Device technology 17

"/ r oy
! 1 l)\f i
: i 1
rl& A ¥ 17311 {0y ’ 4 N) ! f]
oL el

()S s512¢ Pal) T ;
. A z¢. Palm OS 3.5 is about 1.4 MB iincluding | It

i 81726 an LA ye) by ALiU]

Tf"'}‘*f’- J“,ﬂl<"|"}.‘[| lf:f'!ll!':\'.‘h’ l(1)1[1 runtime .
Ul 11T

® User interface. The Palm application starter can be seen on the left
side of Figure 3.20, and an example of a Palm application’s look-and
feel is shown on the right side of Figure 3.20, with the built-in date
book. The major user interface design principles of the Palm OS are
recognize only the Palm handwriting alphabet; one button access to
applications; and minimize taps for most-used operations.
® Memory management. To keep the operating system small and fast,
Palm OS does not separate applications from each other. This has
implications for the system stability and security. If one application
crashes. then the whole system crashes, so applications must be
extremely well tested. It also means that each application can read and
alter data contained within other applications.

The memory management divides the available memory into:
@ dynamic heap: the dynamic heap is execution-based and clears on

reset. Its size is between 64 and 256 kb, depending on the total
memory size. It is used to store global variables, the stack, and

3.20

The Palm user interface

nlw

g i e el ia
. Tt allocated memory. 18 provides fast remd anid #iile Wt

bt has o ability o protect el f apsinst grigut borizesd wn'm;,
:-'*f rape- this is designed Lo hold permanetit duts, sich #e 'hﬂ:f..;w.:;f_;sf
. b: . & ﬁ‘:.f Jieztion oode, and 15 sherefore not clesrod g u»’w "
Aﬁﬁf'éi;} 'f—m;;; by the available physical temory, I prervides fomt
iﬂdw;‘; and }hm write access, and wiite proiection. / r: '71,.:,;“:,,/,72
ﬁa:;a zre stored in databases with trf;nmltmn. ;;u u;:ﬁx:’r;; ::.u';u;-n ;;“.”1
operating system. This guaraniees the integrity i the GA14 €

evert of a system crash.

-
#

y

- opmaent fgr Palm 05)
i’gﬁ;xiﬂj'f; C4 4 fur software development) 'hg (/’n'll_lll’lf’,
auite exhsustive, whereas the C4# :;Upp'lﬂf T Ju,‘.-,f, ut s I‘-,'gH'lNHH
a:’“w he Palm OS is written in C, this is currently the brsst. chiesiens fo

veiang perisrmance-critical applications.
wf: ;:e.;’:m development environment consists f;il' # mf’twar@ therve
spment kit (SDK) based on GNU (GNUs, not UNIX) for Windows, M"'
2rd Limox. There is also 2 commercial, integrated development enviror
mems zvzianle for the Palm: the Metrowerks CodeWarrior, This includs
zn editor. cumpiler, debugger, and visual graphical user interface con
siractor. Uniortunately, the shared library format between CodeWarrio
znd GNU = not compatible.

Pzim supplies z Palm emulator, which emulates the Palm hardware o
2 PC This means that Palm programs can be run and debugged on th
emulznor and then the same program can be downloaded to a real Paln
deviz. Figare 3.21 shows the development cycle for Palm programs. Of
tne PC, the Palm program is edited and then compiled. It can either b
Tun @ the Palm emulator on the PC or downloaded to a real Palm (th
figure shows the latter), Afterwards, the program can be debugge
remetety from PC. When a stable version is reached, this code is the fina
gﬁfm There is no "M for af)’ additional compilation steps, as in th

A devdopment environment,

Apphea:gm development in C is sim
there is an extensive system library,
m@— The m:; gﬂ C4+ 4 is minimal at the moment, but will hop®

- mm‘ e next

. mayor releas,
7 Fais apphications are synchronoy

_ 8 and event-driven, They consist ol
m’;‘:’: vy kary and the event handling, Events can be user interfse
e buw. 7 preswed, handwriting input, ete.), system notification?
Seversh virvust schimes Wyvp S AP lcation-speciic vt
mm, inhsding the KYM oS gt are avillable from

ple and fast for the Palm, becaus
and a lot of example programs are

5l e Waba VM from Wabnmeft, Edition) from Sun, the J9 fro”

Figure 3.21

Device technology 79

PC
Edit

Compile Debug

Run
program

\

Final
program

Palm development cycle

The Sun JVM implements the Java 2 Micro Edition standard from Sun,
the J9 is performance and real-time optimized, and the WabaVM is tar-
geted for small devices, with a subset of the Java language and Java
bytecodes. However, all Java Virtual Mahcines (JVMs) struggle with the
very tight resource constraints of the Palm. Because a JVM with class
library takes 256-512 kb of storage, and quite a large amount of heap
space, they are not very popular at the moment. This will probably
change with the next generation of Palm devices, when the minimal
memory configuration should be increased. For details about Java on per-

vasive devices, see Section 3.5.

3.4.2 EPOC

EPOC was originally created by Psion, but is now maintaiped by an off-
spring company called Symbian, which was founded by Pglon, Motorola,
Panasonic, Ericsson, and Nokia in 1998. The EPOC operating system was
designed specifically for phones. There are two versions: EPOC16 for 16-

1 -bi The current version of
bit sors and EPOC32 for 32-bit processors. . .
EIPSEO?: sRelease 5, which is available for NEC V30H (16-bit version) and

ARM gARM (32-bit version) processors. |
EP{(S)%O:upports Unicode, which is8 important for the Asian market.

EPOC can display 256 colours. 2 s

80 part I Technologies

i functionalit
gl L e Palom 0S, which consists mainly of one task, EPOC ig
heavily multitasking. An overview of the'EPOC operating system can be
seen in Figure 3.22. The base layer provides the fundamental APIs; the
middleware layer provides the graphics, data, ar?d other compqnents to sup-
port the graphical user interface and applications; EIKON is the system
graphical user interface framework; and finally there are the applications.
The EPOC operating system consists of the following features:

® User management. Because EPOC devices are considered to be
personal devices, EPOC is a single-user operating system.

B Task management. The real-time microkernel with low-interrupt and

task-switching latency provides multitasking with a pre-emptive,
priority-driven scheduler.

® User interface. The EPOC user interface supports display, keyboard,
and sound. The user interface framework in EPOC is named EIKON
and provides all the standard graphical user interface elements, such
as buttons, dialogs, and menus. It is also responsible for handling the

data and command input. Figure 3.23 shows the EPOC user interface
of an Ericsson device with a map application.

W Memory management. EPOC has a memory management unit (MMU)
concept to provide separate address spaces for each application. The
EPOC operating system and development tools also provides a rich set
of tools for checking out-of-memory errors and freeing up unused

memory. These tools include design patterns, stack clean-up heap
failure, and heap-checking tools.

Figure 3.22

Applications

EIKON

Middleware ﬁ

Printing Standard library
stream store

Database
Window server

Base
File server Device drivers Kernel
EPOC 0s
EPOC

Operating gystom architectyre

2

Figure 3.23

Device technology 81

Ericsson EPOC handheld device

Courtesy of Ericsson

Software Development for EPOC

Programming languages supported by EPOC are C+ +, Java, and OPL, a
proprietary BASIC-like language. C++ is the language of choice for
system development and high-performance application programming.
There are C++ development environments from GNU, for compiling the
device code, and Microsoft Visual C++, for compiling for the emulator,
available for EPOC. OPL has a long heritage in Symbian’s EPOC and
Psion’s SIBO software, for rapid application development, and is specific
for EPOC. Also included is a runtime environment for Java (JDK 1.1.4 in
EPOC Release 5) from Sun with the Abstract Window Toolkit (AWT)
graphical user interface classes. Symbian provides a simulator for testing
and debugging EPOC programs. The development cycle for EPOC appli-
cations is shown in Figure 3.24. The EPOC program is edited on the PC
and then compiled for the PC. After that, it can be run in the simulator
on the PC and can be debugged. Finally, the program must be cross-com-
piled for the EPOC device and then loaded onto the EPOC device.

Normally, EPOC applications are developed in C++, because th}s is
the best compromise between performance and developme:nt cycle time.
OPL is an advanced scripting language that allows for rapid prototyping
and is EPOC specific. OPL is an interpreted lgnguage and is therefore
not suited for programs that require fast execution speed. As can be seen
from Figure 3.25, Java is in the middle between C-_&- + and OPL. In con-
trast to OPL, Java is not proprietary to EPOC, but it can also be used on

other platforms. 974

82 Part I Technologies

Figure 3.24 Edit

[*

po l
{- Compile Compile Debug
: for EPOC for PC

e

(O

Final
program

EPOC development cycle

EPOC applications are different from Palm OS applications because
EPOC heavily relies on multitasking. Therefore, the application program-
mer can choose to program either synchronous applications (which would
look like Palm OS applications) or asynchronous applications. In the asyn-
chronous case, the application is waiting for messages from other processes
(e.g. keyboard) and is not blocking the processor. This results in faster exe-
cution of parallel tasks, or power saving if no other task is running.

3.4.3 Windows CE

Windpws CE 15 an embedded operating system developed by Microsoft
Rreylous versions (1.0 and 2.0) of the Windows CE user jnterface were
similar to the Windows user interface. This meant clicking on about te”
Pop-up menus with a pen to enter a new date in the date book, which W&

Figure 3.25 C+t Java OPL
Performance
Development
time

Program performance and development time

o

Device technology a3

| A1l Ty ki
\ the Pocket P R
+ W LW N . s AV thie tor ! t
s) 0, D b ARM StrongARM., PowerPC, and MIPS
W fows | t SUDY i. 4 nart card subsvstem for
POSK . eade wode based, and supports gravscale and
KTiAf 4 { dep
LOre operating syst ' l Rily

Windows CE 15 a modular operating system that can be configured by the
device manufacturer. This 1s a result of the read-only memory (ROM
based design of Windows CE, in contrast to more desktop-oriented,
disk-based operating systems hike Linux or BeOS; it can even be config
ured at runtime. This allows an operating system with only the essential
parts to be created and saves precious space in the device. The different
modules are shown in the Figure 3.26

Fhe kernel provides memory management, task scheduling, and inter-
rupt handling. The graphics window event manager (GWE) integrates the
user interface functions of graphical output and user input. The object
store 1s the persistent memory of Windows CE and includes files, the reg-
istry, and a database. Finally, the communication interfaces include
infrared communication via IrDA, TCP/IP and serial drivers.

Figure 3.2¢

TCPAP
Qbyect
Karmel GWE FDA
Senal
Windows CE

b o = o m e o - =

Windows CE architecture 2 3‘

L

Part 1 Technologies

Figure 3.27

Windows CE offers the following features:

® User management. Because Windows CE is designed for PDAs, it
supports only one user,

® Tosk management. The task manager supports 32 simultaneous

processes and an unlimited number of threads (limited only by the
available physical memory).

®m Operating system size. The Windows CE footprint can be as small as
400 kb for the kernel, up to 3 MB with all modules, and up to 8 MB
including Pocket Word and Internet Explorer.

m User interface. Windows CE provides menu controls, dialog boxes, and
icons, and supports sound. An example of the Windows CE user
interface can be seen in Figure 3.27. The desktop shows icons like
Word, for a reduced version of Microsoft's text-processing software
Word, and the Microsoft media player for playing MP3 music files.

m Memory management. A protected virtual memory system that
supports up to 32 MB memory per process protects applications
against each other. There exists a special heap for the file system,
registry, and object store that has a transaction service for ensuring
data integrity. The object store can have a size up to 256 MB.

Windows CE yser
Courtesy of Casio

interface

Device technology 85

m Security. Windows CE has support for eryptography with a
cryptographic library (Cryptographic Application Programming
Interface, CAPI) to securely store information in memory. The kernel-
loader authentication program can use public-key signatures to
prevent unauthorized applications from running. As an additional
feature, it is possible to achieve more security for sensitive data by
using the smart card interface of Windows CE. Private data of up to
64 kb can be stored securely and non-volatily on a smart card. Access
to the data, however, will be slower because of the electrically erasable
and programmable read-only memory (EEPROM) memory used
instead of battery-backed RAM.

