length is:” + line.length());
}

) yZs%

In Program 3.5A, the compiler reports that the local variable line in the printin statement may
not be initialized, with a statement ‘variable line might not have been initialized’. Objects should
be created and their state initialized appropriately before use. If the variable line is set to the value
null, the program will compile without any problems.

However, at run-time, an exception (NullPointerException) will be thrown, since the variable
line will not reference any object. The golden rule is to ensure that a reference variable denotes an

- object before invoking methods via the reference. It must be ensured that the variable is not null.
Program 3.5B is an example where local reference variables have been initialized.

JJj_Program 3.58 Example of initialized local reference variables.

public class SimpleClass

{

public static void main(String args[])

Java Language Fundamentals ~ BT00E

{

String line= “reference variable™;

System.out.printin(“The String length is:"+ line.length());
}

The output of Program 3.5B is

The String length is: 18

¢ 3.4 Wrapper Classes /

Each primitive data type in Java has a corresponding wrapper class. Wrapper classes are used to
represent a primitive data type as an object. In other words, a wrapper class is used to convert a
primitive data type into its equivalent class type. Wrapper classes belong to the java.lang package.
These wrapper classes also define useful methods for manipulating both primitive data values and
objects. Table 3.6 gives the list of wrapper classes.

Wrapper classes for integers and floating-point numbers are sub-classes of the Number
class in the java.lang package.

Program 3.6 illustrates how to use wrapper classes (primitive double to wrapper Double and
vice versa)

. Program 3.6 Using wrapper classes.

import java.util. ArrayList;
public class TestWrapper
{

public static void main(String[] args) ;

{ ;
double dValue = 345.876;
double primResult = objNegate(dValue);)
System.outprintln(“Converting double into Double” + “* + prim Result);
primResult = primNegate(dValue); ‘
System.outprintin(“Converting Double into double”+ “ * + prim Result);

Double objValue = —-23.567;

Double objResult = primNegate(objValue);
System.outprintin(“Converting Double into double”+ * ” + objResult);

Object Oriented Programming through Java:

Table 3.6 Wrapper classes for the primitive data types.

' Primitive data type . Wrapper classes | Pprimitive data type . Wrapper classes .

L
int Integer long ong
byte Byte float Float
short Short double Double

objResult = objNegate(objValue); o .
System.outprintln(“Converting double into Double” + *“ " + objResult);

}

public static Double objNegate(Double n)
{

return n;

}

public static double primNegate(double n)

{

return —,

} .

The output of Program 3.6 is given below:

Converting double into Double
Converting Double into double
Converting Double into double

345.876
-345.876
23.567

Converting double into Double -23.567

¢ 3.5 Operators and Assignment

3.5.1 Operators

An operator takes one or more arguments and produces a new value. Arguments are distinct

from ordinary method calls, but the effect is one and the same. Some of the commonly used Java

technology operators are given in Table 3.7, |
In Java, most of the time, manipulations are done only on primitive data types; however, there

are some exceptions, suchas =, == and !=. These operators work with all objects. In addition,
the String class supports +and += operators.

A

Java Language Fundamentals 9555

Table 3.7 Commonly used operators in Java.

e

| Functions . Operator | "~ Functions . Operator '
Multiplication * Assignment =
Addition + Left shift <<
Subtraction - Right shift >> and >>>
Logical and && Equality comparison =
Conditional Operator 1: Non-equality comparison I=

3.5.2 Assignment

InJava, = represents the assignment operator. This operator is used to assign values of entities on
the right-hand side to the variable on the left-hand side (example a = b). In Java, the attribute to
the left of the assignment operator (in this case a) is a distinct variable. The attribute on the right
of the assignment operator (in this case 5) can be any constant, variable or expression that can
produce a value. For instance, you can assign a constant value to a variable with the statement
a=3.

Assignment of primitive data types is quite easy, because primitive types hold an actual values
(and not handles to some object). When primitives are assigned, contents of one variable are
copied to‘another. For example, if x = y for primitives, then the contents of y are copied into x. If
x is modified, y remains unaffected by this modification.

Program 3.7 illustrates the use of the assignment operator:

. Program 3.7 The assignment operator.

class Value
{
public int i =10;
}
class Assignment
{

public static void main(Stringf] args)
{

Value v1 = new Value();

Value v2 = new Value();

Value v3 = new Value();

250 Object Oriented Programming through Java

vii=22;

v2.i = 30; 2 + y2.0+ ¢, v3.E" + v3.i);

» 1 o.'! H + ll’ V
System.out.printin(“v1.i” + vii

v2 =v1;

v3.i=37;
System.out.print!n("v1 i
v2 = v3;
System.out_println(“v'l.i:" +vli+*v

In the above program, two classes are de
declares an integer variable i which is initialize

. : R 1) N,
i+ V20" 20+ V3T v3.i);

2 + v2.it+ “, v3.i” + v3ii);

& .

\

clared (Value and Assignment). The Value classl"
d to 10. Three instances of the Number class (v1, *

v2 and v3) are created within main() method of the Assignment class.

The i value within each Value is given a different value, and then v1 is assigned to v2, v3 is assigned
to v2 now v3, v2 will change. Changing the v1 object appears to change the v2 ob]ec?t and also changing
v3 object appears to change the v2 object. The output of the program is the following:

vil.i: 22, v2.i: 30, v3.i: 10
vl 22, v2.i: 22, v3.i: 37
v1.i: 22, v2.i: 37, v3.i: 37

Assignment operators actually work with all the fundamental data types. Table 3.8 lists the

assignment operators.

3.5.2.1 Conversion rules in assignments

There are some basic conversion rules for assignment when the source and destination are of

different types.

Table 3.8 Assignment operators.

:Despription- Operator ; ~Description :'Operator'. ;
Simple = Modulus %=
Addition | += AND &=
Subtraction” . -—= OR I=
Multiplication ¥ A

XOR
Division |= .

Java Language Fundamentals

If the source and destination are of the same type they cén be assigned without any issues. As
for example, in the following cases.

inti=5;
intj=12;
i =i /I Valid, since both are of same type

Widening 1f the source is of smaller size than the destination but the source and destination are

of compatible types, then no casting is required. An implicit widening takes place in this case. An
example is assigning an int to a long.

int i=5;
long 1=12;
=i // Valid, both are of compatible types and source is of smaller size

Casting If the source and destination are of compatible types, but the source is of larger size
than the destination, an explicit casting is required. In this case, if no casting is provided then the
program does not compile.

int i=5;
long I=12;

i = (int) I; Il Valid, both are of compatible types and source is of larger size
I/ and hence explicitly cast.

For more details on casting see section 3.5.12.

