% Ub]ect [lrlented Prugrammmg thmugh

P Radha Krishna

L']--@ Universities Pross":

.t i
. *-" ‘d‘gﬂ '

Object Oriented
Programming

Computer programming languages have undergone a dramatic change from being procedure
oriented to object oriented in the last decade. One reason for such a shift in approaches is the
creased usage of software in dealing with problems having a high level of complexity. This and
the need to reuse parts of software in different applications have led to the popularity of object
oriented programming (OOP). This chapter covers the basics of OOP.

¢ 1.1 Introduction to OOP

In early days, programs were collections of procedures acting on data. A procedure is defined as
a collection of instructions executed in sequential order. Data were independent of the procedures
and programmers have to keep track of functions and the way they modify data. Structured
programming is a simpler way to tackle this situation.

In structured programming, a complex program is broken into sets of smaller, understandable
tasks: however, the drawbacks of structured programming soon became clear. These were, first,
that data and task independency were too hard to maintain. Sec ond, programmers were reinventing
new solutions to old problems. To address these problems, object oriented programming came into
existence. This provides a technique for managing huge complexity, achieving reuse of software
components and coupling data with the tasks that manipulate data.

Object oriented programming, as a concept, was introduced by Xerox Corporation in the early
1970s. The first object oriented language was Smalltalk. The concept of object orientation in
this language did not prove successful for about 10 years because of the limitations of early
computers. Some languages that successfully implemented object oriented programming are
C++, Java and Eiffel. Object oriented programming is thought to be a relatively new concept
in computer science. Contrary to this, all the major concepts such as objects, classes, inheritance
herarchies were developed by researchers of Norwegian Computing Center as part of development
of programming language Simula in the 1960s. Yet the importance of these concepts was slowly
recognized by the developers of Simula. _

Object oriented programming deals with things called ‘objects’. Objects are just extremely
functional ways of organizing information. Objects in an OOP language are combinations of code
aﬂddata that are treated as a single unit. Each object has a unique name and all references to that
object are made using that name.

r

r " wh Java
2 (hject Or iented Programming throug

] what apopears 1o be phvaic.
All the programmer (o Wrile applications that interact with what apj) D€ physical
Allowing the AL '

: "j! 'f prf w’ rrl& e ’I 'f.

rall set of flow-control commands and how 1o interact with the rfhjocts tha; h:'-.,.q:;'r:;l’;;’iljl:';::t.llr;n Uses,

Object oriented programming is built on the concept of ””f"’mg c[;’dc ! l,rli;,lb” j ;d“ r,n: "‘:”fﬁf:m
ind maintenance of object libraries. These objects arc avalla'blc for bu‘n mzl,T '4 s' \ Txmtammg
Jsually, a library contains the code for vanous funcur.)'ﬂ‘*.t"’t_ dr;’ ;”mmimly
required during the program development. These libraries f;an he, lang!_légﬂj*?“{ '_‘5’ or LL%-!'-
defined. Unlike traditional libraries, OOP languages provide object libraries ”‘h’(’,h Contaim
code along with the data in the form of objects, in addition to the H'Em"leﬁ and Cm'?’ p‘"”'n& of the
code located within. Objects of object library are available for building and maintaining other

other applications. |

applications.

¢ 1.2 Objects and Classes

Objects and classes are the building blocks of OOP. To understand OOP, first we have 1o know
what objects and classes are.

An object is a programming entity in OOP. It has data components representing the present
state of the object as well as functions (also called methods). Data components are termed
attributes in the context of OOP languages. An area of memory is kept aside to store values for the
attributes when an object is created. Functions describe the behaviour of the object and allow the
other programming entities to interact with the object.

An object contains attributes (variables) and methods (member functions). Attributes
are the data associated with the object and the methods are the functions and code which
operate on the data.

A class is a model to define objects. In other words, an object is said to be an instance of a class.