Software development for Windows CE
Since Windows CE is based on the Win32 API, it offers significant advan-
tages in application software development. It is already known to a lot of
developers, and there are professional development tools, such as Visual
C++ or Visual Basic, available for this APL It also allows developers to
reuse Win3d2 code from existing PC-based programs. Because Windows
CE uses major parts of the Win32 API, the application programming is
very similar to that on the PC.

There are JVMs from third parties available for the Windows CE,

including the KVM (Java:2 Micro Edition) from Sun, the J9 from IBM,
and Waba from Wabasoft.

3.4.4 QNX Neutrino

The first QNX operating system version was available in 1981, and the
current QNX Neutrino has now reached the version 2.1. QNX is a real-
time operating system consisting of a microkernel surrounded by a
collection of optional processes (resource managers) that provide POSIX-
and UNIX-compatible system services. Depending on whether resource
Mmanager processes are included at runtime, QNX ranges from ROM-
based embedded systems up to a full-blown operating system with
network support. This microkernel-based architecture is known as uni-
versal process model and allows for separation of processes in different
address spaces. This is true not only for user processes, but also for the
resource manager processes. That means that even if the file system
driver or network driver crashes, then the system will still work, which
leads to highly reliable and stable systems.

QNX is very well suited for set-top boxes or car devices, but there are
also efforts to target the hand-held device space, e.g. to add power man-
agement support and a graphical user interface suitable for hand-held
devices (Photon). It supports MIPS, Power PC, and x86 processors.

e

86

Part I Technologies

Figure 3.28

Core operating system functionality . . 5
The core operating system consists of a microkernel that has a size of only

12 kB. This kernel implements four services: interprocess gomm.unlc_ation
(IPC), process scheduling, low-level network communication, and m'ter-
rupt dispatching. The IPC is based on messages and can be given
priorities.

In addition to the core microkernel, there are several resource managers
that run as separate processes. Examples include a POSIX-compliant file
system and device manager, network services (e.g. TCP/IP), graphical user
interface, and power management. This architecture is called universal
process model and is shown in Figure 3.28. A small set of core services
reside in the kernel, while the remaining code runs in separate processes.
This results in an extremely stable and flexible operating system.
Malfunction in one part of the operating system (e.g. the device driver)
does not cause the whole system to stop. In addition, it allows operating
system services to be added or removed at a later date.

QNX Neutrino has the following features:

Applications

LAl =l I ST

drivers

. : . . ,

! 10 ’ !
Photon

l| ,lanagers Others :
I J !
| / A I
| y Y I
. - ¥ .
| Microkernel !
l—— I
| A ‘ﬁr‘_‘ I
I
Y :
; File Devic !
I Ve Network ;
: systems drivers drivers Graphics Il
|
| :

QNX Neutrino

QNXx Neutrin, architectyre

2.9

Device technology 87

8 User management. QNX supports only one user.

m Task management. QNX supports real multitasking. Through its
modular organization, it allows for incremental linking and loading of

components, resulting in an on-the-fly operating system configuration

User interface. X-Window-like concept, based on widgets to implement

graphical user interface elements. Consists of a micro-graphical user
interface, which can be scaled up or down dynamically.

® Memory management. The QNX memory management has an MMU
concept for separation of address spaces of applications. The memory

protection is used not only for applications, but also for operating
system services running in different threads.

m Additional features. QNX is POSIX compliant, allowing existing
POSIX-compliant code to be reused.

Software development for QNX

The QNX toolkit includes the GNU or Watcom C/C++ compiler, debug-
ger, graphical user interface builder

, and PhAB for creating rapid
prototypes. In addition, there is a development environment available
from Metrowerks.

Since the POSIX standard is C-based
gramming fast and com
POSIX—compliant, reusi
and does not require e
tasking, so applicatio
to save battery power.

, the language of choice for pro-
pact applications is C. Because most APIs are
ng existing code and developing new code is easy
xtensive training. QNX is based heavily on multi-
ns should be programmed asynchronously in order

BeOS was founded in 1985 with the goal to create
System. Consequently, the current version (5) of BeQS

for multimedia applications and is a good candidate fo
It offers multiprocessor Support to integrate seamlessly sound and
graphic processors, and a 64-bit file system for dealing with the huge
a}nounts of data that modern multimedia applications deal with (e.g. the
Size of an uncompressed DVD is about 300 GB). BeOS is available for
Intel and PowerPC processors.
igure 3.29 shows how BeOS can be used as an operating system for an
nternet personal access device, providing the multimedia foundation that
Such a device would need.

320

a media Operating
is highly optimized
r multimedia boxes.

T

88 Part I Technologies

Figure 3.29

Internet personal access deyjcp running Be(S
Courtesy of e Ine

Core Operating system funcliona!i!y ' .
To achieye the requirements for reg) time multimedig and cc_)rrlrnunlcaftlrfil.
BeOS features 4 Very-fine-grajneq Multiproceggey Support Included ip IFS
oPerating systar, core. The groh; ased on g Symmetric m“_‘“'
Processor mode Parts of the Operating
System ang give each Processor)] .. 8 to ¢ “S0urces, [y, addition o
that, it Supports virtual me Ing
Another BeOS Specialty jg :

PErmits rapiq SWitching between hundreds

e deployed rapidly op I

l, allowing gqe

>B L:thkb’ can
wltiple Procesgorsg and reassigneq when the
System’s Processoy load changeg.
BeOg has the f'ollowing f'eatures:
B Use, Anagemen, hag ' i i
: / Multiyse, Support, Ust like gtqp .
UN operating Sitery. Pport, j ke Standap
g‘:‘ém"t C” femen n?ptlive multit wi Pervagijye threads
Upports 5 dQXt 15 Pleme dhb Be S. BE()._ alsg
Perating ¢ e : Metric Iti rocessin down ¢, the
anorv ao
memgpy, eft?g;w icati Y Manggy Ment unjt Provides
ditiong) fooe o PPlication d virt al memgpy, Support.
Ser g eauz;es. B; gi?l's PPorts g 4. t file SYstem th,, allows the
Which all 0 only 4GJ]30 i “Ontrast o “2-bit i

le Systems,

Device technology 89

Software development for BeQS

For the Intel version, a C/C++ GNU compiler and tools are available; for
the PowerPC version, an integrated C/C++ development environment is
offered by Metrowerks. BeOS is not well suited for devices with tight
memory restrictions, but it does allow the standard Java environment
from Sun to be used for software development.

Application development for BeOS is similar to that for a modern mul-
titasking operating system like Linux. BeOS is POSIX-compliant, which
makes it easy to reuse code from other POSIX platforms, such as Unix or
QNX Neutrino. A rich library supporting multimedia applications offers
2D/3D graphics, OpenGL, and several kinds of media formats (e.g. MPEG,
WAV, PNG, TIFF).

3.4.6 Embedded Linux

Embedded Linux is a stripped-down Linux operating system with some
special support for pervasive devices. As processors and memory are get-
ting cheaper and more powerful, stripped-down desktop operating
systems are become increasingly attractive. For hand-held devices, most
of the benefit of Moore’s law is put not into performance and larger
memory, but in cheaper chips and longer battery life.

Unfortunately, there is currently no standard for embedded Linux.
However, there is a group called the Embedded Linux Consortium® that
promotes embedded Linux systems. At the time of this writing, this con-
sortium consisted of over 80 members. Embedded Linux versions are
available for nearly all processors used in high-end embedded systems,
including MIPS, ARM, Motorola, and Intel processors.

Core operating system functionality
The operating system functionality is the same as for standard Linux. The
following features make Linux so well suited for the embedded market:

m Configurable kernel. Linux has a microkernel architecture like the
QNX operating system. This allows easy configuration of the operating
system core. Services and features can be compiled either into the
kernel, or as a loadable module that can be loaded dynamically at
runtime. This includes services and functions such as device drivers,
file systems, and networking support.

m Scalability. Based on the modular kernel concept, Linux can be
configured from sizes suitable for a watch up to mgltlprocessor server
systems. Embedded Linux vendors offer configuration to'ols and _
utilities for tailoring Linux to the special needs of a specific pervasive

device.

3'1/

Part I Technologies

m Networking. Because most Linux systems are uslerl as Weh Bervery, g,
Linux TCP/IP stack is under cog§t§nt scrutiny for security and
optimized for speed. Drivers, UFllltleS, clients, and servery are availap).,
for nearly every network function or protocol. :

For comparison with the other operating sy_st‘ems described in thig chap.

ter. the embedded Linux features are summarized below:

m User management. Embedded Linux offers multiuser support, jugt like
standard Linux operating systems.

m Task management. Pre-emptive multitasking with optional real-time
schedulers is implemented. There is also basic support for multiple
Processors.

m Operating system size. Depending on the configuration, the size of the
kernel can range from 200 kB to several megabytes. However, a
restriction for embedded devices is the fact that Linux needs quite a
lot of runtime memory, typically 2-8 MB.

B User interface. Embedded Linux uses the x-Window system for the

user interface. Some embedded Linux vendors provide stripped-down
versions to save memory.

B Memory management. The Linux memory management supports

MMUs to provide memory protection between applications and virtual
memory for paging memory to hard disks.

Software development for embedded Linux

The same software development tools are available for embedded Linux
as for a standard Linux system. Available programming languages include
C, C++, and Java, Therefore, software development is fairly similar t0
t}}at for desktop systems, However, the actual Linux devices can be quite
dlfferfant from normal desktop systems, as can be seen in Figure 3.30.

Xa] . . ing
embedded Linux can look mple of what small pervasive devices runn :

on. The technical datg of thenﬁ, the stock

Flash memory, 8 MB D
nectivity, 96 x 1192 pixel touch

_ market, sports results, an‘:\;B
Mux watch are; ARM?7 processor, 8

memory, infrared (IR) and RF wireless ¢
SCreen, and g roller wheel.

33

Device technology n

Figure 3.30

F‘(« T?t B:\u.h

]

b OB 4 h*i" i

§|--_ %'lw. ,7

}

El-r o A RE

Fune wellall
Satoh v oww |

" g §

. e
Yoo 1 1o b 0}

Wristwatch running embedded Linux from [BM research

Courtesy of 1HM

3.4.7 Summary

Just as pervasive computing devices cover a wide range in terms of size
and functionality, so do the operating systems for these devices. The oper-
ating systems described above range from the small, lean, and
minimalistic Palm OS to the multimedia, multiprocessor-supporting
BeOS. This means that there will not be a single dominant operating
system in pervasive computing, but rather a variety of them supporting
different device categories. Table 3.3 gives an overview of the features of
the different operating systems.

The Palm OS is intended for use in PDAs with limited memory and
battery power. It is simple to use, with a user interface that is tailored for
the special needs of PDAs, power efficient, and easy to program. The
major disadvantage of the Palm OS is that there 18 no security. Every
application can read and alter all data, which will become a problem when
PDAs are used as personal security devices (PSDs), which will allow
access to rooms and be used in e-commerce scenarios.

EPOC was developed for personal organizers and is now gaining
market share in the mobile phone market. Its multitasking support is a
perfect fit for mobile phones, which need to respond to user inputs and at
the same time be able to receive data over the air.