3.5.3 Mathematical operators

The basic mathematical operators used in Java are the same as the ones available in most
programming languages: addition (+), subtraction (), division (/), multiplication (*) and the
modulus operator (%), which produces the remainder from integer division. Integer division
truncates, rather than rounding off the result.

Java also uses a shorthand notation to perform an operation and an assignment at the same
time. This is denoted by an operator followed by an equal sign, and is consistent with all the
operators in the language. For example, to add 4 to the variable x and assign the result to x, use:
x += 4. Table 3.9 gives a description of the different types of arithmetic operators.

Table 3.9 Arithmetic operator.

 Doscription’ Operator | || Descripion " Operator
Addition + Division /
Subtraction - ~ Modulus %

Multiplication "

TEEBZ Object Oriented Programming through Java

3.5.3.1 Unary minus and plus operators

The unary minus (=) and unary plus (+) are the same operators as binary minus and plus. The
compiler understands which use is intended by the way you write the expression.
For instance, the statement
Average = -5;
assigns the value — 5 to the variable Average.
x =a*-b;
This may confuse the reader. A clearer way to write this statement is
x =a* (-b);
The unary minus produces the negative of the variable it acts on. The unary plus provides

symmetry with the unary minus, although it does not do anything significant. Table 3.10 gives a
description of the unary operators.

3.5.3.2 Auto increment and decrement

Java provides two operators to increment and decrement a unit. The decrement operator s ——
and means, ‘decrease by one unit’. The increment operatoris ++ and means ‘increase by one unit’.
For example, the expression ++a is equivalent to saying a = a + 1. There are two versions of each
type of operator, often called the prefix and postfix versions. For preincrement and predecrement,
(++A or — —A), the operation is performed and the value is produced. For postincrement and
postdecrement (A++ or A—-), the value is produced, then the operation is performed.

Table 3.10 Unary operators.

Description ~ Operator Descri ption ' Opefator /
Increment ;e Negation -
Decrement - Bitwise complement ~

Program 3.8 demonstrates Unary Operators:

. Program 3.8 Action of unary operators.

class IncDec

{

public static void main (String args[])

{
_intx=3,)"= 13;

Java Language Fundamentals ~ B35

System.out.println(“x = + x);
System.out.printin(“y = " + y);
System.out.printin(“++x = " + ++x);
System.out.printin(“y++ = " + yt+);
System.out.printin(“x = " + x);
System.out.printin(“y = " + y);

b«

Program 3.8 produces the following results:

x=8
y=13
++x =9
y++ =13
x=9
y=14

3.5.4 Relational operators

Relational operators generate a boolean result. These operators evaluate the relationship between
the values of the operands. The value true is given if the relationship is true, and the value false
if the relationship is untrue. The relational operators are less than <, greater than >, less than
or equal to <=, greater than or equal to >=, equivalent == and not equivalent !=. Table 3.11
gives a description of relational integer operators. _

The equivalence and non-equivalence operators work with all built-in data types. Other
comparison operators will not work with boolean types.

3.5.4.1 Relational operators and objects

The relational operators == and != also work with all objects. Program 3.9 illustrates how they
may be used to test the equivalence of two objects. |

Table 3.11 Relational integer operators.

Descripton ~ Operator ~ Description Operator
Less-than ; € =0, Greater-than-or-equal-to >=
Greater-than > Equal-to ==

Less-than-or-equal-to <= Not-equal-to 1=

5284 Object Oriented Programming through Java

. Program 3.9 Tesling object equivalénce..

public class Equivalence

{

public static void main(String[] args)
{
Integer n1 = new Integer(22);
Integer n2 = new Integer(22);
System.out.printin(n1 = = n2);
System.out.printin(n1 != n2);

) &5

In the above code, the result of the boolean comparison in the expression System.out.printin
(n1 == n2) will be given as output. In this case, naively, we may expect the outputs to be true and
then false, since both Integer objects, nl and n2, appear the same; however, despite the fact that
the contents of the objects are the same, their handles are not the same. The operators == and
!= compare object handles. Hence, the output is actually false-and then true.

To compare the contents of an object for equivalence, Java provides a special method called
equals(). This method can be used in all objects excluding primitives types, which work fine with
==and !=. This method is illustrated in Program 3.10.

[l _Program 3.10 Use of the equals() method.

public class EqualsMethod
{

public static void main(String[] args)
{
Integer n1 = new Integer(47);
Integer n2 = new Integer(47);
System.out.printin(n1.equals(n2));

}

} y”aY

The output of the above program will be true, as is expected; however using the equals()
method again has certain bottlenecks. For example, consider Program 3.11,

Java Language Fundamentals

lPro'gram 3.11_ Difficulties in using the equals() method.

class Value

{

}

public class EqualsMethod2
{

inti;

public static void main(String[] args)
{
Value v1 = new Value();
Value v2 = new Value();
vil.i=47;
v2.i = 47;
System.out.printin(v1.equals(v2));

}
) &5
Here, v1 and v2 are handles for the instance variable i.
The output generated by Program 3.11 would be false. The reason for such an output is that
the default behaviour of equals() is to compare handles. Therefore, the programmer needs to
override (give a different functionality to) the equals() method in a new class to obtain the desired

behaviour. Most of the Java library classes implement the equals() method so that it can compare
the contents of objects instead of their handles. The concept of overriding is discussed in chapter 4.

3.5.5 Logical operators

Logical operators AND (&&), OR (||) and NOT (!) produce a boolean value of true or false based
on the logical relationship of its arguments. These operators are applied to boolean values only.
Java prevents the use of non-boolean values in a logical expression, contrary to the fact that this is
allowed in C and C++. Subsequent expressions, however, produce boolean values using relational
comparisons, instead of using logical.operations on results.

The following illustration helps to understand the use of logical operators: let i = 85 and j = 4;

then the various logical operators, acting on i and j give the following results.

i <jis false

i>jis true

i>=jistrue i <=j is false

i ==] is false il=jistrue

(i<10) && (j < 10)is false (i<10)|| (> 10)is true

s automatically converted to an appropriate text form if it is used

In Java, a boolean value i i
type that is used can be

where a String is expected. In the above illustration, the primitive data

Object Oriented Programming through Java

replaced with any other primitive data type except boolean type; however, caution should be
taken during the comparison of floating-point numbers.

3.5.6 Bitwise operators

Java declares a variety of bitwise operators. Programmers use these operators to manipulate
integer data types (int, long, short and byte) and the char type. These operators perform boolean
algebra on the corresponding bits in their arguments to generate the result. Table 3.12 gives a
description of bitwise and shift operators.

In order to unite/combine assignment and operation, bitwise operators are joined with the =
sign. Legal operators include &=, |= and A=, (It should be noted that as ~ is a unary operator it
cannot be combined with the = sign.)