An object may be real or abstract. That is, objects can model concrete things such as people
and data entry forms as well as abstractions such as numbers, equations or geometrical concepts,

Consider an example of a class—car. The class car describes all car objects b ifyin the
data components and the methods that each can have. Various objects deﬁnedj'(T lasg car
could be Maruti 800, Zen, Santro, Accent and so on. The class EEis
the seating capacity, maximum speed, engine
position. Typical functions of the car class are
Figures 1.1(a) and (b) for an illustration.

car has various attributes such as

T —— = T T — v PR T — o —— ’
r 3 '

Object Oriented Programming

Attributes

seating capacity
speed

engine capacity
parking light
current speed

current position

Methods

acceleration();
parking():
turning():

(a) (b)

B Fig. 1.1 (a) An object; (b) example of object car.

Software objects are modelled after real-world objects in that they too have state and behaviour.
Attributes define the state of the object and methods define the behaviour of the object. That is, a
software object maintains its state in one or more affributes. Attributes can have different values at
different instances of time; however, values of a particular attribute must have the same data type.

An attribute/variable is an item of data named by an identifier, and a software object implements
its behaviour with methods. A method is a function/sub-routine associated with an object.

The state of an object and its behaviours work together. For example, how high a ball bounces
depends on its elasticity. An object’s behaviour often modities its state. For example, when a ball
is rolled, its position changes.

An object must also have a unique identity that distinguishes it from all other objects. Two
objects can have the same data types of attributes with the same names, and those attributes can
have the same values. Therefore two objects could have the same state. There must be a way of

distinguishing the two objects and that is done by using an object’s name. In a program, to define
an object we need a class.

A class is a model or pattern from which an object is created. In other words, a class is a
special module that defines an object.

A class defines the data types of attribute that will be held in an object, and defines code for
the methods. After a class was defined, an object can be created from it. The process of creating
an object from a class is called instantiation. Every object is an instance of a particular class.

PR~

4 Object Oriented Programming through Java

Defini 1 . a set of methods defined. The attributeg
efinimg a Class 18 ' 3 i

] : : o olace ic defined: however, when an objec

will not have any values associated with them when a class is defined; lh(] .8 flt ')Ejt,ct

i, - beras ey B wallies values of the attributeg

i< created from this class, the attributes of this object will have values. The A d.u‘tcs

and/or modified by the methods of that class and cannot be access modified

having a name, a set ol attributes and

can be accessed
by the objects of the other class. . e :
' ' : i f oC lass is the
The definition of a class must not be confused with that of an Ob_;CL‘[: A (,d 2 (:'Uﬂme
: inti > introduce the no
for an object. But a class is not an object any more than a blueprintis. We mm()j 1 < 101']d0f
' i : jects classes.
data types, which makes easy to understand the difference between objects an] v Weonsn ;r
: i i i
a data type integer. We can declare variables to be of type integer. For exampic, , We can do

this with the statement
int i, j;

This statement defines two variables i and j of type integer. When this statejment 1S e>fe(:1.1te‘d, the
two variables are created. Similarly, an object can be defined by a class. That is, a class 1s similar to
a data type (data structure) and an object is like a variable created from some class. In oth.er words,
a class defines a type and an object is a particular instance of the class. Suppose Circle is a class,

the objects A and B can be created from that class, as in C++, where A and B may be circles of
different diameters.

Circle A, B;

An object can be viewed from two perspectives. The first is useful during design and
implementation of the object. We have to define the attributes that will be held in the object and
write the program code for the methods that make the object useful. The second comes in when
making use of the services of an object that was already created. When designing a solution to a
large problem, we should know only the services that an object provides rather than the details
of how the services are accomplished. That is, from the second point of view, an object is a black
box. It is a part of a system whose inner workings and structure are currently hidden. The rest of
the system only interacts with the object through a well-defined set of services (called messages)
that it provides.

In OOP, objects communicate with one another by sending and receiving information using
messages. For' an object, a message is a request for execution of a method. When a request is made
to an object, it qukes the SpEflelEd method in the receiving object, then the receiving object
res.ponds by generating the desired resu!t. Message passing involves specifying the name of the
object, the name of the method and any information that needs to be sent.