Windows CE 3.0 has special features such as sound support unﬂ erypto
support. The ability to customize Windows CE for special devices and

only include the needed parts of the operating system 1s very attractive

92 Part I Technologies

ifferent operating systems ——
L Tahie 3.3 \ Features of the different op —
_ _ BeOS Embedded
Palm EPOC Windows QNX Linux
CE —
A6 86 86,
) 10 x86, x86, X0, . .
BRpcai]l\)mtm:la ﬁgl(\;l SH3/4, PowerPC, PowerPC [’0“;611”[’(4,
processors B;tlllgﬂ ARM. MIPS MFI{E“&;.
PowerPC, A
MIPS
Operating Layered Layered Modular Modular Layered Modular
system
structure
Memory No Yes Yes Yes Yes Yes
protection
Operating Tiny Small Small Medium Large Small-
system size Large
Security None Low High Medium High High
:‘sﬂkt: o = Yes Yes Yes Yes
ng
ffxamples PDAs Mobile Pocket Car Set-top Set-top
phones p(Cg devices boxes b
’ oxes
g::::s“e Internet

s CE aims tq :
SuPported processors are all 3 reach the high-end

: -bit processors ‘hich

ower S, Whic
devices. a than the 16-bit Motorola Processor of the Palm
ices, as it IS a real-time
Al-time require-
INg parts of the
the mogt likely

nnection tg the
Other Potential yges of

ll}ke the 3Com Audrey)
W l(‘ature ~

: ' ot Interface by
."Lhnulugivs (] ' Iner d other multi-
“yatem, room. » SwWitch to digital

r d'_évwes (e.g. hi-fi
Multimegiy operating

scenario for upda
Car and the new
Neutring gre
an PDAB or
Baving (e

ting softe,. > €M is running,
N cars, with
Ovey. ai
! e transmjge; Ver-the-air ¢q
in set-u)p

hoxeu, Inte o
pocket PCs, where QNX Pr

DM-control ¢
Will incregge

Huvli beibinwlsiggy h3

Pavvhsililend i | TN v by viirfvei e Vv foest ol Hasgion T
itn il i'u Ly TR |.| Wi .|‘||”|‘”,| | bitiih B1T luv]”,l T EYPTT
jrvd Pl Iy u||e|’|v|l-||h AIRRTON .ultl Prieid y | Phiiyt Feir aeyi b it
Pt e ity e bsoelidodd Tans base £l ad Wb ol by dnige e mininies grres
MU A s e st Ddoies "V hde sieairie sl e N TR R

e o e e beaddbodd Voo dloviins witli it o el wred dlevadirgies

o ot oo spoctind fembntings i wiill appriies i Fo bk gedeed ferr e

3.5 Java tor pervasive devices

Anwo liave woon nlrendy, pervaaive devicos binve o gronl variely of st il
ing nyatoma Howould thevelore be benolicinl Lo hisve o cominon
programtng plattovmg, such om diavio Hinee Che doavan Standard 1dition
roguiren signtbicant compubing rosources, mnd resoireos nree Linited i
porvastve computing devicen, the chiallenge s Lo hove o snll, performing
davacimplomontation for pervisive devicey

This woction givos nn overview ol the different, varsions of dava, diseumsses
the two relovant dava vorsions For pervasive deviees (Jiava Micro Edition
and Ronl-time duvin, and deseribon throe vietual mochines anvailable for per-
vasive dovicon (Sun's KVM, Wabu, and TBM s Visunl Age Micro Edition),

3.5.1 Java

The Java tochnology was ereated in 1991 at SBun as o programming tool in
asmally closed-door projoct called the Green Project. The goal of the proj-
oct was Lo look for the next wave in computing, which the team thought
would be the convergence of consumer devices and computers, For this
project, James Gosling cereated a new language that he called Oak, after
the tree outside his window. As the plans for small computing devices
were dropped, and the group focused on the Internet, the language was
renamoed Java and officially announced in 1995,

Bocause Java has its roots in the small-device area, it is no surprise
that after the success of Java on clients with applets and then on servers
with Java Enterprise Edition, Java has now finally reached mobile com-
puting devices, The current Java versions are called Java 2 Platform and

consist of:

m Java Micro Edition (J2ME), which includes different virtual machines,
core APls and market-specific APIs defined in profiles. J2ME has been
designed for pervasive computing devices and is explained in more
detail below;

W Java Standard Edition (J2SE), aimed at the traditional PC. It has a
richer set of APls than J2ME, and is used in VMs that are optimized
for performance and security but not size;

15

Part I Technologies

m Java Enterprise Edition (J2EE), created by Sun for server systoms, I
enhances the J2SE with APIs needed for server-based computing,
including Java Beans, JSPs, database access, and more, For more
details about J2EE see Chapter 10,

Figure 3.31 shows how the different Java versions relate to each other,
The base layer consists of the JVMs that execute the Java bytecode,
These JVMs range from the Card VM for smart cards, the KVM for per-
vasive devices, and the standard VM and Client HotSpot VM for desktop
computing, up to the HotSpot VM for servers. The HotSpot VM is
designed for high-performance applications, and therefore carries out
intelligent precompiling of frequently-used code fragments. All VMg
comply with the Java programming language definition, but the KVM
and the Card VM only support subsets of this definition. On top of this
layer are the different core APIs for the various Java editions. The top-

) most layer consists of the profiles that tailor the Java editions to special
environments.

A profile is a collection of Java-based APIs that supplement a configu-

ration to provide capabilities for a specific vertical market or a specific
device type. A configuration defines the minimum Java technology

libraries and virtual machine capabilities that an application developer or
content provider can expect to be available on all devices.

Figure 3.31

Profile | | Profile

Profile | | Profile

v Screen C
Java 2 Java 2 d Mobi
profile h i obile
Emerpnse Standard phone | | profile information
Edition Edition device
cgzea (J2SE) profile
e APlg Core AP|s

Java 2 Micro Edition (J2ME)
Core APIs

Java Programming language

——

Java Hots]

_
R]

Card VM
Overview of th,, Tl

J [
ava 2 Platform and the differeny Profileg

349

Sevice tor hnniagy

3.5.2 Java 2 Micre Edition
s Largetesd fisr prervastve cownprling devves wit hout

\'f i
v respuiremmenis | ypacally these devices ars harmterized hy
. t of availahie rove 128512 kB
» tae] regy | Dallery -~'.-r"q:nf
| e fay) liv B e wot K
. 4 fen] ETR] 2 ";.';;;J\ fﬂilﬂ!d:ilaﬂ

Phess devices range from smart cards Lo phones and set-top baxes To
ey this broad range of deviors there are several device configurations

ard technologies
As explained al= aliguration defines the minimum Java technol-
ties that we expect to be available on all

oy librarices and \\‘ capals :
devicen Based ot the Java 2 Micro Edition profile. the following confligu

rations are avalabie

Y. A

8 (Connected device configuralion CIX) 18 hased on the Personaklava
technology and has the bylecxdes and core APls of standard Java. It is
targeted al devices like scrven phones and set-Lop boxes with more
than 512 kB ROM. more than 256 kB RAM. and connection to a
network The main difference 1o standard Java librares » the

restrictod uset interface hbrary

8 Conmevted limited dessor configuration (CLDC) addresses the
grographical user interface, data storage, messaging (e g email, SMS),
socurity, and wireless networking for devices with 128-512 kB HAM,
such as mobule phones and TV seta. Sun provides a special VM, called
KVM, for this configuratson that s optimized for memory-constrained

environments (see also p. 75)

To enhance the use of Java beyond these two configurations, additional
JavaZME technologes are defined

8 Embedded Jova allows the Java platform to be configured.

U nnecensary classes and VM features can be omitted in order to
munimire resources and costs for embedded devices Embedded Java
uses the same bytecode as the standard Java edition.

8 Jora Card specifies a subset of Java with & specal comprossed
bytecode format for very small devices, such as smart cards (e g SIM
cards used in GSM mobile phones, credit carda).

8 Rewi-time Jova enhances Java with features needed for real-time
apphcations see Section 35 3

- 7

)

Part 1 Technologies

Al Al 5 : > .
® Java Knterprise Bdition (J211), created by Sun for server systems, It
onhances the J2SI with APlLs needed for server-based computing,
i] i i

, 1 ahinge o (h . n
including Java Beans, JSPs, database nccess, and more, For more

dotails about J2EE see Chapter 10,

ve how the different Java versions relate to each other.
The base layer consists of the JVMs that execute the Java bytecode.
These JVMs rango from the Card VM for smart cards, the KVM for per.
vasivo devices, and the standard VM and Client HotSpot VM for desktop
computing, up to the HotSpot VM for servers. The HotSpot VM ig
designed for high-performance applications, and therefore carries oyt
intelligent precompiling of frequently-used code fragments. All VM;
comply with the Java programming language definition, but the KVM
and the Card VM only support subsets of this definition. On top of thig
layer are the different core APIs for the various Java editions. The top-

’ most layer consists of the profiles that tailor the Java editions to special
environments.

A profile is a collection of Java-based APIs that supplement a configu-
ration to provide capabilities for a specific vertical market or a specific
device type. A configuration defines the minimum Java technology
libraries and virtual machine capabilities that an application developer or
content provider can expect to be available on all devices.

Figure 3.81 shoy

Fsgure 331 Profile | | Profile | | Profile || Profile
TV Screen Car ;
Mobile
Java 2 Java 2 profile || phone || profile information
Enterprise Standard profile device
Edition Edition rofile
(J2EE) (J2SE) i
Core APls Core APIs
Java 2 Micro Edition (J2ME)
Core APIs
Java programming language
—
Java HotSpot JUM KVM Card VM
/

3

!

7]

Overview of the Java 2 Platform and the different Profiles

Device technology 95

3.5.2 Java 2 Micro Edition

Java 2 Micro Edition is targeted for pervasive computing devices without
real-time requirements. Typically these devices are characterized by:

@ small amount of available memory (128-512 kB)
m limited energy (battery-operated)
m connected to a network

m restricted graphical display capabilities.

These devices range from smart cards to phones and set-top boxes. To
cover this broad range of devices, there are several device configurations
and technologies.

As explained above, a configuration defines the minimum Java technol-
ogy libraries and VM capabilities that we expect to be available on all
devices. Based on the Java 2 Micro Edition profile, the following configu-
rations are available:

m Connected device configuration (CDC) is based on the PersonalJava
technology and has the bytecodes and core APIs of standard Java. It is
targeted at devices like screen phones and set-top boxes with more
than 512 kB ROM, more than 256 kB RAM, and connection to a
network. The main difference to standard Java libraries is the
restricted user interface library.

m Connected, limited device configuration (CLDC) addresses the
geographical user interface, data storage, messaging (e.g. email, SMS),
security, and wireless networking for devices with 128-512 kB RAM,
such as mobile phones and TV sets. Sun provides a special VM, called

KVM, for this configuration that is optimized for memory-constrained
environments (see also p. 75).

To enhance the use of Java beyond these two configurations, additional
Java2ME technologies are defined:

® Embedded Java allows the Java platform to be configured.
Unnecessary classes and VM features can be omitted in order to
minimize resources and costs for embedded devices. Embedded Java
uses the same bytecode as the standard Java edition.

m Java Card specifies a subset of Java with a special compressed
bytecode format for very small devices, such as smart cards (e.g. SIM
cards used in GSM mobile phones, credit cards).

B Real-time Java enhances Java with features needed for real-time
applications (see Section 3.5.3).

F

BS)

96 Part I Technologies

As can be seen, there are many varieties of Java to choose from This
helps reduce the resources needed for the Java implementations running

on the different pervasive devices, as the Java functionality can be taj-
lored to the specific needs of the device.

3.5.3 Real-time Java

Standard Java is not suitable for real-time applications, because it does
not have a predictable runtime behaviour and does not allow reading and
writing directly to the system memory. The use of algorithms can solve
some of the shortcomings of the standard JVMs, such as garbage collec-
tion that leads to unpredictable execution times in the standard JVM.
Others, such as direct access to memory, are not available in standard
Java as the Java language definition prohibits this.

A collaboration of companies therefore created the real-time version of
Java, Real-Time Specification for Java (RT'SJ), which is still in its early
phases. The draft specification is available, and a reference implementa-
tion will hopefully be available soon. This is the first effort under the
formalized Java Community Process (JCP 1.0) for Java enhancements.
Companies like Aonix, Cyberonics, IBM, Microware Systems, Nortel
Networks, QNX, Rockwell-Collins, and Sun worked together to specify
this standard.

Real-time Java will be backward compatible to standard Java, and will
include all the features needed to build systems with hard real-time
requirements. Here are some of the main features of RTSJ:

B Predictable execution speed. Non-predictable execution time, caused by
time-slicing scheduling and occasional garbage collection, are the
major reasons why standard Java is not very well suited for real-time

applications. The first priority in designing RTSJ was to always have a
predictable runtime behaviour.

® Customizable schedulers. RTSJ introduces the concept of a schedulable
object, in addition to tasks and threads. Scheduling can therefore be
executed on object level. In addition, RTSJ defines a predictable
priority scheduler and allows for easy exchange of a scheduler, e.g. to
include a custom scheduler.

® Advanced memory management. To support the needs of real-time
systems with regard to memory management, RT'SJ defines different
memory types to allow short- and llong-h\{ed objects to e_m:st outsid.e the
scope of garbage collection. To achieve this, a new definition of ok?Jec!:
lifetime is provided, and memory areas such as scoped memory (‘hfetlme
defined by syntactic scope), immortal memory (has a scope that is
larger than the program and can be used to share data between real-
time and non-real-time tasks; similar to shared memory on UNIX
systems), and physical memory (see below) are introduced.