In case of boolean data type, which is treated as a 1-bit value and so is somewhat different,
programmers can perform bitwise AND, OR and XOR operations. This is because a boolean data
type is a 1-bit value. The bitwise NOT operation cannot be performed on boolean types.

3.5.7 Shift operators

Java also provides shift operators to manipulate bits. These operators can be used only with
primitive integral types. The left-shift operator (<<) acts on the operand to the left of the operator
and produces a result shifted to the left by the number of bits specified after the operator (inserting
zeros at the lower-order bits). The signed right-shift operator (>>) acts on the operand to the left
of the operator and produces a result shifted to the right by the number of bits specified after the
operator. The signed right shift >> uses sign extension: if the value is positive, zeros are inserted

Table 3.12 Bitwise and shift operators.

e Db’scr'ibtiof_'l”- _ Operator ; - Results

Bitwise AND & Gives output 1 if both input bits are 1,else 0

- Bitwise OR l Gives output 1 if at-least one of the input bit is 1, else 0
Bitwise XOR n Gives output 1 if anyone input bit is 1 but not both, else 0
Bitwise NOT ! Gives output 1 if input bit is i and output 1 if input bit is 0
Left-shift << Shifts the bits of operand to left by number of bits specified

and insert zeros at lower order bits.

Right-shift >> Shifts the bits of operand to right by number of bits specified.
If operand is positive, zeros are inserted at the higher order
bits, else ones are inserted at the higher order bits.

Zero-fill-right-shift >>> It is unsigned right shift. Shifts the bits of operand to right by
number of bits specified and insert zeros at lower order bit
irrespective of the sign of the operand.

Java Language Fundamentals ~ ST55

at the higher-order bits; if the value is negative, ones are inserted at the higher-order bits. Java has

also added the unsi.gned right shift >>>, which uses zero extension: regardless of the sign of the
operand, zeros are inserted at the higher-order bits.

Suppose x = 3, the 8-bit representation of 3 is 00000011

For x<<2, the result is 12, since it shifts 1 bits 2 positions to right as shown below.
Shifted 00j000011-> 0000110 0-8+4->12

212 BB RN
For x>>2, the result is 0, since it shifts 1 bits 2 positions to left as shown below.
x>>2
Shifted 000000[11-> 00000000-0

2726252492392 21 20

Similarly, the results for x<<3 and x>>3 are given below:

x<<3

Shifted 000|00011—> 00011000->16+8—>24
27260350433 225190

x>>3

Shifted 00000011-> 00000000-0
2726252020 222020

A single left-shift for an unsigned number is equivalent to multiplication by 2. Similarly, a
single right-shift for an unsigned number is equivalent to division by 2.

3.5.8 Ternary If-Else operator

This operator is unusual because it has three operands. It is truly an operator because it produces
a value, unlike the ordinary if—else statement. The expression is of the form

boolean-exp ? value0 : value1
For example, when calculating the maximum of three numbers:
d = (a>b)? (a>c? a:c): (b>c? b: ¢); where a, b, ¢, d are numerical values.

If the values of a, b, c are 4, 5, 6, respectively, then, first a, b are compared; that is (4 > 5). This
result is false, so the control jumps to the condition b > ¢, that is (5 > 6), whose result is again false.
Hence the final result is c, that is 6.

If boolean-exp evaluates to true, value0 is evaluated and its result becomes the value produced

by the operator. If boolean-exp is false, value1 is evaluated and its result becomes the value
produced by the operator.

Object Oriented Programming through Java

3.5.9 Comma operator

The comma is used in C and C-++ not only as a separator in function argument lists but also as an
operator for sequential evaluation. The sole usage of the comma operator in Java s 1n for loops.

3.5.10 String operator +

The + operator in Java can be used to concatenate strings. The use of String + is interesting. If an
expression begins with a String, then all operands that follow must be strings:

intx=0,y=1,z=2;
String sString = “x, y, z
System.out.printin(sString + x + y + z);

The execution of the above statements prints the result x, y, z012,
- Here, the Java compiler will convert x, y and z into their String representations instead of
adding them together first; however, the code can be written as shown below:

System.out.printin(x + sString);

Then earlier versions of Java will signal an error, later versions, however, will turn x into
a String. In case a String (using an earlier version of Java) is being concatenated, it should be
ensured that the first element is a String (or a quoted sequence of characters which the compiler
recognizes as a String).

3.5.11 Operator precedence

Operator precedence defines how an expression evaluates when several operators are present.
Java has specific rules that determine the order of evaluation. The easiest one to remember is that
multiplication and division happen before addition and subtraction. Programmers often forget the
other precedence rules, so the use of parentheses is recommended to make the order of evaluation
explicit.

For example:

a=x+y-2/2+z

has a very different meaning from the same statement with a particular grouping of parentheses
as given below:

a=x+(y-2)/(2+z);

In the first case, a=x+y—2/2 + z, the equation must be solv
of the operators. The higher priority operator is executed first, followed by the lower priority
operators. Now, for example, let us consider that the values ofx,yand zare 1,2 and 3, respectively
As the division operator has the highest priority it will be executed first. So now the equatim;
ijs 1 +2 — 1 + 3. The priority of addition and subtraction is the same, so the left associativity

ed according to the precedence

Java Language Fundamentals B9

principle applies here, and hence, first addition then subtraction and then addition operations
will be executed. Hence the final result after addition is 5. In the second case, a = x + (y — 2)
/(2 +z), let us consider that the values of x, y and z are 1, 4 and 1, respectively. As the parenthesis
has higher precedence than division, this time parenthesis will be executed first. So, the equation
is 1 + (4 —2)/(2 - 1) whose result after execution of brackets is 1 + 2/1. Next we execute the
division operator. The result is 1 + 2. Hence, the final result after execution of addition operator is 3.

The following is a list of all Java operators from highest to lowest precedence. In this list of
operators, all the operators in a particular row have equal precedence. The precedence level of
each row decreases from top to bottom. This means that the [] operator has a higher precedence
than the * operator, but the same precedence as the () operator. Table 3.13 gives a list of operators
and the manner in which each takes precedence over others. |

Evaluation of expressions still moves from left to right, but only when dealing with operators
that have the same precedence. Otherwise, operators with a higher precedence are evaluated
before operators with a lower precedence.

3.5.12 Casting operators

In Java one type of data is changed automatically into another type when appropriate. For instance,
if an integral value is assigned to a floating point variable, the compiler will automatically convert
the integer value into a float value. Casting allows programmers to make this type conversion
explicit, or to force it when it would not normally happen.

Table 3.13 Precedence rules of operators in Java.