€ 1.3 Characteristics of OOP

At the heart of OOP are three main characteristics.

These ; P
advantages of using OOP are born, are the features from which the

* Encapsulation
* Inheritance
* Polymorphism

f”:jr‘r { Oriented l"lr,;_(:””””””;_lp 5

These characteristics differentiate -
! - ihate object oriented programming from the traditional procedural
programming model. They are now examined in more detail

1.3.1 Encapsulation

e > ‘ans - *Q » > il 4 ; . P ' '
‘.An object L.m psul }lu» the methods and data that are contained inside it. The rest of the system
interacts with an object only through a well-defined set of services that it provides,

Th‘e c.nnccpl of sealing data and methods that operate on the data into an object (a single :
\umt) is known as encapsulation.

Encapsulation of data and methods within an object implies that it should be self-governing,
which means that the attributes contained in an object should only be modified within the object.
Only the methods within an object should have access to the attributes in that object. If the state
of an object needs be to changed, then there should be some service methods available that
accomplish the change. That is, one should never be able to access and change the values of an
object’s attributes directly from outside.

For example, embedding the attributes and methods defined for car in a single class car is
referred to as encapsulation (see Figure 1.1(b)). The methods described in the car class can only
modify/access the attributes defined in its class. Suppose, Zen is an object of car class, to set the
parking light of Zen, the attribute parking_light can be set using the method set_parking_light_on:
however, other objects of the same class such as Maruti 800 or objects of any other class cannot
access/modify the value of parking_light for Zen object.

Encapsulation helps in building better, structured and more readable programs.

1.3.1.1 Abstraction via encapsulation

Encapsulation facilitates abstraction. A software object is an abstract entity, in that we view it
from outside without concerning ourselves with the details of how it works on the inside. For
example, we do not need to understand the internal workings of the gears of a car to use it, we
only need to know how to make it work. Because of this the source code for an object can be
written and maintained independently of the source code for other objects. Also, an object can be
easily passed around in the system. :

Since, an object is a self-contained entity in a program, it can be referenced at different parts
of the program wherever it is required. This feature enhances the modularity of the program. That
is, the program consists of several modules, and if there are problems with any moc-iule, they can
be addressed independently. Also, these modules can interact with eacl'{ other wnthouF having
to know the internal implementation of the other. Dividing a program 1n‘fo modules is ca%led
modularity; not having to know the internal implementation of a module is called al?stracuon.
Hence, the feature of ‘abstraction’ facilitates a programmer to do ‘modular’ programming.

Object Oriented Programming <

5 U of emample;)el Opcrato; overloading is that an addition sign (+) can be used 1o specify
: . two numbers (say, 200 + 6 = 206) or concatenation of two strings (say 200" 4 i
= 2006")-

_ Java does not support user-defined operator overloading.

w S ' Function overloading is the ability to access different implementations

anctions using the same name.
: an example that displays the current date. Usually, the date is represented in two

~ « Asastring: December 20, 2005
g As a triplet: (day, month, year): 20, 12, 2005

n easier for a programmer if same function name can perform one of the above tasks
ending on the user requirements. This can be achieved using function overloading by writing
o different functions (methods) bearing same name as given below:

- Printdate (Sting Str) {....... }
" j Printdate(int dd, int mm, int yyyy) {...}

 Here, the first Printdate function takes one string parameter as argument and the second function
takes three integer parameters as arguments. Based on the data types of the arguments passed in a
ge. the corresponding function is invoked. Thus, two or more functions may have the same
so long as the parameter types or number of parameters are sufficiently different enough
to distinguish which function is intended. This feature is not allowed in procedural languages, 4s
mas cannot have same name. A function may not be overloaded on the basis of its return
svpe. In Java, function overloading is referred to as “method overloading’.
o ere are two types of function overloading: early binding and late b-indiqg.
= :. Early Binding This allows us to have two functions in the same class that have the same
" pame (function name) but with different number of parameters or different data types of
' ers passed to it. The Printdate function described above is an example of early
_ Early binding takes place during compile time,
, Binding This allows us to have functions with same name in base and derived
<es. But the derived class function will override the base class function. Consider the
ample of geometric shape and its inheritance tree, as shown in Figure 1.4, We want
10 draw and fill the different shapes given in the figure, These two operations differ with
o1 1o shape of the object and hence different functions have to be written as shown in
5. Here, the base class functions draw() and fill() are overridden by the derived
fions, So, the function to be executed is selected dynamically during run-time,
the shape object referred. This process of choosing the function dynamically at

16 Object Oriented Programming through Java

2.1.1.1 Java as a programming language

oriented programming

,,,,,

~ A

: language that provides the
Java is a general-purpose high-level object
following characteristics: (07 {p ¢ Ler

. e Object oriented

« Architecture-neutral
* Platform independent ° M-ultlthrez‘id

* Dynamic ° H]gh—pertormance

* Distributed * Robust

* Secure

e Simple
* Interpreted

Usually, a programming language requires either a compiler or an mterpreter to translaife a
code written in high-level programming language (source code) into its machn?e langu%tge (object
code) equivalent. But, to run a Java program, Java uses a combination of compiler and interprefer.
The Java compiler translates the Java program into an intermediate code called Java byte code.
Kﬁ;éﬁinterpféiér‘ is used to run the compiled Java byte code. This allows Java programs to run
‘on different platforms. A compiled Java byte code can be executed on any computer platform on
which the Java intérpreter is installed. For each type of computer, a different Java interpreter is
required to interpret the Java byte code. This is illustrated in Figure. 2.1.

Java is a strongly typed language. That means, that every variable (or expression) has a type

associated with it and the type is known at the time of compilation. Thus, in Java, data type
conversions do not take place implicitly.

There are three kinds of Java program:

* Applications These are stand-alone programs that run on a computer
* Applets These are programs that run on 2 web brow :
ensure that these programs run without a web browser.

* Servlets These are programs that run at the server side

ser. Appletviewer is provided to

A S .

2.1.1.2 Java as a platform

source code
(Sample.java)

._F_ig' 2.1 Java as a combiler and intarnrata-

18 Object Oriented Programming through Java
collection of so ftware componentg

o Thisisa D
JavaAppIicationProgmmmmglmerface(JavaAPI) 1 < torm of packages (libraries) of

that offer various useful functions. The API 1s grouped in th
interrelated classes as well as interfaces.

2.1.2 A short history of the development of JOVE

y 1990s to develop a portable.
between electronic devices.
osystems developed the first
s meant for programming

e Java is a result of the efforts of programmers in th.e ea.lrl
secure and scalable language to be used for commumcatlorll

+ A team of programmers led by James Gosling of Sun Micr
version of Java. This version was called Oak. Java language wa
the embedded systems in consumer electronics devices. e ‘

- Since the Oak trademark was already registered with some other organization, Sup
Microsystems renamed the language Java, in January 1995. ,

e During the period when Oak was being developed, the computer world witnessed the
emergence of the Internet. As Internet usage became widespread, the need for a por:table.
secure programming language increased. Java fit the bill perfectly. Initially developed foruse
on different electronic devices, the language was later adapted for Internet programming.

o Java metall the requirements specified for web-based applications as it can be used to write
platform-independent code.

o In 1995, Sun Microsystems released the first version of the Java Development Kit (JDK)
and HotJava, a Java-enabled browser. HotJava was capable of running Java applications
in the form of Java Applets embedded in web pages, a feature since taken up by browsers
from Microsoft and Netscape.

 Java is often described as the World Wide Web (www) programming language. From the
second half of the 1990s, the popularity of Java increased considerably.