Db

Device technslingy 97

B Acvess to physical memaory Renl-time systems often noed fast necess Loy
ren&ors Or actors that connect the rogl - time svstam bt e I‘)-' 1
world To ac omplish this « fficiently RTSJ has a mechan fe
breaking the Java sandhox at defined flaces Lo Bave direct ac tes
the machine memorvy, This gives Java programas the al Ly o resd or
write directly to the memory of sensor actors

8 Obyect and thread synchronization. As resl-time ap ations ofter

; yncnronized al sorms p<nnt in

consist of many threads that must get

h'“‘si deline sviichronizex! wait free ”“d" priel write

their execution

and monitors lor mutual exclugion synchromzation Wil

queues
avoids the priority inversion problem of the standard Java

implementation
Asvachronous event handling. Many real-time systems are event
driven and therefore make extensive use of asynchronous events such
as interrupts. RJTS supports asynchronous events and asynchronous
transfer of control to other objects and threads

With these features, Java is very likely to spread to pervasive computing
devices with real-time requirements, for example car appliances

3.5.4 Java virtual machines for pervasive devices

In this section, we describe some commercially available virtual machines
for pervasive devices. First, we will cover Sun’s KVM, which implements
the JZME standard. Then the Waba VM is explained, which implements a
Java-like technology, but uses native device libraries to achieve smaller
end faster programs. Finally, we show a fully integrated development
environment for Java on pervasive devices, including a virtual machine,

the IBM VisualAge Micro Edition.

Sun's KV

Between the PersonalJava VM, which deals with devices that have more
than 512 kB of memory, and the Java Card VM, which is aimed at smart
cirds with 32-64 kB memory, there was a gap. Extending the Java Card
VM o bigger devices did not make much sense, because the Java Card
technology has a restricted bytecode set and a special compressed class
file format that prevents dynamic class loading Since a whole new
market of pervasive devices falls into this gap, Sun has filled it with the
KVM, expecting devices to have more than 128 kB of memory.

Sun’s KVM has the following features

® Full Java VM. The KVM implements the full JVM specification, unlike
the Java Card VM.
5%

98 part | Technologies

& Small memory footprint. The KVM was designed with the goal of a
minimal footprint, not maximum performance. For example, the KVM
on the Palm OS has a footprint of 50-70 kB and needs 128 kB at
runtime.

s 16/32-bit CPU. To be usable for small pervasive devices, the KVM was
desgigned to run on 16-bit processors at 16 MHz. However, it also runs
on 32-hit processors.

m Reference platforms for the KVM exist for Palm OS, Solaris, and
Windows32.

Because the KVM is based on the J2ME configuration, it has some signifi-
cant differences to J2SE. These deviations are caused by the limited
device capabilities. The main deviations are:

m different Ul classes: the KVM does not provide the AWT or Swing
libraries, as most pervasive devices have very limited display

capabilities and limited processor power. The KVM therefore uses
special native I/O drivers;

m restricted VM: to make the VM as small and efficient as possible, the
KVM does not implement some of the standard JVM features. Some
features are optional, such as floats, multidimensional arrays, and
class file verification, and others, such as remote method invocation
(RMI), thread grouping, and reflection, are missing completely.

subset of J2SE libraries: to reduce the size of the Java library for
memory-constrained devices, only subsets of the J2SE libraries are

supported. For example, java.net and java.io are implemented only
partially.

A development kit for the KVM, including the KVM source code, is avail-
gble from Sun. Porting the KVM to a new hardware or operating syste™
is easy. At the moment, the KVM is running on more than 20 platforms

includi'ng Nokia and Sony phones, and Motorola devices, and it will soof
be available on the EPOC operating system.

Waba

}?"\iaba7 is a programming platform that includes a language, a VM, a clas
(;e(:, (fe‘(l)rmat, and a set of base classes. However, Waba is designed such that
Wabaop:c:"s can use Java development tools to write Waba programs, and
Watr:a igsrins can run as Java applets or applications with no native cOfie'
Java prog’ramrg %t,mglar to Java, but is not compatible with it. Just like
o e » Yvaba programs are compiled into interpreted bytec‘)de'
rrtion can run without any changes on Palm or Windows
ontaining a Waba VM. The software to build and run Waba pr’

3%

«-—4

Bevit e e hanlagy "

b or devel R UAL RE.] inn Waha the Jave LK and the Wala s ok
Loy T 11 Laalls “'\- 2 WiirKstatliom ;I- \,\\l"‘l l” fimsint il el e '
vmentat von : woed | Java ¢l andl some programes Lhat are used Lo
Paiprnells g 12101 § il i lormat itatsle {or amall o TR l' t i)
tains the bridge classes that allow ‘\'\.‘P-.njn werams Lo ran under Java

I.\'i’ll" L ynitax and | anbice of the i‘i\l'.ﬁl inny LY ire Wlentwwsl iy
Java, they are not Tulls compatible However the Java compiler from the

duva BDK can be used 1o compile programs Before (he program can be run
on the target device, the bytecodes have to be translatoed into the hyteersles
understood by the Waba VM. A tool called ex wen performa the translation,
and generates an executable that starts a « ompiled Waba program

The Waba foundation classes are different (rom the foundation classes
used for developing a program with the Waba SDK. They interface
directly with the VM. and call methods that are native to the device the
VM is operating on The class file format supported by a Waba VM s
defined na a subset of the class file format supported by a JVM. The Waba
clasn library is designed to be simple and easy to program. It contains all
the basic classes needed to create programs, including 'O, networking,
user-intertnce, and graphics classes. Access to Palm 08 and Windows CFE
databases is possible by using the class. It allows writing single-
record blob types to and from a database

Wabu programs are executed by the Waba VM. A Waba program con-
sista of classes and a device operating system-specific launch program
The launch program starts the Waba VM and tells it where the class files
for the Waba program are It also tells the Waba VM how much memaory
te allocate for the program

The Waba VM was designed to execute a subset of bytecode instruc-
tions defined in the JVM specification. Because the Waba class file fr rmat
is defined as a subset of the Java class file format, developers can use Java
development tools to create class files and bytecode that are compatible
with Waba, and execute them under a Waba VM. However, Waba VMs do
not support operations related to long and double data types, exceptions,
or threads.

Waba VMs can be created that run in very small amounts of memaory
For example, the complete Waba VM for the Palm OS platform is around
60 kB (around 30 kB for the executable and 30 kB for the full set of foun-
dation classes). Native functions can be added directly into the Waba VM
using the Waba VM source code. The Waba VM contains no Java classes
and the waba . 1ang package is not part of the SDK. Nevertheless, develop-
ers are able to use the ova. L tring, Stringautfer and Chbiec

classes. When the Waba VM encounters references to the +v5 1«
classes, 1t maps them to their counterparts in the wara 1an; package

19

e

0 Part I Technologies

IBM's VisualAge Micro Edition

The VisualAge Micro Edition J9 VM® s the foundatson of [BM s embed
ded systems solution VisualAge Micro Edition comes with several clag,
hhrar‘\‘ versions. ranging from extremely small to fully featyred T hene
yoraion chomoems snahle developers o MSTIIMIZE TEQTOR Messiremeria by
choosing the claas hbrary support that best fits their devier All the zygl
able configurations are sabsets of the JDK 1 2 specification Faampios of

the class Lhibrarwes arv

@ il Xtr an extremely reduced functiom hibrary The lbwary cees 97 kB o
ROM Flash It contasine some APls from the following peckages
wyva W java lang java net, java atil, and mva wtil nip

@ o/Core & small library with essential functionality The ibrary cses
344 kB of ROM Flash. It contains most APls from the following
packages java o, java lang, java net mva util and java ot 2p

@ iGateway. an extension of jciCore with URL and securty functoms
The hbrary uses 563 kB of ROM Flash In addition to the paccages
used in jclCore, this package contains java net securty for peroiames
checking and also the java lang Runtime exec methods

@ jciMax the largest and most festure-nch hbrary The hbrary uees
2479 kB of ROM Flash and RAM. It contains most of the APL: from
the packages java 10, java lang. java lang ref java lang reflect
Mmva math, java net, jJava text, ava util java ot jar and mva ot 29
The following security packages are also included mva securnts
JEVE security acl, Java secunty cert, java secunty riterfaces,
java security spec, and com 1tbm ot securnty provider

VisualAge Micro Edition consists of an integrated development envires
ment that sapports JDK | 2 compatible runtime environments and 2
of phatform-specific tools (Figure 3 320 The integrated desevhpment o8
ronmerst i wvailable for Murosoft Windows and Red Hat Lings It can
used 1o Getnsg Juve programs locally or remotely The graphcal debug®
also suppeorie the well-hnown operations ke selting break poiats 4 F.
sepping through the oode, and allows viewing of the values of vanabie .
It alses allows the source code W be modified on the Ay but this feasure *
Bl suppeoried o6 every target platfore :
Bupporied target platforms are Wissdows, Linux, and many embed®™
snvironments, includiag Palm O3, Neutrins e bedded Linux a5t
Windows CF This etiables, for example the development of Java s
for the Palim OF platform with s Windows or Linux PC, and also W
Tunning or debugging the software on the device mmediately In ol

. R Menar, the 49 virtual machine running on the Palm deve® .
otrinected Lo the PO vie TOP P (Figure 3 33

hv

Device techasiogy

Fio Lde Wi Gencied odon Heo

=] 2 5| 215l8] Sslslels] fF
CF Proseets | iy Packages | £ AlFucbsecs |

W errphe i oy

o =y VAT Fam Calbach Lamge of

!

ME Faim [rarterok 5 orgle

in-lau:JEQ iRV uE - ¢ -20EE it | Bae

VisualAge integrated development environment

Freir r“,,‘ =z

VisualAge Micro Edition supports code versioning and includes z r ep
itory server for team working. Also included is 2 smart linker, which
creates a special prelinked class file archive where all un aa: methods are
removed. This space optimization becomes all the more important, the
less memory the target device offers. For including Java a:'ﬁ.ﬂ:a:: o in the
device ROMs, ROM-able class archives can also be created

Target device

Host worksiation

Figure 3.33

Debugger

Debug proxy

A

Network

Remote debugging connection 17)

hLUN

Part 1 Technologies

Comparison .

The three VMS described here represent different uppn:m.wlm;s unc} there-
fore have different advantages and disadvantages. Table 3.4 gives an
averview of the features of different VMs. .

The Sun KVM is the reference implementation for the Icunnected lim-
ited device configuration (CLDC) configuration and is uvqx]able on many
platforms. A disadvantage of this more generic {19].)1‘0:1(;11 is that the exe-
cution speed is slow and the VM needs large libraries, as the native
libraries of the device are not used.

Waba is an open-source project that tries to overcome these dx'awbaf:ks
by having a compressed bytecode format and by using the native libraries.
The Waba VM must therefore be rewritten for each new operating system.

The J9 from IBM follows a similar path, but is aimed at the profes-
sional market. It therefore delivers libraries that are compliant with the
Java standards. It is also integrated in a visual development environment
with remote debugging ability. In contrast to the KVM and the Waba VM,

the source code of the J9 is not available; the J9 is not available free of

charge, but bundled with the Java VisualAge Micro Edition development
environment from IBM.

Comparison of VMs for pervasive devices

KVM Waba J9
Platforms Palm, Windows Pglm. Palm, Windows CE,
(‘E. EPOC, Windows CE Neutrino, Linux,
Linux, Windows. Windows
Solaris
Performance Low High High
Memory use High Low Low
Libraries Device- Device- Device-
independent dependent dependent
Standards Java2ME Java, Java2ME
Source code Under S |
iy sl un Open source No
Develo
envirm!:::::: fﬁOtglndafthava Standard Java Integrated
mni i‘;:o KVM tools with Waba development
developm:nt dVM ll'unning On environment with
) evelopment remote d i
R%ili\tform platform abilityL ebugging
—_—_ —

—_—

- ye

4 Device connectivity

Pervasive computing devices do not develop their full potential unless
they are connected to applications and services through the Internet.
This chapter covers protocols for device-to-device and device-to-server
interactions that are relevant in the pervasive computing domain, includ-
ing wireless protocols, mobile phone technologies, Bluetooth, the Mcbile
IP, synchronization protocols such as SyncML, and transaction protocols
and protocols enabling distributed services, such as Jini. In addition to
those protocols, we investigate further algorithms and protocols that
address security issues. Because system and device management will
become a big challenge to support millions of devices, the last section will
discuss device management in the pervasive space.