Level = Operators on each level
1 : I ()
2 TR -
3 * / %
4 + -
5 << >> >>>

| 6 < > <= >=
7 —&—
8 &
9 A

10 &&

—
—
—

-t -
w N
1 ~J

TR0 Object Oriented Programming through Java

b *

. To perform a cast, put the desired data type (including all modifiers) inside parentheses, to the
left of any value. Here is an example of how easting can be used in a program:

void casts()
{
inta = 100;
long x = (long)a;
long y = (long) 100;
}

From the above example, it is clear that a cast can be performed on a numeric value as well
as on a variable. The casting illustrated here, however, 1s superfluous, since the compiler will
automatically promote an int value to a long whenever necessary. The programmer can still use a
cast in order to state the point explicitly or to make the code clearer. In other situations, a cast is
essential just to get the code to compile.

In Java, casting is safe, with the exception that when a narrowing conversion (casting a data
type that can hold more information into one that cannot) is performed there is a risk of losing
information. In the case of widening conversion, an explicit cast is not needed because the new
type will do more than hold the information from the old type so that no information is ever lost.

Java allows casting of any primitive type to any other primitive type (except for boolean).

* Class types do not allow casting. To convert one to the other there must be special methods.

¢ 3.6 Control Structures

The ability of a computer program to perform complex tasks is built on just a few ways of
combining simple commands into control structures. The six control structures are block, the
while loop, the do...while loop, the for loop, the if statement, and the switch statement. Each of
these structures is considered to be a single ‘statement’, but each is in fact a structured statement
that can contain one or more other statements inside it.

3.6.1 Block .

Block is the simplest type of structured statement. Its purpose is simply to group a sequence of
statements into a single statement. The format of a block is as follows:

{

statements

}

A block consists of a sequence of statements enclosed between the pair of flower brackets, o s
and ‘}°. Block statements usually occur inside other statements, where their purpose is to group
together several statements into a unit; however, a block can be legally used wherever a statement

can OCCUr.

Java Language Fundamentals
Two examples of the use of blocks are given in Programs 3.12(a) and (b):

[_Program 3.12 (a) simple block; (b) a block with a variable defined within it.

(a) Simple block
{

System.out.print(“The answer is”);
System.out.println(ans);

}

(b) A block containing a newly defined variable
{

int temp; // A temporary variable for use in this block.
temp =x; // Save a copy of the value of x in temp.
X=y, Il Copy the value of y into x.

y =temp; /I Copy the value of temp into y.

} | | Z5

In the second example, a variable temp is declared inside the block. This is perfectly legaI.,
and it is good style to declare a variable inside a block if that variable is used nowhere else but
inside the block. A variable declared inside a block is completely inaccessible and invisible from
outside that block.

Java defines five other control structures which can be divided into two categories: loop
statements and branching statements.

3.6.2 Loop

Loop statements are those that refer to the while and do...while statements.

3.6.2.1 The while loop

A while loop is used to repeat a given statement over and over. Usually, a while loop will repeat a
statement over and over, but only so long as a specified condition remains true.

while (boolean-expression)
statement

Since the statement can be, and usually is, a block, many while loops have the form:

while (boolean-expression)

{
}

statements

Object Oriented Programming through Java
The above statements are explained in the example given below.
intx=1;

while (x<=5)// where x<=5 is a boolean expression

{

X++;

Statement

System.out.println (x);

}

The semantics of this statement go like this, When the execution comes to a while statement,
it evaluates the boolean-expression, which yields either true or false as the value. If the value is
false, the computer skips over the rest of the while loop and proceeds to the next command in
the program. If the value of the expression is true, the computer executes the statement or block
of statements inside the loop. Then it returns to the beginning of the while loop and repeats the
process. This process will continue until the value of the expression is false, if that never happens,
then there will be an infinite loop. '

The compiler will not detect the infinite loop and hence the process will continue forever; to
stop this process, the user has to perform abnormal termination using Ctri+Break buttons.

Program 3.13 is an illustration of how to print five numbers:

. Program 3.13 Printing numbers from 1 to 5.

class WhileExample

{
public static void main(String args[])

{

int number;.
number = 1;.
while (number < 6) {

System.out.printin(number);
number = number + 1;

} - a4

In the above program, the variable number is initialized with the value 1. So the first time
through the ‘while loop, when the computer evaluates the expression number < 6, it is asking
whether 1 is less than 6, which is true. The computer therefore proceeds to execute the two
statements inside the loop. The {_irst stgtement prints out ‘1°. The second statement adds 1 to
number and stores the result back into the variable number, the value of number has been changed

Java Language Fundamentals — ©3555:

to 2. The computer has reached the end of the loop, so it returns to the beginning and asks again
whether number is less than 6. Once again this is true, so the computer executes the loop again,
this time printing out 2 as the value of number and then changing the value of number to 3. It
continues in this way until eventually number becomes equal to 6. At that point, the expression

number < 6 evaluates to false. It should be noted that when the loop ends, the value of number is
6, but the last value that was printed was 5.

3.6.2.2 do...while statement

Sometimes it is more convenient to test the continuation condition at the end of a loop
instead of at the beginning as is done in the while loop.

The do...while statement is very similar to the while statement, except that the word ‘while,’ along
with the condition that it tests, has been moved to the end. The word ‘do’ is added to mark the
beginning of the loop. A do...while statement has the form

do
statement
while (boolean-expression);

or, since, as usual, the statement can be a block,

do
{
statements
} while (boolean-expression);

Note the semicolon °;’ at the end. This semicolon is part of the statement, just as the semicolon
at the end of an assignment statement or declaration is part of the statement. Omitting it results
in a syntax error.

To execute a do loop, the computer first executes the body of the loop, that is, the statement
or statements inside the loop and then it evaluates the boolean expression. If the value of the
expression is true, the execution returns to the beginning of the do loop and repeats the process,
if the value is false, it ends the loop and continues with the next part’of the program. Since the
condition is not tested until the end of the loop, the body of a do loop is executed at least once.

3.6.2.3 The For statement

The for loop statement is almost similar to the while loop statement; however, for statements
offer certain advantages over the while loop statements. '

' @for_: loop can be easier to construct and easier to read than the corresponding while loop)

o . Object Oriented P'mgram.ming through Java

It is quite possible that in real programs for loops actually outnumber while loops. A for
statement makes a common type of while loop easier to write. while loops have the following

- general form:
initialization
while (continuation-condition)

{

statements
update

}

Consider the example illustrated by Proéram 3.14 which calculates the total amount
(principal + interest) repayable for a given rate of interest after 5 years.

l Program 3.14 Calculation of interest using a while loop.