An important consequence of the evolution of Java is that it has grown into a full-scale
development system, quite capable of being used for developing large applications that exist
outside of the web (Internet) environment (that s, all kinds of program that run on a PC), including
those that make extensive use of networking to enable communication between programs. k

Sun Microsystems are now working to further refine and develop Java language. In addition
they are also working on other Java tools and ap .

: plications. Prominent among these are the
following:

e Java Beans—the Java object component technology.

* JavaServer—a complete web server application written in Java, supportin let

¢ JDBC—Java Database Connectivity, providing a Java-based in;:e rfla)fe ; Sg SEr(; € Z

. t]ava Worksho.p—a Java programming environment for developi o SQL data ases.
itself written in Java. ping Java programs which s

Introduction to Java Programming 489
2.1.3 Java as a new paradigm in programming

There are a numbg of other factors, that are attributed to the rise in popularity of Java. These
include the following:

. Famlljllarlty of Java as a programming language to users of other popular languages,
notably C++ and Smalltalk: due to this factor, users find it simple and easy to relate and
comprehend.

The Java devel(?pment kit is offered free of cost: this factor allows potential users to try out
the language with minimal start-up cost,

Its av.ailability: Java is offered as freely downloadable software from the Sun Microsystems
website. The software is also available on other websites.

. Final.ly,. its timing: Java gained popularity as it emerged at the right time—when the Internet
was 1n its nascent stage and was all set to grow in popularity.

¢ 2.2 Features of Java

Java has unrivalled features that make it popular as a programming language. It is simple, is

highly robust, secure, platform-independent and, hence, portable. These features of Java are given
below:

1. Javais a simple and object oriented language Javaisbased on object oriented concepts. This
makes it familiar to programmers using C-++ and other object oriented programming languages.
It is attuned to current software practices.

Java gives programmers access to existing libraries of tested objects that provide functionality
ranging from basic data types through input/output and network interfaces to graphical user
interface toolkits. These libraries can also be extended to provide new behaviour.

2. Javais highly secure Javaallows programmers to develop (or create) highly reliable software
applications. It provides extensive compile-time checking, followed by a second level of run-time
checking. The features of Java guide programmers towards reliable programming practices.
Using Java makes memory management extremely simple. In Java, objects are created with
the operator new. There are no explicit programmer-defined pointer data types and no pointer
arithmetic. At the same time, garbage collection is automatic. This simple memory management
model eliminates entire classes of programming errors that haunt C and C++ programmers.
When a pointer goes out of scope, a garbage collector usually relies on the .compller to
deallocate the object the pointer points to. Most of C and C++ compilers do not pr9v1de garbage-
collection mechanisms and the programmer has to explicitly specify the free() in C or delete
in C++, In large and complex programs, improper use of references to memory may lead to
errors during execution. In Java, when an object is no longer required, the Java garbage col}ectgr
automay a,lly reclaims the memory occupied by the object. The memory allocated to an object is
not deallocated explicitly when it is used.
i'. Bt v

s, -Jl.". o

22 Object Oriented Programming through Java

P— ase. The Java source code
ava does not have an explicit link phase. The ']"Y‘ i (‘(_’(IL
avi § ler compiles these nto .class fileg

6. Java is dynamically linked) ‘
s. The comp!

is divided into .java files, roughly one per each clas il
containing byte code. Each java file generally produces .cxactl).z ()nf; .(.:-?ﬁcd il; R,

The compiler searches the current directory and directories SpECIl T
environment variable to find other classes explicitly rcr‘eremfcd by namcjlr? L-:Lilc‘:r bl i]-: Ld
If the file that is being compiled depends on other, non-compiled files, the wl . [?S it :wth I’:i
them and compile them as well. The compiler handles circular depcndcnuc-,‘s_:ill % h’-. o U‘s
that are used before they are declared. It also determines whether a source €o e file has changed

since the last time it was compiled. i)8 Sl v et
More importantly, classes that were unknown (o a program when‘lt'\yaS'CU p A €
loaded at run-time. For example, a web browser can load applets of differing classes that it has
never seen before without recompilation. :
Furthermore, Java .class files tend to be quite small, a few kilobytes at most. It 1s not necessary
to link in large run-time libraries to produce a (non-native) executable. Instead the necessary
classes are loaded from the user’s CLASSPATH.