4.1 Protocols

Standardized protocols are basic prerequisites for meaningful use of per-
vasive computing devices. Most devices are not very powerful or useful
when used stand-alone. They need to exchange data with other devices,
for example via wireless protocols.

Wireless protocols will support IP in the near future, making Mobile
IP (a specially tailored IP for the needs of mobile devices) very impor-
tant. We introduce this protocol below and explain its relation to the
IPv6 protocol.

Another important topic is the consistency of databases and their data
(e.g. calendar entries) between a server and various pervasive computing
devices. This problem is solved with synchronization (also called replica-
tion). The major protocols supporting this concept are discussed below.

As connected pervasive devices form a distributed network, distributed
services and architectures such as Jini are gaining interest in the perv&
sive computing domain and are explained in this chapter. _

To ensure the delivery of the data in an environment, where the de
can be switched off or the connection can break down at any time, mes
sage and transaction protocols are used to maintain integrity. Thes®
protocols are explained in the section on message- and transaction-bas

protocols.

106

Device connectivity 107

Today, the main focus is on connection protocols such as WAP and
Bluetooth. The first step of a large-scale deployment is to get the devices
connected. Soon, these protocols will be established, then data-related
protocols will become more important. They will help to ensure security
and guaranteed delivery of messages expected by device users. Only when
this infrastructure is in place will e-commerce using mobile devices have a
substantial basis.

4.1.1 Wireless protocols

Wireless protocols are the natural communication choices for small hand-
held devices such as PDAs and mobile phones. By definition, no cables are
required in order to communicate with other devices.

Several wireless protocols already exist, and most are evolving rapidly.
This section offers an overview of WAP and discusses Object Exchange
(OBEX), IrDA, Bluetooth, and mobile phone technologies. The 802.11B
protocol, a wireless local area network (LAN) protocol with high band-
width (11 Mbps), will not be covered here. It is more suited for wireless
connection of laptops to a LAN, than for pervasive computing devices.
However, it may be used in a hybrid solution, where the pervasive device
can make use of 802.11 inside an office and UTMS while outside.

WAP/WML

WAP is a technology designed to provide mobile terminal (i.e. mobile
phones) users with rapid and efficient access to the Internet. WAP was
conceived by Ericsson, Nokia, Motorola, and Openwave Systems, and is
now driven by the WAP Forum industry association with over 200 mem-
bers. WAP integrates telephony services with browser technology, and
enables easy-to-use interactive Internet access from mobile handsets.
Typical WAP applications include over-the-air e-commerce transactions,
online banking, information provisioning, and messaging.

The WAP protocol is similar to HTTP a high-level Internet communi-
cation protocol. WAP has been optimized, not only for use on the narrow-
band radio channels of second-generation digital wireless systems, but
also for the limited display capabilities of today’s mobile terminals. The
wireless equivalent of HTML is WML, which defines a textual format and
a compressed binary format (WBXML). Unfortunately, there is currently
no end-to-end security available in WAP, but this will change in the future
through a working group that has been set up to solve this issue.

WAP is still a very young standard, and at the moment there are dis-
cussions under way as to whether WML can be integrated into Extensible
Hyper Text Markup Language (XHTML) to unify HTML and WML.
Mobile access to the Internet will increase with new phone technologies
and more user-friendly devices (e.g. PDA devicgs with an .integrated
phone). Therefore, WAP will become enormously important in the near

10 Part 1 Technologies

IrDA has the following characteristics:

B Frequency band. Infrared light is used as the physical transport
medium.
m Security. Unlike Bluetooth, IrDA has no security concept, but relies on
higher-level protocol security.
® Transmitting capabilities. Because IrDA is based on in f'rared light, it
consists of point-to-point connections with a narrow angle lB()-degree
cone) between sender and receiver. IrDA is designed for short-distance
communication (0-30 cm).
® Bandwidth. IrDA supports data rates up to 4 Mbps, with 16 Mbps
under development.
B Speech. There is support for only one digital speech channel.
® Cost. IrDA senders and receivers are mass-produced, therefore they
are very cheap ($1-2).

IrDA is perfectly suited for high-speed data connections (e.g. connecting a
device to a wired network). To initiate a data exchange, it requires a
device to be in direct line of sight to the other IrDA device (e.g. to
exchange virtual business cards).

4.1.2 Mobile phone technologies

The lomlr—lev_el communication protocols of mobile phones are radio-based
and suited for long-distance communication (up to about 100 km).
Howgver, the technologies used today have a very limited bandwidth,

Cellular systems for mobile communication

Digital mobile communication systems use
quencies around 1 GHz. Small antennae
centxr'neterrs can be used to send and receive signals from a mobile station
(mobile phone). However, the reach of mobile stationg ig rather lhimitt’d
due to power constraints and high damping of signals in the gigahertz

glectromagnetic waves at fre-
In the range of a couple of

1. whi COVEr an entire areq, Every trans-
meters in g o » Which may vary in size from g couple of hundred
Ly to tens of kilometers in rural areas. Every cell can handle

Device connectivity 111

8 ﬁ—bh ‘_1&] Overview of different generations of mohile phone communications
102 20; 240G aG
Protocol AMPS, (iSM, GPRS, UMTS.
C-Net TDMA, HSCSDD, W-CDMA
CDMA KDGE
Technology Analog, Digrital, Digrital, IDigrital,
circuit circuit packet,.-

circunt-

or packet switched

switched
Poor High High High
Low Medium High

switched switched

Speech gquality
Bandwidth Low

Security None Depending High High
on protocol,

low to high

multiple channels. The limited reach of transmitters is certainly a disad-
vantage if mobile services must be delivered to a large area because many
transmitters are required. However, the limited reach of senders allows
reuse of scarce frequency bands between distant transmitters. Thus, a
large number of mobile stations can be serviced.

Figure 4.2 shows that there might be dark spots where no mobile serv-
ice is capable, even when senders are placed with care. Location and size
of black spots may vary with weather conditions and mobile device char-
acteristics. Frequently, the high investments for a complete coverage
cannot be justified in rural areas, thus in many cases, mobile services are
restricted to densely populated areas or the main commuter corridors.
_Mobi.le service providers typically publish maps where serviced areas are
indicated. However, buildings and other objects may disrupt the signal
Therefore, applications based on mobile systems must be designed to
aH‘ow for non-availability of service or disruption of services. Typically
this is achieved through a combination of online and offline operation,

- Mobile stations are normally receiving signals from more than one sta-
t!on. Typically the station connects to the transmitter with the strongest
Bignal. A moving station, ¢.g. a mobile phone in a car, may travel from one
cel] W another. The GSM system has been designed to allow movement of
ﬂt&ll({nﬂ at a speed up to 150 km/h. Multiple base stations typically receive
the signal of a transmitter, Signal delay is indicative for the distance
Ioﬂ‘ctaween the transmitter and the mobile station. The station can be

ted through triangulation with accuracy of 30-150 m by combining

112

Part | Technologies

Figure 4.2

‘ellular phone array

the information from three stations (this can also be achieved with two
stations and a combination of angle of arrival (AOA) and time difference
of arrival (TDOA) measurements). This allows the location of the mobile
station to be detected, e.g. in case of an emergency call or to offer
location-bagsed services. Because such informative is sensitive and user-
related, many countries have laws to prevent unauthorized use of these
data (e.g. the Wireless Communications and Public Safety Act of 1999 in

the USA).

First-Generation mobile systems
Usable wireless systems first came to market in the 1970s. In Germany

the B-Net, which needed heavy transmitters and receivers, was successful
as a car phone system, and in northern European countries the Nordic
Mobile Telephone (NMT) system was launched. The successor of the B-
Net, the C-Net, was in use in Germany until the end of 2000. In 1983,
AMPS started the wireless phone market in North American countries.
All first-generation (1G) systems are analog, circuit-switched systems:
Circuit-switched means that there is a dedicated point-to-point connec
tion between the two ends of the call. As the systems were analog- :
they had poor speech quality and a low bandwidth for services like fax ¢f
data transmissions. Some analog systems are still in use (e.g. AMFY
throughout the Americas), primarily because there is near 100% coverag®
for them. Analog systems have no built-in security for data transmissior

or user authentication.

Device connectivity 113

Second-generation mobile systems

The second-generation (2G) mobile phone communication systems are
digital, circuit-switched systems. The switch from analog to digital tech-
nology improved the speech quality enormously, and allowed for some
additional services, such as encryption of the signal, authentication of the
user, authorization, anonymity, and the ability to send short, alphanu-
meric messages. However, due to the circuit-switching technology, data
transmission rates were still low (9.6-14.4 kbit/s).

Because there were a lot of incompatible analog mobile phone stan-
dards in Europe, the European Union in 1982 decided to develop a
common standard, Groupe Spécial Mobile (GSM). GSM was finally stan-
dardized in 1991 and renamed Global System for Mobile communications.
It works at 900 MHz, offers full international roaming, automatic location
services, signal encryption, user authentication and authorization,
anonymity, SMS, fax, and data service. SMS is becoming the most popular
service of GSM, with about 12 billion SMS messages sent per month
worldwide (data from October 2000). The GSM-900 standard is adopted
worldwide in over 160 countries, and is the most popular mobile phone
system, with more than 400 million users worldwide (including GSM-
1800 and GSM-1900 at year end 2000). This results in a market share of
about 60%, followed by the analog AMPS with a share of about 20%. To
get a higher user density per cell in cities, GSM-1800 was developed. This
works like GSM-900, but in the 1800-MHz frequency band, and offers
better speech quality.

The USA also switched to digital systems, but largely stayed with their
850-MHz frequency range from AMPS. Because there were no standardi-
zation movements as in Europe, the result was three incompatible
systems: the old analog AMPS, and the new digital TDMA and CDMA sys-
tems. In contrast to GSM, TDMA and CDMA do not support encryption,
authentication, or SMS. With the user density in big cities becoming a
problem, CDMA and TDMA switched to 1900 MHz. There is now a US
GSM version in place operating in the same 1900-MHz frequency band,
therefore called GSM-1900. The reason for all these different frequencies
is the lack of standardization. UMTS will be the first telephone standard
that also defines worldwide valid frequencies.

Table 4.2 shows the development of the wireless phone market. The
first three rows show the most popular digital systems: the GSM system
has by far the most subscribers. The figure also displays the trend
towards digital systems, as the number of digital system subscribers has

grown by more than 25% in six months, and the number of analog system
users has declined by 10% in the same time.

Two-and-a-half-generation mobile systems
Between the 2G and 3G mobile phone systems lies an intermediate step,
generation 2+ G. In contrast to a generation 3G system, a generation 2+G

_Tableqz

Part | Technologies

Worldwide wireless phone

7subscribers (millions)

April 2000 October 2000

397

GSM 304 2
CDMA 62 :(‘)
US TDMA 44 H6
Total digital 457 579
Total analog 83 75
Total wireless 540 654

Source: EMC World Cellular Database

System requires only minor hardware and software changes by the phone
companies. In Europe, 2+G systems like GPRS and High-speed Circuit-
Switched Data (HSCSD) are already in operation, However, users need
new mobile phones in order to use these services.

rI.‘he easiest way to achieve a higher bandwidth than GSM is by aggre-
gating multiple GSM channels, for example in the HSCSD technology. In
HSDSC, multiple basic traffjc channels are bundled to achieve data rates

S can be assigned to
D can provide a fixed

Device connectivity 115

width, which can be import - live
gies are available, .»uwliw ;::“.r’l\ﬂl';r;l "",‘;’l‘m“"'“";‘:::::;:’:TTWI ’Ilow”w?n . = le-
reserved even with packet-switched networks ¢0c Dandwidth can be
By ln‘t‘l.'lkmg the transmitted data inte packets inatead of gendi b
as a a'nnlm.uuus Ile'«-um. mobile devices remain connected 'vi;'tljsni;ngttr' :;‘]m
:}vr\'vlr. UMFK .mrtm‘u;‘nnl.v when data are actually beirg m,my (;)pﬁg
1ereby optimizes airtime use (\8i y : . !
as well us‘ power consumption. {;"}"fI’Hl:tT;l'::_:’""Tﬂf_"-l-‘l'tf'd oo the Ty
Bix 4 simplify access to the Internet
making it cheaper and therefore more attractive. '
| The packet-based Gl’RS protocol is ideally suited for burst-data applica-
tions, such as email or Internet access, and also enables virtually
permanent connections to data sources, allowing information to arrive
automatically rather than being sought (push model instead of a pull
model). Another benefit of the packed-based approach is that being con-
nected to the Mobile Internet does not interfere with receiving a phone
call, because the data session may be suspended while the call is answered.
Furthermore, it enables broadcast, multicast, or unicast message services
that cannot be achieved using standard circuit-switched networks.