~ import java.io. *;
public class $1 -
{

public static void main(String[] args) throws IOException

{

int interest,principal,years = O,rate; // declaration and initializing variables
System.out.printin(“Enter the principal amount and Rate”);

BufferedReader br= new BufferedReader(new InputStreamReader(System.in));
principal= Integer.parselnt(br.readLine());

rate= Integer. parselnt(br.readLine());

while (years <5)

{
interest = principal * rate; 1l
principal += interest; I do three statements
System.out.printin(principal); //
years++; /] updates the value of the variable, years
}

}'} 25

The above program can be written more efficiently using the for statement as in Program 3.15:

. Program 3.15 _Calculation of interest using a for loop.

import java.io.®;
public class 1

Java Language Fundamentals B’SZ’%‘%

;{Jublic static void main(String[] args) throws IOException
int interest,principal,years,rate; /! declaration and initializing variables
System.out.printin(“Enter the principal amount and Rate”);
BufferedReader br= new BufferedReader(new InputStreamReader(System.in));
principal= Integer.parselnt(br.readLine());
rate = Integer.parselnt(br.readLine());

for(years=0;years< 5; years++)

{ /! condition for continuing loop
interest = principal * rate; Il
principal += interest; /] do three statements

System.out.printin(principal); //
}
}

} _ Vsl

The initialization, continuation condition and updating have all been combined in the first line
of the for loop. This keeps every:fhing involved in the ‘control’ of the loop in one place, which
makes the loop easier to read and understand. A for loop statement is executed in exactly the
same way as the original code. The initialization part is executed once before the loop begins. The
continuation condition is executed before each execution of the loop, and the loop ends when this
condition evaluates to false. The update part is executed at the end of each execution of the loop,
just before jumping back to check the condition.

The formal syntax of the for statement is as follows:

for (initialization; continuation-condition; update)
statement
If a block statement is used, it takes the following format:

for (initialization; continuation-condition; update)

{
}

~ Here, continuation-condition must be a boolean-valued ekpression, whereas initialization
can be any expression, as can update. Any of the three can be empty. If the continuation condition

is empty, it is treated as if it were true, so the loop will be repeated forever or until it ends for some
other reason, such as a break statement.

statements

C Some people like to begin an infinite loop with for (;;) instead of while (true). .) '

e 4

e 8 Object Oriented Programming through Java

Usually, the initialization part of a for statement assigns a value to some variable, and the
update changes the value of that variable with an assignment statement or with an increment or
decrement operation. The value of the variable is tested in the continuation condition, and the loop
ends when this condition evaluates to false. A variable used in this way is called a loop control
variable. In the for statement given above, the loop control variable is years.

Certainly, the most common type of for loop is the counting loop, where a loop control variable

takes on all integer values between some minimum and some maximum value. A counting loop
has the following form:

for (variable = min; variable <= max; variable++)

statements

}

where min and max are integer-valued expressions (usually constants); variable takes on the values
min, min+1, min+2, ..., max. The value of the loop control variable is often used in the body of

the loop. The for loop at the beginning of this section is a counting loop in which the loop control
variable years takes on the values 1, 2, 3, 4, 5.

Here is an even simpler example in which the numbers 1, 2, ... 10 are displayed as a standard
output:
for (N=1; N<=10; N++)
System.out.printin(N);

For various reasons, Java programmers like to start counting at 0 instead of 1 and they tend to

use a ‘<’ in the condition, rather than a ‘<=". The following variation of the above loop prints out
the ten numbers 0, 1, 2, ... 9:

for(N=0; N<10; N++)
System.out.printin(N);

It is easy to count down from 10 to 1 instead of counting up. Just start with 10, decrement the

loop control variable instead of incrementing it and continue as long as the variable is greater than
or equal to one.

for(N=10; N>=1; N--)
System.out.printin(N);

The for statement also allows both the initialization part and the update part to consist of
several expressions, separated by commas. For example, to count up from 1 to 10 and count down
from 10 to 1 at the same time, we can write the for loop as given below. |

for (i=1,j=10; i <=10; i++, j--)
{

TextlO.put(i,5); // Output i in a 5-character wide column.
TextlO.putln(j,5); // Output j in a S-character column

Java Language Fundamentals

The output of the program is:

110
29
38
47
56
65
74
83
92
10 1

Note that certain versions of Java do not support TextIO class. In such cases, the
System.out.println command can be used.

The next step is to write a program losing a for loop to print even numbers between 2 and 20.

There are several ways to write this program. This is done in three different ways in
Programs 3.16, 3.17 and 3.18.

[Program 3.16 Printing even numbers from 2 to 20, method .

/l There are 10 numbers to print.

Il Use a for loop to count 1, 2, ..., 10. The numbers we want
/] to print are 2%1, 2%2, ..., 2%10.

for (N = 1; N <= 10; N++)
{

}

System.out.println(2*N);

] Program 3.17 Printing even numbers from 2 to 20, method .

// Use a for loop that counts

12,4, .., 20 directly by

/I adding 2 to N each time through the loop.

for(N=2;N<=20; N=N +2)

{
N

System.out.printin(N);

B _Program 3.18 Printing even numbers from 2 to 20, method |Ii.

I/ Count off all the numbers | . oy
/12,3, 4, ... 19, 20, but only print out numbers that are even.

S G§ Object Criented Programming through Java

for (N = 2; N <= 20; N++)

{
if (N%2==0)//is N even?

System.out.printin(N); ‘%
}

Perhaps it is worth stressing once more that a for statement, like any statement, never occurs

on its own in a real program. The statement must be inside the main routine of a program or inside
some other subroutine. And that subroutine must be defined inside a class.
Java also allows the use of char data types in a for statement.

for (char ch = ‘A’ ch <=‘Z’; ch++)

{ ,

System.out.print(ch);
System.out.printin();

}

3.6.3 Branching statements
3.6.3.1 The if statement

The if statement tells the computer to take one of two alternative courses of action, depending
on whether a given boolean-valued expression evaluates true or false. It is an example of a
branching or decision statement. An if statement has the form given below:

if (boolean-expression)
statement1

else
statement2

or with a block. as in the following structure:

if (boolean-expression)

{ | :

statement1
}
else
{

statement2
}

For example, consider the following statement:

if (number1 > number2)
System.out.println (number1+"is greater than+. nuniberz);

Java Language Fundamentals 693’? |

If more than one statement should be executed when the condition is true, then these may be
grouped together inside braces. For example,

~ if (number1 > number2)
{
System.out.printin (number1 + “is greater than”+ number2);
System.out.printin (number2 + “is less than or equal to”+ number1);

}

The if/else statement extends the idea of the if statement by specifying another section of code that
should be executed only if the condition is false.
For example, in the following case,

if (number1 > number2)