7. Other features of Java Java has no pointers. Java programs cannot access arbitrary addresses
in memory. All memory access is handled behind the scenes by the (presumably) trusted run-time

environment. Java provides automatic memory allocation and de-allocation.

¢ 2.3 Comparing Java and Other Languages

The best way to describe a computer language is to compare its characteristics with those of other
languages. The major features in which Java differs from other languages are listed below:

e Javais similar to C and C++ but is strongly typed (that is, every identifier must have a type)
like Pascal or Ada.

» Java is dynamically linked which means that it does not look for a sub-program until it is
called. This results in smaller programs than are possible with statically linked programs
and permits more efficient transfers of code over the Internet.

* Javais case-sensitive, therefore care should be taken in naming fields, identifiers and other
attributes.

* Java does not support pointers. It does not permit the direct manipulation of addresses
(results in safer programs).

e Javaallows single inheritance (that is instantiation of a child class having properties of only
one parent class) but prevents multiple inheritance. Java permits multi-level inheritance
however. Multiple inheritance can be achieved in Java through interfaces. |

. Java' IS ‘3 compiled ‘and interpreted language, which results in faster applications and
provides more security for the source code. -

24 Object Oriented Pr yeramming through Java

ﬁrogram Name

|

C:> javac StartProgram.java

|

Java Compiler

. Fig. 2.6 Compiling a Java program.

C C:> javac StartProgram.java i

| Java interpreter I

C_This is simple java program B—- Output Generated

B Fig. 2.7 Invoking the Java interpreter.

2.4.1.1 Compiling and running a Java program

A simple program such as Program 2.1 is usually written using notepad (or any other compatible
editor) and saved with the extension java, The name of the program should match the name of
the class. In the case of Program 2.1, the program name would be StartProgram.java.(as the class
name declared within the program is StartProgram). The Java c&ﬁpﬁéfg used to compile the
program. The Java compiler is offered with the Java development kit, as shown in Figure 2.6.

On compiling the program a class file is created, that is, StartProgram.class. For the purpose
of executing (funning) the class file, Java provides an interpreter (java). This can be invoked as
shown in Figure 2.7. '

2.4.2 Other applications and applets

[Look at Program 2.2.

&8 Object Oriented Programming through Java

: \ 1. 1ata entered are added and the .
the string data are converted into the integer values. The data entere@ &= Oltpuyt jg
directed to console using the System.out.print() me}hnd._

Look at Program 2.3, which is a simple applet progran.

l Program 2.3 A simple applet program.

import java.applet.;
public class StartApplet extends Applet
{

String message = “ Applet program.”;
String message1 =",

public void Start()
{

System.out.printin(message);
System.out.printin(message1);

}

public void init()

{
StartApplet Text;
Text = new StartApplet();
Text. message1 ="“Writing the message.”;
Text.Start();

}
) £
In Program 2.3, the line

import java.applet.®;

implies that the standard class Applet should be imported before writing an applet program. This
would ensure that all the features of the class Applet can be accessed by the program (child
class). Another thing to note is that any applet should extend the class Applet. This ensures tha
StartApplet would be a child class of the class Applet (in other words, StartApplet inherits the
methods and objects in Applet).
In Program 2.3, two String types message and message1 are defined. These two types would
be utilized by the methods Start() and init().
The method Start() outputs two lines of text to the defaylt system output that is the DOS
window.
The method init() is the main executable part of a Jaya program when StartApplet is run as a0
applet. The init() method instantiates the class Text and replaces the empty Str;rpl in message!
with “Writing the message,” and then calls the method Start to print the two lines 0%" text

Introduction to Java Programming &

Stand-alone applications written in Java have the main method. Not being stand-alone
applications, applets and servlets have no main method.