Third-generation mobile systems

3G mobile phone systems will bring packet switching and high data rates
in the range of several Mbps. This will be a breakthrough for mobile com-
puting, making high data rates and full Internet access using the
standard Internet TCP/IP protocol possible for pervasive devices. It will
also support bandwidth-hungry multimedia applications, such as full-
motion video and video conferencing.

Requiring new hardware for transmission, it will be some time before
the 3G networks offer good coverage. 3G networks are expected to be in
operation in Japan by 2001, in Europe and Asia/Pacific by 2002, and in
the USA by 2003-4.

The UMTS is part of IMT-2000, the 3G wireless services specification of
the International Telecommunication Union (ITU). The UMTS Forum
was established to focus on spectrum availability, licensing issues and
long-term market surveys for third 3G. The UMTS frequencies in the
USA are still used by TV stations that have contracts running until
2003-4 with an option to extend it. There are discussions and negotia-
tions about how to make UMTS happen as soon as possible. It is expected
that worldwide coverage will be achieved by the year 2005,

UMTS is based on wide-band CDMA (W-CDMA), which was originated
by Japan’s NT'T DoCoMo and is now adopted for 3G use by ETSI. In addi-
tion to speech and data, W-CDMA also supports high-speed multimedia
services, such as video films, video conferencing, and Internet access, and
offers daty throughput up to 2 Mbps. Table 4.3 shows how the data trans-
mission rate influences the availability of offered services. For reference,

the wired-line ISDN is inserted.

116 Part I Technologies

Tahle 4.3 Delivery time of different services for different phone technologies J
ISDN 2G (GSM) 2+G (GPRS) 3G (UMTS)

Service

Email file (10 kB) 1s 8s 0.7s 0.04 s
Web page (9 kB) 1s 9s 0.8s 0.04 s
Text file (40 kB) 5s 33 s 3s 0.2s
Large report (2 MB) 2 min 28 min 2 min 7s
Video clip (4 MB) 4 min 48 min 4 min 14 s
TV Quality Movie 104 h 1100 h 52 h ~5h
(6 GB)

Source: UMTS Forum (2000) Report 11

Since the patent issues about CDMA seem to be resolved, W-CDMA will

soon get a wide availability because the GSM community, which supplies
the dominant technology today, supports it. Among the supporters of W-
CDMA are NTT DoCoMo, Ericsson, Nokia, and Qualcomm. UMTS and
W-CDMA are important for future mobile devices because they offer the
high data rates needed for accessing the Internet via mobile devices.

4.1.3 Mohile Internet Protocol

As soon as high-speed mobile connection is available, the next step is to
use this connection from a mobile device to access the Internet. This sec-
tion explains the standard IP and the Mobile Internet Protocol (Mobile
IP). Finally, the new Internet Protocol v6 and its effects on the Mobile IP

are discussed.

Standard Internet Protocol and mobile devices
At the moment, the standard protocol used in the Internet is IP version 4

(IPv4). IPv4 defines nodes that have a unique and fixed address consisting 0
a quadruplet. The Internet addressing scheme is similar to that of the tele-
phone. In a telephone network, the addressing scheme consists of a number
for the country, a number for the city, and then a number for the individu
telephone connection. IP addressing also has a prefix that determines the
subnet the address is part of. This prefix can be followed by a group and su?
group prefix before the address number for the individual device.

s

The messages that are sent through the Internet are called package”

Thffy incorporate the sender’s address and port number, and the recip!
ent’s address and port number. A scenario for sending a package over

can be seen in Figure 4.3.

Device connectivity il7
Requost
Houtern
X1 - :
Source) e - f)rsf-.h[r;:mon
2 ’ S: IP Address | Port } ﬁouting S 1P Address | Port
’—YD: |P Address | Port ’ table 0: 1P Address | Port
Response
Router
X1 —
Q Destination
Source «——————— - , _—_.‘., e — — D
N [:1P Address I Port | | [Routing [D: 1P Address | Port
[E IP Address | Port] table [S: IP Address | Port

Sending a package using the standard IP

The delivery of packages via intermediate hosts is called routing. The
routers take the destination address, mask out the low-order bits, and
then look up the resulting network address in their routing table. Thus,
the IP address typically carries with it information that specifies where it
belongs in the IP topology. The routing table contains the next routing
host for each network address, and tells the routing host to which host
the received package has to be forwarded. There can be many routing
hosts between the sender and the receiver of a package.

IPv4 was designed for PCs that do not move around, and it works quite
well for this purpose. When using IP with mobile devices, the problem is
maintaining an existing transport layer connection with the device.
zefﬁrably t.he de\fice should _keep its IP address and port number fixed.
Mzrznr:?llgllz ;levwe move% hlt Beaghes new points of attachment with a
this peret ofatt re}fs rar;gtla). }i ev;lce can now get a new IP address from
b Mob'E; achment, ut then the connegtlon to its old address will be

; ile IF, provides a way to solve this problem and how to enable

mobile devices to communicate over IPv4.

Mobile Internet Protocol
The Mobile IP was created to overcome the problems of IPv4 for mobile

g{ewces. In 1996, the Mobile IP working group submitted an IPv4 Mobile

O;t Protocol to the Internet Engineering Steering Committee (IESC).
desc?- i(}))\ffe:]rcmmz: the adfiress problems of IPv4 for mobile nodes (devices) as
i ed above, Mobile IP uses two IP addresses: a fixed home address
a care-of address that changes at each new point of attachment. The

Part I Technologies

home address 18 attached to a home agent, sO whenever the m.obile node is
not attached to the home network, 1t gets all the packages mtendgd for
the mobile node and forwards them to the mobile node’s current point of
attachment.

For establishing a connection to a mobile node, the following steps
must be performed:

m Discover the care-of address. The Mobile IP discovery is built on top of
a standard protocol, the router advertisement. The router
advertisements already existing in the IP standard are extended to
carry information about the care-of addresses. This enables the routers
to update their routing tables.

m Register the care-of address. Whenever the mobile
registers its new care-of address with its home agent. The mobile node
needs to authenticate itself to the home agent to prevent unauthorized

nodes from registering at the home agent. The authentication is
performed with a digital signature.

node moves, it

Tunnel the care-of address. The home agent modifies the received
packages so that the care-of address appears as the destination IP
address. This is called redirection or tunnelling. When a packet arrives
at the care-of address, the reverse transformation is applied. This
results in a packet that once again has the mobile node’s home address
as the destination IP address. Figure 4.4 shows this tunnelling process
for the request. As the sender address is unchanged-, the reply from

the mobile node goes directly to the sender, not via the home agent.

Thls_resplts in asmmetric routing - triangle routing — and can cause
routing inefficiencies.

1:3103315 iIPt1i15 S;in an ongoing effort and under discussion. One of the open
e est e }fl:ewa}l concept. Firewalls block incoming packages that do
specific criteria. One of these criteria is that no incoming packet

can have an internal IP address as source. But with the Mobile IP proto-

col, this is exactly the case i i
: se if a mobile node ide i
wants to send a packet to its home network PRIBISS fis RpmoReiset

Changes to Internet Protocol Version 6

IPv6 will i

missinéui;mil;g:_ “11;1‘1% ft?eﬂggfjsfgzl?v?;titg support that are currently

f:f;;sz fr‘ll;g.‘;‘mﬁ%“raﬁm and neighbor dis?:ﬂv?rfﬂv?itiptﬁiieSfiﬁeﬁf

address for tlhz Ezr:e cim create or obtain a topologically correct care-0

eign agent to provide ?h POmt' o attaCh.ment’ without the need for a for-

A big difference b e mobile node with such address.

o Bt tce etween IPv4 and IPv6 is that IPv6 expects all nodes

strong encryption and authentication features §I‘heref01‘9*

Figure 4.4

Fre g’
f - d'---:-‘i
I{ B P hasgns Pk "_lu--“"‘d £ & Latus f el | E
o P Ay o LrT £ ! S 1"*.:3'!
=
o] [~]
) 'L | - ’
i
P vy | | .
- 1 _::"__‘
‘ h—" -
. -
l‘ 1@y~
Eab
o |
['lm-ﬂ” Benitrg | x.’w'm
Lnﬂ'm‘m ‘ | - 0""""’""
Mreagans e
o fer
3
At 1 o
_ , [P Y W———
Lgrmnm {87 Aot | Pet
Sending & pochage cia Mobule IP

Mobtle IP for 1PVv6 can use the [PVG seoursty features, 3nd need not pro-
wide e own security mechanam

Although [Pvé will support mobility to a greater degree than [Pvd.
will st} et Mobsle [P to make mobility transparent to spplications and
Nigher-leve! protoceds sach as TCP Therefore, the Mobile [P working group
will subenit an [Pv6 Mobale [P protocnl to the TESG for standardisation.

4.1.4 Synchronization and replication protecols

Synchrunization. abw called repbication in the database ares. ieeps data
tonsisteont hetween different devices. An example of synchronizstion is
Wmmq.u-rmmn and on the PDA. Chasnges in the

——

120 Parl | Tetheglages

M‘#‘ | Ditternmt synchromiration setutipng

{ Hiwnta ey vey | wed o
A'fﬂﬁ“ #£3 Valin (8 Avurtd o, $as 4 mmy S
Windaows OF P PEAABIE Ky
Maobile Conneet Palm (5 it ¥odoe FIM epgbomtin
Windows IV M Vactimegn St ok rpivay
AL 24 0 rae
IntelliSyne Palm OF, [esisn Neton VIM sppibin st
Windeorws OF ME Ohathonie, sts
TrueSyne Mobsie phomes letiss Netan PIM sppiticstin,
F.ric saesr; M Orsthorik
Meotorola, Nokia), Sudekick, e
Falm O8,

Windows CF

PC calendar should be reflected in the PDA calendar, and viee verss
Another seenario s software update When a lot of devices are out in (b
field, there comes & time when it is necessary 1w update parts of the wit
ware in these devices. Synchronization can be used W efficiently updet
only the required parts of the software and take sceount of the dependes
cies (e g library versions)

At the moment there are many synchronization products svailable for
different devices and different needs. Some of them are listed in Table .4
(AvantGo is from AvantGo Ine., Mobile Connect is an IBM product
IntelliSync is provided by Pumas Technologies, and TrueSync is froo
Starfish Technologies)

Unfortunately, all solutions have different synchronization protocss
and it is therefore not easy Lo synchronize two clients with the same s
mu;ﬁuwmemw@am»\mdlmobihphom;,Thepdﬂm"
SyncML standard i to solve this problem. SyncML is explained in 0%
detan] bedow

SynchroniZaLon principies

To synchronuze data, such as calendar entries or address byocks, betweed
sovers] pervasive computing devices, there are two sirategies dﬂwfm
server synchronization; and device-device synchronization As can
weers in Figure 4.5, this can result in complex scenarios, where differe™
deview chents can even synchronize with different servers. When perfo™

Figure 4.5

Device connectivity 121

ing device-to-device synchronization, one device needs to act as a server.
To handle out-of-sync situations, a special protocol is needed.

Synchronization protocols typically consist of the following steps:

1. Presynchronization. To prepare the actual synchronization, some

action must be taken before this can happen. These actions fall into
the following groups: authentication, authorization, and determination
of device capabilities. Authentication ensures that the server is who it
claims to be. and that the client is who it claims to be. Authorization
checks whether the client is allowed to perform the requested action
(e.g. delete, update, or create new entries). Finally, the server

determines the device capabilities (e.g. maximum buffer size) to
optimize the data flow to the device.