System.out.println (number1 + “is greater than” + number2);
else

System.out.printin (number1 + “is not greater than” + number2);

As in if selection structure, each of the statements may be compound statements consisting of
more than one simple statement enclosed within braces.
It is also possible to make longer sequences as follows:

if (number1 > number2)
System.out.println (number1 + “is greater than” + number?2);
else
if (number1 < number2)
System.out.printin (number1 + “is less than” + number2);
else
System.out.println (number1 + “is equal to” + number2);

When the if statement is executed, it evaluates the bodlean expression. If the value is true, the
computer executes statement1 and skips statement2 and viceyersa. Note that at any point of time
one and only one of the two statements inside the if statement is\executed. The two statements
represent alternative courses of action. The computer decides betwee _courses of action
based on the value of the boolean expression. o

Using only an if statement executes statements in its block if the boolean expre\ssion is true,
otherwise the block is skipped and the next line is executed.

if (boolean-expression)
statement

or

if (boolean-expression)

{

statement

v B Object Oriented Programming through Java

To execute these statements, the computer evaluates boolean-expression the expression. If
the value is true, the computer executes statement, which is contained inside the if statement;
if the value is false, the computer skips statement and moves to the next line of the program.
Programs 3.19 and 3.20 illustrate the use of if and if-else statements.

. Program 3.19 Using If statements to execute decisions in a program.

if(x>y)

{
int temp; // A temporary variable for use in this block.
temp =x; // Save a copy of the value of x in temp.
X=y,; I/ Copy the value of y into x.
y =temp; /] Copy the value of temp into y.

[Program 3.20 Using if-else statements.

if (years > 1) { // handle case for 2 or more years
System.out.print(“The value of the investment after”);
System.out.print(years);
System.out.print(“years is $”);
}
else { // handle case for 1 year
System.out.print(“The value of the investment after 1 yearis $”);
} /I end of if statement
System.out.println(principal); // this is done in any case %

3.6.3.2 brezk and continue statements

The syntax of the while and do...while loops allows programmers to test the continuation condition
at either the beginning of a loop or the end.

Sometimes, it is more natural to have the test in the middle of the loop, or to have several
tests at different places in the same loop.

Java provides a general method for breaking out of the middle of any loop. It is called the
break statement. This statement consists of just the following line:

break;

Java Language Fundamentals
When the computer executes a break statement in a loop, it will immediately jump out of the

loop. It then continues on to whatever follows the loop in the program. Consider, for example, the
following fragment, Program 3.21:

l Program 3.21 Using break to terminate a loop.

while (true) { // looks like it will run forever!
TextlO.put(“Enter a positive number:");
N = TextlO.getlnnt();
if (N> 0) //inputis OK; jump out of loop
break;
TextlO.putln(“Your answer must be > 0.”);

}
/l continue here after break ‘%

-If the number entered by the user is greater than zero, the break statement will be executed and
the computer will jump out of the loop. Otherwise, the computer will print out Your answer must
be > 0. and will jump back to the start of the loop to read another input value.

A break statement terminates the loop that immediately encloses the break statement. It is
possible to have nested loops, where one loop statement is contained inside another.

If you use a break statement inside a nested loop, it will only break out of that loop, not out
of the loop that contains the nested loop.

The continue statement keeps executing from the beginning of the loop depending on the loop
condition criteria. The following code illustrates the use of the continue statement

public class Testcontinue

{
public static void main(String argv[])
{
for(int i=1;i<10;i++)
{ |
if (i>5) continue;
System.outprint (i);
}
}
}

The outputis 1234 5.

Object Oriented Programming through Java

3.6.3.3 switch statement

The switch statement provides a way to execute one of a number of different sections of code,
according to the value of an integer or character variable. Each section of code is labelled with
a case, which specifies the value(s) of the variable for which that section of code should be
executed. The variable whose value to use is given at the top of the switch statement. For example,
the following section of code prints out the roman numeral corresponding to any of the numbers
from 0 to 5:

switch (number)

{
case 1:
System,out.printin(“l”);
break;
case 2:
System. out.printin(“Il"’); break;
case 3:
System.out.printin(“Ill”);
break;
case 4:
System. out. printin(“IV”); break;
case S
System.out.printin(“V”);
break;
default:
System.out.printn (“?");
}

The break statement, which is used after each case, causes the program to skip the rest of the
cases. Without the break statement, execution would continue through all the sections of code
after the matching case. The last case is a default one. This will be executed if none of the other
cases match. _

Programmefs can leave out one of the groups of statements entirely (including the break). In
such cases they have two case labels in a row, containing two different constants. This just means
that the execution will jump to the same place and perform the same action for each of the two
constants. Program 3.22 illustrates the use of the switch statement.

JJ] Program 3.22 Using switch to construct multi-way branches.

switch (N)
{ [/ assume N is an integer variable

Java Language Fundamentals

case 1:

System.out.println(“Tho number is 1.");
break;

case 2:
case 4:
case 8:

System.out.printin(“The number Is 2, 4, or 8.");

System.out.printin(“(That's a power of 2!)");
break;

case 3:
case G:
case 9:

System.out.printin(“The number is 3, 6, or 9.");

System.out.printin(“(That's a multiple of 3!)");
break;

case 5;

System.out.printin(“The number is 5.");
break;

default:

System.out.printin(“The number is 7,");
System.out.printin(* or is outside the range 1 to 9.”);

) 25
3.6.3.4 Empty statement

This is a statement that consists simply of a semicolon. Look at the following code:
if (x <0)
{

b 2

The semicolon after the } is legal; however, due to the presence of the semicolon the compiler
considers it to be an empty statement, not part of the if statement.,

X ==X

3.6.3.5 Nested loops

Nested loops refer to loops within a loop. For instance, a for loop statement containing another for
loop. The syntax of Java does not set a limit on the number of levels of nesting,

Object Oriented Programming through Java

¢ 3.7 Arrays

Arrays are data structures that hold data of the same type in contiguous memory. A group of
memory cells that are contiguous have the same name and store the same data type. The purpose
of an array is to store data where each piece of data is of the same type.

3.7.1 One-dimensional arrays
3.7.1.1 Declaration of one-dimensional arrays

All arrays must be declared before they can be used. The general way to declare a one-dimensional

array is to declare the type of the array, then the name of the array followed by the brackets []. This
is done as in the following examples:

int age[];
double score[;
String lastnames] J;

In Java, arrays can be declared anywhere, just like any other variable. Failure to declare an
array will result in a compile-time error message.