Stand-alone applications are programs that are written and run on a stand-alone computer.
When a stand-alone Java program is executed, the Java compiler searches for a class which has
the same name as the name given to the program file, and then finds the main method in this class.
One the other hand, applets and servlets are useful to work ina web enwronmem These programs
are placed inside a web page that is usually written in HTML (Hyper Text Markup Language).
The applet/servlet is executed through a browser and the browser handles the starting point of the
execution. Applets can also be executed through appletviewer, which is a software provided by
the Java environment to run applets. A

After the program StartApplet.java is compiled, a HTML document calls and runs the applet
StartApplet.class (note that when the StartApplet.java is compiled the output is StartApplet.class.)

Writing HTML code for the program StartApplet Once the program has been written and
compiled, it has to be executed. The HTML document that calls and executes the applet is written
as follows:

<html>

<head>

<title>StartApplet</title>

</head>

<body bgcolor ="aaaaaa”>

<h|> An Applet Program </h1>

<applet code=StartApplet.class width=40 height=40></applet>
</body>

</htm|>

The above HTML file is saved as AppletHtml.html. When this file is opened through a web
browser (either Internet Explorer or Netscape Navigator), the program S_tz_xrtApplet.cIass 1S
executed. =~ s

Invoking the applet without a HTML code Another method to invoke the applet without
writing the HTML code is by including the following code (code given in bold) in the StartApplet

program itself.

[} Program 2.4 Executing an applet program without a HTML code.

import java.applet.®;
[*<applet code = StartApplet height = 400 width = 400></applet>*/
public class StartApplet extends Applet

{
String message = “Applet program.”;

String message1 ="";

28 Object Oriented Programming through Java

public void Start()

{

System.out.println(message);
System.out.println(message);

}
public void init()

{
StartApplet Text;

Text = new StartApplet();
Text. message1 =“Writing the message.”;

Text.Start();

To run this program use appletviewer:
C:\> appletviewer StartApplet.java

Running the applet gives the following output:

Applet program.
Writing the message.

¢ 2.5 Java Development Kit

iun Microsystems offer the JDK, which is required to write, compile and run Java programs. This
is freely available on the web site of Sun Microsystems. In addition, JDK is offered as part of
commercial development environments by third-party vendors.

The JDK consists of the following:

* Java development tools, including the compiler, debugger and the Java interpreter.

¢ Java class libraries, organized into a collection of packages.

* A number of sample programs.

* Various supporting tools and components, including the source code of the classes in the
libraries.

* Documentation describing all the packages, classes and methods in Java

As already mentioned in the previous section, to transform
a computer can understand, a compiler is needed, The default
-{D-E, i.s called javac. In order to execute or run a Eél‘é;l';lh
a Java interpreter is needed. The Java interpreter proyided
time environments include Java Run-time Environment (J
environments and AppletViewer to execute/run applets ev

a program into a format that
Java compiler provided by the.
A run-time environment containing
by JDK is called java. Other run-
RE), browsers with inbuilt runtime
en without a browser. The JDK also

Introduction to Java Programming 29

provides a debugger tool for debugging programs. Debugging is the process of locating and

fixing €rrors in programs.

¢ 2.6 More Complex Programs

Look at Program 2.5. It introduces the concepts of access specifier, constructor and the keyword

static.

l Program 2.5 A Java program with two classes.

class StartProgram »| Class declaration
{
public void Message() > Method
{
System.out.printin (“This is a simple java program.”);
}
} > Access specifier

public class SecondProgram

{
public static void main(String args[])
{ > Used to reserve memory
StartProgram s= new StartProgram();
s.Message();
System.out.printin(“Two classes in a single java file”);
}
}

In Java, the class that contains the main method is the first one to be invoked by the .TVM
On compiling the file, the following two class files are created.