2. Synchronization. This is the part in which the synchronization data

are exchanged. Between two synchronization partners, all local IDs of
data entries are mapped to global IDs known to both partners. Every

partner therefore has a mapping table to map local to global IDs. Only
the updated, new, or deleted entries are exchanged. If both partners

One client - one server sync

Server1 |e——3 Client 1

Multiple clients - one server sync

Server 1 T

Client 1

Client 2
L

Multiple clients - multiple servers sync

r - l
‘ Server 1 - - Client 1
| -
|
- |
Server 1 - - Client 2 |

Various synchronmization scenarios

Part 1 Technologies

update the same datn entry, there will b pontlied 1 "l:':'l“":'
contlict can be vosolved i difTerent Wave atiemnpt ";"NI" .
updates, duphieate the entiies, 1oL one ente witt e Hhe oERBE BE G
nothing and yoport the sonilict mo that the

1. Post .\'\-m'hnmrmrmn At this pnl\\l all the s TR E h\u'\u m;;
porfiormed, wieh as updating the mapping fihilis il veparbing

g eany anlve H

anresolved contlicts
In the following section, we present an pxnmmple of a sy Brondanbiomn pr

tocol, Sy neMl

Svrc M1
In late 1999 Ericsson, 1AL, Lotus, Matorola, Nokin, Pali, Palon, and

Starfish founded the SyneML inttintive After the ofticinl tavinch i
Febhruary 2000, the initintive conatate of more than 800 o grnizations aup
porting the syneML standard (as of May 2001

The vision of the SyneML members is to enable ublguitous data access
from any device to any net worked data To achiove this gonl, SyneML
reloased documents describing the protocol and tranaport bindings,
wntree code of a reference implementation (called SyneML Framowork)
and source code to demonstrate the use of SyneMILL

In contrast to the Microsolt Mobile Information Server, which tries to
wnchronize only Microsoft Office data to different client dovices, MyneML
wupports standard formats for PIM (xCard and xUalendar) and for data
base synchronization (XRelational),

The SyneML protocol is based on Extensible Markup Language (XML
and s mdependent of the transport protocol. HTTER OBEX, and Wireloss
Trnnuclmn Protocol (WTP) are defined as lrnhnpurt h“\(“nﬂ' for o
SyneML-comphant device. Each synchronization message is an XML, doe
ument, which s sent. The recipient can identify the format of the
;{‘1?*:8‘:"&31:’!\“5“’, type of that message, e g. clear-text XML, or binary

A ty?;cnl SyncML system is shown in Figure 4. 6. Application A (e §
Palm Calendar) is sending synchronization data via its cllent syne engin®
to the SyncML Framework. The SyncML Framework translates the AP
calls (e.g. Update, Create) and the data into a valid SyneML document
and sends it to the server. On the server side, the SyneML, Framework
receives the document, parses it, and then sends the command and dat#
to the server syne engine, which then talks to application B (e g Lotu®
Notes Calendar) i

The SyneML Framework is available for Windows, Linux, Palm O8
and EPOC. It aims to give device manufactures a jump-start i.n intogrot
ing SyneML into their devices, s it gives the Syne Engine an Al {or easY
use, handling all the XML encoding and the transport |'m;nm.*t‘rllm!nhnl

Figure 4.6

Device connaciivity 143

f -
Application A ByncMi !
| {.? 5
. framework AR ation
i ‘
SyncMl A
v roprosantation
v .= l"""" 3l . ¢ Y
vV -
> o | SynoMl ByncML | = |
BV el - y 1 - - ¢y L | /
: - «f Adaptear Adapiter i B -“; /
angineg .
_i i 7 | ; e l o
e et e - et e ‘ L ’
'

Y Y
Tranaport layer
(0.0. HTTRP/OBEX/WTP)

SyncML Framework

issues. SyncML-compliant devices and synchronization products are now
available from Nokia, Ericsson, and Motorola.

4.1.5 Distributed services
scenarios consist of networked components

Many pervasive computing
with wireless

that build a distributed system, like mobile phones or PDAs
connectivity. With this distribution and connectivity new challenges arise.
Not only are distributed and networked systems gradually becoming more
difficult to build than stand-alone systems, but also the complexity 18
ntially with the number of interacting systems. In addi-
tion. networks are not reliable, secure, static, or deterministic. There are
not only gradual differences to stand-alone systems, but completely differ-
ent architectures are required to deal with these issues. For example, the
non-deterministic behaviour of a network leads to the problem of deciding
whether a component has failed, or whether it is just very slow in procese-

ing the request. Distributed services must take all this into account and

find a solution for these problems.

While pervasive computing devices get wireless connectivity to build 2
distributed system, distributed services will become increasingly impor-
tant. Two examples for distributed infrastructures are presented below:
Sun’s Jini and Microsoft’s Universal Plug and Play.

growing expone

Jini

Jini, defined by Sun Microsystems, provides a technology for distributed
Java software systems.
hardware, and was targeted for

focus on instantaneous networ
beyond the use of consumer devices that c

nally designed for software and
the small office/home office market with a
king. However, Jini has developed far
an be plugged into a network.

5 Jini was origi

Part | Technologies

into a power supply. Jini is now used in the
sce-oriented infrastructure, self.
ces for an easy legacy svstem

just as appliances are plugged
enterprise space, where it provides a sem
healing networks, and federation o1 servl

Jini requires that all participants have a Java \;.\] running on their
system. This is a more resir} -ted approach than, for example, that of
CORBA or DCOM, where data types of different languages are mapped,
However, this approach has the advantage that nthen’-‘ is no problem v‘with
primitive data types (e.g. the number of bytes for an integer value in C
depends on the hardware platform). Because all systems require ?.he Java
VM. it is also easy to distribute data as well as code. Downloading code
has one drawback: it is difficult to ensure that the downloaded code has

the same quality as the code already running on that device and does not

mzke the device unusable.
The main weakness of Jini is that currently it is not secure. Jini uses

the Java BEMI architecture, which still needs some 1mprovement in secu-
rity. In addition. Jini needs services for authentication and authorization,
Hopefully this will be included in a future version of Jini.

As mentioned, Jini uses Java RMI as a communication layer between
the different Jini participants. Some very useful services to enable sponta-
neous, self-healing distributed systems are built on top of RMI. They are

based on five key concepts:

& Discovery: the service that finds other members in the Jini community
and joins them enabling spontaneous networking capability.
® Look-up: a directory that understands the Java-type hierarchy. This
mnsthaxaio?k-upammhisnotsimp}yatextstﬁngseamh, but is
based on the object type and even considers the inheritance hierarchy.
8 Leasing: ensures tha: the Jini network is stable and self-healing.
meargonlyhased. meaning they have an expiry
t;:idstamp.Aﬁer.thmit;n:;theymustbemqueswdagﬁn and it
w become obvious if the service or the pro iding server 0
Liger svailable. prov was?
8 Remote events: allow Jini services to send notification to icipants
in a Jini community. Pk R
#8 Transactions: smj.lar to datahase transactions. They allow a program
o perform a series of computations and reach a consistent state after
either all steps are completed successfully, or none of them has been
completed. The transactions solve part of the problem of the non-
deterministic network behavior mentioned before.

integration.
nis

A typical Jini scenario is shown in Figures 4.7 and 4.8. The service ¢0
sumer first contacts the look-up service and requests a service, &£
printing (the request in Figure 4.7). The look-up service searches its I'*'

Figure 4.7

Figure 4.8

Device connectivity 125

Look-up service

™| Service
Proxy

b ———

T
& &
» &
& o
T Service
Service proxy Service
consumet provider

Service
Proxy

Jini

Java VM Java QM

Jini scenario for accessing a remote service: first step

of registered services and returns the code to talk to the requested service

(proxy service), e.g. printer driver for a specific printer (the response n
Figure 4.8).

LLook-up service

—— | Service

Service
consumaer

Service

Java VM

Service
provider

Service
proxy

Jini

J;\v't VM

Jini scenario for accessing a remote service: second step

part I Technologies

l . .J] _}(l(! ()l ?J ::..i V ;_‘l. (r()d.(_‘], (]l ld "h‘lr
. (=I'e.

: Jer directly, €.g. send objects to t
fore use the service of the service pI‘()V‘]d(.l _d t"l" seabocol (Ehe sar .he
'n't \river, which translates them Into the printer prot ne serviee
printer driver, s

; "o service provides the code to talk to the

.o in Figure _ After the look up service e e _

o 1111‘1511‘1":3{2 provider, it 18 10 longer involved. This Plt_lhlhlth commuy.

qu:gzt; bz(ie:tlenecks that would occur if the look-up service received al|
nic e o e

requests first to forward them to the appropriate service provider.

As already mentioned, a prerequi:site for J ini. is the JavadRMI function.
ality. Unfortunately, a lot of pervasive computing 'dnges' 0 not _Su_ppt)rt
Java or RMI yet, and are therefore not able to participate in the Jini com.
munity. To solve this problem, Sun developed a proxy concept called Jinj
Surrogate Architecture. This architecture consist of two parts:

m Surrogate host: a full Java 2 system with Jini support. In addition, it
knows how to talk to its clients (e.g. WAP X10, OSGi, USB). It offers

discovery services and can store the proxy code for the client.

m Surrogate client: the first kind of client does not have a JVM and
therefore cannot execute the proxy code. This means that the host
must execute the proxy code. The other kind of client has a limited
JVM, which allows the proxy code to be executed, but does not have
the RMI capability (e.g. JZME KVM). Executing the proxy code on the
client takes workload from the server without requiring the client to
implement the RMI package.

Jini allows spontaneous networking and is very attractive for pervasive
computing devices that are not attached permanently to a specific net-
work'. Anlexample of using Jini in the pervasive computing space is the
OSGi, which is used in automotive systems (see Chapter 2).

Universal Plug and Play

}?;slvzrsallitplug and Play (UPnP) was created by Microsoft and currently
N I(\)/Iit Sulf_PO}"tEI_‘S (Compaq, Hewlett-Packard, IBM, Intel,
ke ;;rov 1S$le ishi, Siemens, Sony, and others). It has the same goals
i s spontaneous networking and device interoperability

» UTnk chooses a different approach. Instead of building the di¥

x}illi’:}fzdr;%f;‘s}ftructurte sgrvipe on Java, UPnP uses HTTP and XML
open sta d 2
data bk not code oves ndards. As a consequence, UPnP can distribu®®

the network ' re
secure) or a disadvantage (less functioﬁaTli;’S) e e B RS

UPn ;

the Dy:aiilgvlilso:zrczerf? AontEurEtion networking and relies heavily 0P

dynamically join onfiguration Protocol (DHCP) for devices in order w.

Sl T it th.]e DNETSI'I—‘etWOI‘k. DHCP 1s used for retrieving an IP addreSU

ment to DHCP to o] server location. 1t also relies on Auto IP, an enhant

is based o o claim IP addresses in the absence of DHCP servers ¢ ol
N generating randomly an address in a reserved address spact

Daviee nonneetivity 127

LI does not depond on o apecilie teanaport pratocol, a1 e b viised
with wireloas teansport protocols, T doos ol tledivies sny securily protocals
and therefore relios on the pratocols vaed hoelow T ar Lhe gecarity

moechanism tmplementod by apphications aeiog Tl
The services offored by LI aee vory @il (o those alferad by Jdin

[nstead of using a progranntng lnngoaage Bl doavi Lo Dpleenil e

worvicos, UPHP builds on XML wtandardu, el s Che Himplo Hervied

Discovery Protocol (SSDITY Tor pervice dhincovory, Lhe Ceneral Fyend

Ncrt.il'imli:nn Architoeture (GENA) for events, nnd SOAT Tor ramaobe proce

dure calls, These services are explained i more et helow,

m [P addressing. A deviee Lhat will join an Ul nobwork must got an
[P address. This can be achioved by two different maethods in UPnl
The first is to use DHCE meaning the devieo munt haye o DHCE
client. The device sends out o request to be anwwored by o DHCP
server. 1f no DHCP server answers Lhe requaest in o rensonable time,

then the device uses Auto 1P Lo generate an 117 acddress from a set of

reserved [P addresses,
Discovery. The discovery mechanism allows devices Lo advertise their

]
services to control points, and to use new control points Lo pearch for
devices of interest. The messages sent in hoth cages are XML
documents based on the SSDP protocol.

® Description. After a device has announced itsell to a control point, it
needs to tell the control point what kind of service it is offering. This
is called a description in UPnP and is represented by an XML
document that the control point requests from the device.

m Control. After the control point has the description of the device and

therefore knows the provided services, it can send requests to the

device. UPnP calls these requests ‘control meesages’. They are

represented by XML documents based on the SOAP standard, which

allows remote function calls.