3.7.1.2 Allocation of memory and initialization

Memory must be allocated for an array before it is used. This is done by making a statement as
given in the following examples. In the statement, the data type is mentioned again and this must
be the same as the data type that was indicated when the array was declared.

age = new int[10];
score = new double[100];
lastnames = new String[1000];

If array size is declared as N then the elements are numbered from O ... (N-1).

In the example given, age has elements 0 ... 9, score has elements 0 ..
elements O ... 9999.

An array can be declared and created in a single statement.

. 99, and lastnames has

int[] anArrayOfints = new int[10];

Accessing an element that does not exist (or is out of scope) causes a run-time error and the

program terminates abruptly at that point. Such an error is indicated by the phrase Array out of
Index.

Normally, in Java, memory is allocated for arrays in the constructor for ap

plication programs
and in the init() function for applets.

Java Language Fundamentals
3.7.1.3 Using arrays

After an array is declared, elements within the array are accessed by providing an index (that is
placed in brackets) The value inside the square brackets [] indicates the index corresponding to
the element that is to be accessed. Thus, the value[i] accesses the ith element of the array. The
array index can be a literal value, a variable or an expression.

Array indices in Java begin at 0 and end at the array length minus 1. The length property is
referenced to obtain the size of an array (number of elements). A value is assigned to an array

element through the combined usage of the array name and the index. This assignment can be
done as shown in the following examples:

area[0] = 25;
total[i] = 100;
name[t-1] = “Ravi”

Accessing a value in an array element is similar to assi gning a value to an element in an array.
This is done as illustrated in the following examples:

varAge = age[0];
varScore= score][i]

Program 3.23 creates an array, inserts some values in it and displays those values.

[} _Program 3.23 Printing an array of integers.

public class DisplayArray

{
public static void main(String[] args)
{
int[] myArray = new int[10]; // declare and create an array of integers
/] assign a value to each array element and print
for (int i = 0; i < myArray.length; i++)
{ _
myArray[i] = i;
System.out.print(myArray[i] + “ ”);
}
System.out.printin();
}

) sy
3.7.2 Multi-dimensional arrays

- Multi-dimensional arrays (or multiple-subscripted arrays) can be used to represent tables of data.
- Atwo-dimensional array has rows and columns and two subscripts are needed to access the array.

Object Oriented Programming through Java

elements. Java allows creation of a two-dimensional array containing » rows and m columns (that
is, an n x m array). |

Java represents multi-dimensional arrays using an one-dimensional array whose individual
elements are once again members of an one-dimensional array. Using this definition we can create
arrays that are two-dimensional or more than that. Usually the highest dimension that is used is
three, beyond which visualizing an array is cuambersome.

Elements of multi-dimensional arrays are accessed in a way similar to that of an one-
dimensional array. Instead of using a single subscript, the n-dimensional array uses » subscripts.

A two-dimensional array uses two subscripts and so on. A two-dimensional array can occur in a
statement in the following manner:

arrayName[i][j] = value;

The declaration of multi-dimensional arrays is similar to one-dimensional arrays. This is done
by a statement such as the following one:

int arrayOfNums [][];

The number of columns in each row of a multi-dimensional array should be same. This must
be observed while defining it.

int arrayOfNums[][1;

arrayOfNums = new int[3][];
arrayOfNums[0] = new int[2];
arrayOfNums[1] = new int[3];
arrayOfNums[2] = new int[4];

Initializing values in a multi-dimensional array is also similar to initialization in one-
dimensional arrays. For the array arrayOfNums, this is done as shown below:

int] [] arrayOfNums = {{13, 23, 33, 44}, {14, 24, 34, 44}, {15, 25, 35, 45)};

Program 3.24 creates a two-dimensional array, inserts some values in it and displays
the values.

l Program 3.24 Using two-dimensional arrays.

public static void main (String args[])
{
int[J[] matrix;
matrix = new int[4][5];
- for (int row=0; row < 4; row++)
{-

for (int col=0; col < 5; col++)

Java Language Fundamentals

{
matrix[row][col] = row+col;
}
}
for (int row=0; row < 4: row++)
{

for (int col=0; col < 5; col++)

{ |
System.out.print(matrix[row][col]+ “ ");
}

System.out.printin(*”);

}

The output of Program 3.24 is the following:

g b LN

(o) B¢ L IEE S
~N o O b

0 1
1 2
2 3
3 4

¢ 3.8 Strings

A string represents a group of characters. Strings written in a Java program are all String class
objects. String class objects are immutable (cannot be modified) because the time taken by JVM
to reallocate memory and add data to an existing object is more than the time taken to create
a new object. A new object is created every time a modification is required. Java defines the
String class, which is part of the java.lang package. The languages such as C, C++ implement
strings as Character array whereas Character array and strings are different in Java. This class

allows programmers to perform operations such as concatenation, sub-string and case changes
(Lower—Upper case and Upper-Lower).

3.8.1 Constructors of String class with character ar

ra i
il y and String

Constructors have been mentioned earlier and will be explained in detail in chapter 4. They can
take any of the following forms:

String (char array[]);

String (char array[], int start , int count);
String(String object);

Object Oriented Programming through Java

3.8.2 Constructors of String class with byte array
These type of constructors can take the following forms:

String(byte a[]);
String(byte a[],int start, int count);
String(byte a[], int start, int count, String encodingchars);

The String class also defines a special type of constructor that contains StringBuffer
parameter.

String(StringBuffer a[]);

Program 3.25 creates Strings using constructors.

l Program 3.25 Using constructors to create strings.

import java.io.¥;
class SampleString
{
public static void main(String[] args)
{
String str1=new String(“Program”);
byte s1[]= new byte[5];
for(int i=0;i<5;i++)
s1[i]=(byte)(i+65);
String str2=new String(s1);
String str3=new String(s1 2.2
char c[1={j")a’,'v',’a’};
String str4 = new String(c);
String str5 = new String(c,2,2);
System.out.printin(str1);
System.out.printin(str2);
System.out.printin(str3);
System.out.println(str4);
System.out.printin(str5);

Output: -

Program
- ABCDE

Java Language Fundamentals 95

CD
java
va

3.8.3 Methods of the String class

In all the methods of the String object, the index of the characters starts from 0 to length()—1.
Table 3.14 lists various methods in the String class

Table 3.14 Methods in the String class.

Method o Description

char charAt(int index) Returns the character at the specified index. Otherwise it
returns StringindexOutOfBoundException.

void getChars(int sourcebegin, This method will copy (sourceend—sourcebegin) —1 number

intsourceend, char[] destination, of characters starting from the destinationbegin. In the case

int destinationbegin) of errors it will throw the StringlndexOutOfBoundException
and the NullPointerException.