7p) \V (&
e o IR £ s

StartProgram.class

SecondProgram.class W ;{,fu f , 11 A,
On executing these class files, the output generated 1s
This is a simple java program.
Two classes in a single java file
| nogt L1
2.6.1 Special features of this program O{;:-{gu,s/f r’ ac @513 F(f
A plgel :

Access Specifier Access specifiers define the scope of a variable, method or class. Java provides
four access specifiers for attributes and methods, namely private, protected, public and default

30 Object Oriented Programming through Java

is no explicit specification given for ap

‘package private’ is a default specifier, which means there
pter 4.

attribute or a method. Access specifiers will be covered in cha
cuted whenever an object s

Constructors A constructor is a function that is automatically exe nen
dealt with in chapter 4,

created. It is used for initializing any class member. Constructors are
s static it will not be loaded intg

Static The static keyword allocates memory. Until a method i

memory.
method (except applets, and servlets)

f these classes must have main. Jaa
s containing the main methog

The method main() Every Java file must contain a main()
Each Java file may have more than one class and atleast one 0
executes the file specified at the command line in which the clas
exists. The signature of the main method is as follows:

__public static void main(String args[])

The main() method always has public accessibility so that the interpreter can call it. It is a

static method belonging to the class. It does not return a value, that is, it is declared void. It always
has an array of String objects as its only formal parameter. This array contains any arguments

passed to the program on the command line.

‘ 2.7 Java Source File Structure

The source code of a Java program is written in a plain text file, which is commonly referred to as
Java source file. The extension of this file name is .java. The source file contains the code required

D

to perform a particular task.
A Java source file consists of the following elements:
e An optional package definition to kpecify a package name: classes and interfaces defined
in the file will belong to this package. If the package name is not given, the definitions will

belong to the default package.

A number of class and interface definitions: technically a source file need not have any
such definitions, but that is hardly useful. The classes and interfaces can be defined in any
order. Note that JDK imposes the restriction that only one public class may be defined per
source file, and it requires that the file name match fﬁi?ﬁublic class. If the name of the

public class is NewApp then the file name must be NewApp.java.

The above structure is depicted by a skeletal source file as shown below.

Java Source File Structure

// Filename: NewApp.java

// PART 1: (OPTIONAL)

// Package name

package com.company.project.Package;
// PART 2: (ZERO OR MORE)

Introduction to Java Programming 31

/I Packages used

import java.util.*;

import java.io.*;

/I PART 3: (ZERO OR MORE)
/I Definitions of classes and interfaces (in any order)
public class NewApp {}

class C1 {}

interface 11 {}

il

class Cn {}

interface Im {}

/I end of file

¢ 2.8 Prerequisites for Compiling and Running Java Programs

To write, compile and execute a java program, the first requirement is a Java development kit.
The Java 2 Standard Edition (J2SE) is a premier solution for rapidly developing and deploying
mission-critical, enterprise applications. It provides the essential compiler, tools, run-times
and APIs for writing, deploying and running applets and applications in the Java programming
language.

The J2SE is at the core of Java technology, and version 1.4 raises the Java platform to a higher
standard. From client to server, from desktop to supercomputer, improyements have been made
to J2SE across the board. With version 1.4, enterprises can now use Java technology to develop
more demanding business applications with less effort and in less time.

J2SE is available on the website of Sun Microsystems. This software development kit is freely

downloadable from the following website.
http://java.sun.com/j2se/1.4.1/download.html
The following link would give access to documentation.
http://java.sun.com/j2se/1.4/docs/index.html

In order to compile Java programs, the Standard Java Development Kit (J2SDK) has to be
downloaded and should be installed on the computer. After the software is installed; the elass path
has to be set. The class path specifies where the Java library is available. In the Java library, two
Java files dt.jar and tools.jar are available.

Java became a popular object-oriented programming language because of its various features
and the complete Java software is freely available to work. In this chapter, we have covered the
history and characteristics of Java language. This chapter forms an introduction towards compiling
and executing Java program. From here we move on to the fundamentals of Java in chapter 3.