® Events. Control points can subscribe to events on devices, Whenever
an event occurs, the device will send a notification to all subscribed
control points. The mechanism for subscribing and sending the events
is taken from the GENA protocol, that also uses XML documents for
communication between event generator and event receiver,

® Presentation. Devices can specify a presentation URL under which the

device can be configured remotely via a browser.

A UPnP scenario can be seen in Figures 4.9 and 4.10. The device
(client) uses DHCP to get an IP address from the DHCP server (Figure
4.9). After it has received a valid IP address, it can participate in the
UPnP network. Therefore, it starts the discovery mechanism that is

128

Part 1 Technologies

Figure 4.9

Figure 4.10

DHCP server
DHCP
TCPAP
Client
XML
DHCP | sspp
TCP/IP

UPnP scenario using DHCP: first step

escription. The device sends back
an XML document containing vendor-specific data, the offered services, a

control URL, an event URL, and 4 URL for Presentation (e.g. when a

device consists of several subdevices). After that, the control point is able
to use the services of that device.

DHCp server

Client Contro| point
XML XML
DHCP | sspp DHcp "SSDP
TCP/P - TCP/P
N R

; _—
UPnP scenario using DHCP: second step

Device connectivity 129

As UPnP requires mainly IP and XML, it does not need much space on
a device and is therefore well suited for pervasive devices. The example

given on the UPnP website is a digital camera using UPnP to offer
l'ﬁl’]'lUl,(f"(if)lltf'ﬂ' H(_‘I'Vi(,'(:S.

4.1.6 Message- and transaction-hased protocols

Message- and transaction-based protocols ensure delivery and atomic
operations in the pervasive computing space, where communication
hreakdowns, or devices being switched on and off while attempting to
transmit data, are likely scenarios. This becomes extremely important for
e-commerce applications. If something is bought over the Net via a mobile
device, it is essential that the order is received, but only once.

The following sections explain the different technologies available, and
then give an overview of available products.

Messaging and transaction technology

Guaranteed message delivery and atomic operations are two different
technologies. Nevertheless, it does make sense to put both in the same
section, as normally we would want ensured delivery for atomic opera-
tions. Databases on mobile devices therefore often use messaging systems
as their transport layer.

One issue that is slowing down the fast spreading of message systems
and transactional databases is the lack of standards. The solution to this
problem can possibly be achieved on a higher level using SOAP. SOAP
provides a mechanism for exchanging structured and typed information
between peers in a decentralized, distributed environment using XML.
SOAP is a new proposal to the ITEF and is supported by many compa-
nies.% For more information about SOAP see Chapter 9.

Message queuing solves the problem of assured delivery of a message.
This is achieved via a queuing system, where the application puts the
message in the queue and the queuing system ensures the delivery.

Queuing systems also allow asynchronous delivery of messages. This is
of interest for devices that are not always connected to a network (e.g.
PDAs). As soon as there is a connection to the network, the queuing
system delivers the message to the recipient. It can be specified how long
Fhe message may wait in the queue before it becomes obsolete (e.g. order-
ing stock).

Figure 4.11 shows some typical messaging scenarios. Complete topologies
can be built with queues. Besides the trivial one-to-one queues, the configu-
ration can include distributing one message to several queues (e.g. sending
to multiple devices), or collecting messages from different queues into one
queue (e.g. forwarding email from different accounts to one device).

- Transactional databases are the natural choice for grouping messages
Into an atomic block (also called transaction). Transactions are important

130

Figure 4.11

Part 1 Technologies

One-to-one gueues R
Queue A +—>

Q - p—‘ Queue C

ueue B
st

One-to-many queues et

f/:_:.ﬂ,.-ﬁ,
™~

Queue A Queue C

Queue D

Many-to-one gueues

Queue D

| »] QueueC

P4

~

L

il

Queue A

Queue B |

Messaging scenarios

in the e-commerce area to ensure either that no action is performed or
that all actions are performed (e.g. one action could be a payment and the
other an order). ‘

Transactional databases are very common on server systems, but not
many pervasive computing devices have a built-in transactional database
with rollback and standard SQL as query language. This is because until
recently databases were very big and needed a lot of runtime memory.
This is changing now, and more and more database vendors are pmvidin.g
smaller versions that are suitable for pervasive computing devices inter-
operating with the databases on the host side. Therefore trans;l::timml
databases with an SQL interface will soon be integrated ‘into pervasive
computing devices.

Messaging and transaction products

While there are several messaging systems available on the server side,
e.g. the free SwiftMQ, which is based on Java Message Services, there ar¢
not many products that implement message or transaction support 07

small devices. The major products are ExpressQ from Broadbeam

Device connectivity 1%

Corporation (formerly Nettech Systems), M@ Series Everyplace (MQe)
from 1BM. Microsoft's MSMQ, and iBus//Mobile from BoftWired, Table
4.5 shows the various message queuing systems and their avallability for
client operating systems. The footprint of the major products s bhetwesn
64 and 1560 kB.

The situation for databases i similar to that of Lhe message queuing
systems. Currently, few relational databases support more than one chent
device platform. Table 4.6 details the most popular two: [BM'y (114
Everyplace (DB2e) and Oracle’s Oracle Lite,

Both databases also have support for databs

between pervasive computing client devices and servers

e synchromzation

4.2 Security

ecurity in pervasive comput

In this section, we give an introduction to s
of pervasive compuling

ing, focusing on the server-side aspects
applications. We start with an overview of the basic security concepts,
including identification, authentication, authorization, transaction
authorization, and non-repudiation, and give an outline of how they can
be implemented. Then we give an overview of th
graphic algorithms that are commonly used to realize

e most relevant crypto-

these concepts a8 a

Message queuing systems

Palm OS Wiirdows CE EPOC Embedded Linux

ExpressQ v/ v
MQe v/ v v
MSMQ v/
v v/ v

iBus/Mobile 7/

Relational databases for pervasive computing devices

Supported platforms Database footprint

Di2e EPOC Linux, embedded Linux, 160 KB
Neutrino, Palm O8, Windows ('E
HO-T60 KB tdepending

arr configuration)

Oracle Lite EPOC32, Palin 05, Windows CF

132

Part I Technologies

basis for secure pervasive computing applications. We present standard
cryptographic protocols for authentication and secure transmission of
data, and give some examples of how these protocols are used in pervasive

computing applications,

4.2.1 Security concepts

Before discussing security of pervasive computing applications, it is
important to understand the basic security concepts. Below, we explain
briefly the concepts of identification, authentication, authorization. and
non-repudiation that will be used in the remainder of this chapter.

Identification

There are various methods for identifying users accessing a server using
pervasive computing devices. The most universal method is using a user
identification that the user has to enter or that is stored in the device.
Another method that may be employed if the user has a mobile phone is
using the telephone number. If the user has a certificate. the certificate’s
unique identifier can be used. Because the user may access a server using
different identifiers, depending on the device used. these identifiers have
to be mapped to canonical user 1Ds.

Authentication
Authentication means proving that somebody actually is who he or she
says they are. Authentication may be performed in various ways, depend-
ing on the capabilities of the device used. resulting in different levels of
assurance of the user’s identity. The most universal authentication
method is authentication by user identification and password. After a
secure connection between the client and the server has been established,
for example using Secure Sockets Layer (SSL) from a PC or Wireless
transport layer security (WTLS) from a WAP phone, the application
prompts the user for the identification and a password using an appropri-
ate form. The user identification and the password, or a hash of the
password, are transmitted to the server and verified to authenticate or
reject the user.

A more secure method that may be used with PCs, or soon with WAP
phones with a wireless identification module (WIM), is authentication
using a smart card. The importance of smart cards is increasing, especiﬂ”."
in Europe and Asia, as they are used as SIMs in all GSM phones, and more
and more smart-card-based payment systems and public-key infrastrut
tures (PKlIs) emerge. Here, an authentication protocol is executed between
the smart card on the client side and the authentication software on [h‘e
server side, e.g. by an applet or a browser itself. Usually, the server gives j
random challenge to the client, who provides it to the smart card am

Figure 4.12

Device connectivity 133

requests a signa_ture over the card identification and the challenge. Often,
a password provided by the user has to be given to the smart card before a
signature can be obtained to ensure that someone who finds or steals the

card cannot abuse it. Finally, the card identification with the signature is
sent back to the server for verification (Figure 4.12)

Authorization

A common authorization scheme is to define principals and associate per-
missions that these principals posses. Permissions can be used to invoke
particular methods of particular objects. Such schemes are appropriate
when there is only one sort of client and one sort of authentication proto-
col that may be used by these clients. Because pervasive computing
applications may be accessible from various clients using different
authentication methods, authorization to perform an action may depend
not only on the principal, but also on the device and authentication
method he or she currently uses. Table 4.7 gives an example.

User A has a PC and a WAP phone. A can access his or her account infor-
mation and transfer money from the PC after authenticating themselves
using a smart card. Access to the account information from the PC is also
possible after authentication with user identification and password. From
the WAP phone, the user can only view the account information after
authentication with user identification and password. User B has only a
normal telephone, thus there is no entry besides the voice entries, which
specify that user identification and password are required for this user to
view account information or transfer money. User C has a PDA and can

view account information and transfer money authenticated by user iden-
tification and password. :

Smart card Server
Password Generate
> challenge
Store
Challenge chall~nge
Generate
signature S

over challenge

Y

Signature S +

cartificate Verify certificate

verify signature S

EI“"?DIF-‘ of an authentication protocol

134 Part | Technologies

Examples of authorization

Authentication Permissions
(application/function)

User/role Device

mechanism
User A PC Smart card 1024-bit Home banking/
signature view account
PC Smart card 1024-bit Home banking/
signature transfer amount
PC User ID/password Home banking/
view account
WAP phone User ID/Password Home Banking/
view account
User B Voice User ID/password Home banking/
view account
Voice User ID/password Home banking/
transfer amount
User C PDA User ID/password Home banking/
view account
PDA User ID/password Home banking/

transfer amount

Transaction authorization

Sprne applications allow users to initiate transactions that are very sensi-
FIVE, e.g. money tr_ans.fers in home-banking applications or placing orders
in brokerage applications. To achieve an appropriate level of security for

Digital signatures endorsed by password

To enable transactior, -thorization through digital signatures endorsed
by a password, the user is equipped with a token that has the ability 1
store securely a key, and to generate digital signatures using that key. The
token has to be set up in a way that allows generation of agsignaturé only
if the user provided a password before. When a user initiates a sensiti'
transaction, the server requests the user to generate a digital signat!"
over a challenge and the transaction data using the token. The Us®
enters the password for the token and the token generates the requir®

A

Device connectivity 135

signature. The signature is passed to the server, which chccks it and exe-
cutes the transaction only if the signature is correct. Thus, authorizing a
transaction is only possible if one possesses the token and knows the pass-
word for the token. A person who steals the token will not be able to use
it because he or she will not know the required password.

Transaction authorization numbers

TANs are secret numbers delivered to the legitimate user in blocks. The
organization that sends the TANs to the user makes sure that the users
are aware of the importance of the TANs: the user may have to acknowl-
edge formally that they have received a TAN block, and they may have to
sign a statement that they will keep the TAN block secret and never
reveal it to anyone else, When a user initiates a sensitive transaction, the
server requests the user to enter the next valid TAN (each TAN may be
used only once). The user enters the TAN and it is sent to the server. The
server checks whether the TAN matches the number it expected. Only if
this is the case does it execute the transaction.

Non-repudiation
Non-repudiation means that a user cannot falsely deny later that he or

she authorized a transaction. To ensure non-repudiation, transaction
authorization must result in data - like a digital signature, for example -
that can be used later to prove that the transaction was authorized by

the user,

4.2.2 Device security

The security of pervasive computing devices varies considerably, Some
devices are considered very secure and are even used for financial trans-
actions while others provide only a very low level of security. The security
of a particular device depends on many parameters. Several devices run
unchangeable software, while others allow loading arbitrary software -
Potentially Trojan horses - into the device. A number of devices have no
memory protection and thus do not isolate data of an application from
other applications, which potentially might be dangerous. Some devices
¢an only support signatures and encryption with small key lengths that
are not considered secure, while others have enough computing power to
Sup’port key lengths that provide a very high level of security. A few
®Vices have secure hardware modules built in to store private keys, while
Others only have one memory shared between applications.
When implementing distributed pervasive computing applications that
Need tp he secure, 1t is very important to be aware of the level of security

that the client devices support.