Byte[] getBytes() Returns the byte array of the specified string.

boolean equals(String str) Returns true if the String object specified using str is equal to

the invoking string. Otherwise, returns the value false. This is
a case-sensitive method.

boolean equalslgnoreCase(String str) This method will do the same thing as the equals() method
except that it will ignore the case.

int compareTo(String str) It will return 1 if the String object str is less than the invoking
String, return —1 if str is greater than the invoking String and
returns O if both are equal.

int compareTolgnoreCase(String str) This method will do the same as compareTo() except that it
will ignore the case.

boolean startsWith(String str) It will return true if the invoking string starts with str. The
boolean startsWith(String str, int index) second version of this method will compare the invoking
string with str from index which is specified.

boolean endsWith(String str) It will return true, if the invoking string ends with string str.
boolean endsWith(String str, int index) ~ The second form of this method will compare str from the
index specified. -

int indexOf(int ch) It will return the index of the first occurrence of character
- int indexOf(int ch, int index) specified by ch. In the second form index will specify the start
: index and goes through the end of the string.

(Table 3.14 Contd.)

(Table 3.14 Continued)

~ Method

2 Description

int lastindexOf(int ch)
int lastindexOf(int ch, int index)

String subString(int index)
String subString(int index |, int index2)

String concat(String str)

String replace(char oldcharacter, char
newcharacter)

String trim()

String toLowerCase()

String toUpperCase()

int length()

It will return the last occurrence of the charact.er Spfaciﬁed by
ch. It starts searching backward from the specified index and
returns the index within the string of the last occurence.

It will return the sub-string of the string on which it is invoked
starting from the index. In the second form of the subString()
method index1 specifies the starting index and index2 specifies
the end index.

This method will return the string in which str is concatenated -
with the invoking string.

It will return the string with oldcharacter replaced by
newcharacter.

It will return the string by removing the left-most and right-
most white spaces.

Returns the string which contains only lowercase letters. That
is, all letters in capitals are converted to lowercase letters.

Returns the string which contains only capital letters. That is,
all the lowercase letters are converted into capital letters.

Returns the length of the string on which it is invoked.

3.8.3.1 The valueOf method

In general, concatenation (+) operations are performed on all data types with String data type.
First the valueOf() method is called, with that data type value as parameter. This will return its
String value. Then this String value is appended to the other String. What happens during append
is seen in the section on StringBuffer. This method is a static method which is overloaded.

static String valueOf(double value)
static String valueOf(long value)
static String valueOf(int value)
static String valueOf(float value)
static String valueOf(boolean value)
static String valueOf(char]] value)

static String valueOf(char[] value, int start, int length) /It converts character array

static String valueOf(Object value)

llstarting from the ‘start’ to the ‘length’ specified.

Java Language Fundamentals . s
3.8.3.2 The equals() method

Program 3.26 illustrates the use of the equals() method.

l Program 3.26 Using the equals() method to compare Strings

class TestEquals

{
public static void main(String args[)
{
String str1= new String(“java");
String str2=new String(“java”);
String str3=new String(str1);
if(str1.equals(str2))
System.outprintn(“stri.equals(str2)is true™):
else
System.outprintin(“str1.equals(str2)is false™);
if(str1.equals(str3))
System.out.printin(“str1.equals(str3) is true™):
else
System.out.printin("str 1.equals(strd) is false™);
if(str2.equals(strd))

System.out.printin(“str2 equals(str3) is true™);
else

System.out.printin(“false™);
if (str1 == str2) '

System.out.printIn(“str1==str2 is true”);
else

System.out.printin(“str1==str2 is false™);
if(str1 == s5tr3)

System.outprintin(“str1==3tr3 is true”);
else

System.outprintin(“str1==str] is false™);
if(str2 == str3)

System.out.printin(“stri==str3 is true™);
else

System.outprintin(“str1==str3 is false");

B2 Object Oriented Programming through Java

- Output:

stri.equals(str2) is true
stri.equals(str3) is true
str2.equals(str3) is true
stri= = str2 is false
str1= = str3 is false
str2= =str3 is false

The equals() method compares the contents of the two strings whereas the ‘= =’ compares the
object references of the string objects.

¢ 3.9 The StringBuffer Class

An object of the String class is immutable. In order to achieve mutability, Java provides a class
called StringBuffergA StringBuffer is a mutable string, which can be changed during the program. It
is a changeable set of characters that can grow in size) When ever the + (concatenation) operator is
used on string objects, the string will be changed into an instance of StringBuffer and the append()
method is called on that instance of StringBuffer. After that, StringBuffer is changed into String

by using the toString() method of the Object class. StringBuffer also facilitates the insertion of a
character in the middle of a string.

3.9.1 Constructors of the StringBuffer class

There is a default constructor that creates a StringBuffer with a capacity of 16 characters. This
takes the form shown below:

StringBuffer();

The following type of constructor will specify the size of the StringBuffer.
StringBuffer(int size);

The following type of the constructor will create the StringBuffer with the String object.
StringBuffer(String str);

Whenever the size of the StringBuffer is not specified, it will allocate space for the 16 additional

characters because reallocation is a costly process. These are some methods which are not part of

the String object. StringBuffer also supports all the methods that are supported by String.
Table 3.15 lists various methods in StringBuffer class.

Java Language Fundamentals — B35

Table 3.15 Methods belonging to the StringBuffer class.

_ Mhthod_

Description &

StringBuffer append(int value)

StringBuffer append(char[] str, int start,

int length)

int capacity()

StringBuffer delete(int start, int end)
StringBuffer deleteCharAt(int index)

StringBuffer insert(int index, char c)
StringBuffer insert(int index, char(] str,

int start, int length)

StringBuffer reverse()

void setCharAt(int index, char ch)

Void setLength(int size)

This method will return StringBuffer after appending value to
its current form. This method holds good for all data types,
String class and Object class

The second form will append the character array at the position
start to the length of characters to StringBuffer.

It will return the total capacity of the StringBuffer.

It will return the StringBuffer after removing the characters
from the index start to the index (end—1).

Returns the StringBuffer by removing the character at the
index.

This method will insert the character at the index specified and
returns the StringBuffer. This method also holds for all data
types, String and Object.

The second form of this method will insert the sub-array
starting from the index start up to the point specified by length
at the point index of the StringBuffer.

Returns the StringBuffer which is reversed in order compared
with the original one.

It will replace the character at index by the character ch in the
StringBuffer.

It will set the length of the StringBuffer to size.

Objective type questions
1.

m

The value of the following expression is

intk=5]2is

In a class global variables are declared using the keyword

is used to represent a back slash(}\) character.

Which of the following is an illegal statement in java.

a. inti=2;

a. 63.

b. -63.

b. float f=45.0; . double d=33.6; d. chara=17,

. The value of 128>>>1 is

c. —128. d. 32.

