INTRODUCTION TO LANGUAGE PROCESSING:

As Computers became inevitable and indigenous part of human life, and several languages
with different and more advanced features are evolved into this stream to satisfy or comfort the user
n communicating with the machine | the development of the translators or mediator Software’s
have become essential to fill the huge gap between the human and machine understanding. This
process 1s called Language Processing to reflect the goal and intent of the process. On the way to
this process to understand it in a better way, we have to be familiar with some key terms and

concepts explained in following lines,
LANGUAGE TRANSLATORS ;

Is 0 computer program which translates a program written in one (Source) language to its
equivalent program in other [Target|language. The Source program is a high level language where as
the Target language can be any thing from the machine language of a target machine (between
Microprocessor to Supercomputer) to another high level language program,

3. Two commonly Used Translators are Compiler and Interpreter
I. Compiler: Compileris a program, reads program inone language called Source Language

and translates into its equivalent program in another Language called Target Language, in
addition to this its presents the error information to the User,

Source program In An Equivalent Program in
- C OMPILER other Language o
one language or - " Relocatable Object Code

high level
Language or Target Program

Error Information

¥ Ifthe target program is an executable machine-language program, it can then be called by
the users to process inputs and produce outputs,

Input ——» TargetProgram Lo Ouipumt

Figurel.l: Running the target Program

2. Interpreter: An interpreter is another commonly used language processor. Instead of producing
a larget program as a single translation unit, an interpreter appears to directly execute the
operations specified in the source program on inputs supplied by theuser.

Source Program
Input Interpreter * Qutput

Figure 1.2: Running the target Program

LANGUAGE PROCESSING SYSTEM:

Based on the input the translator takes and the output it produces, a language translator can be
called as any one of the following.

Preprocessor: A preprocessor takes the skeletal source program as input and produces an extended
version of it, which is the resultant of expanding the Macros, manifest constants if any, and

including header files et in the source file. For example, the C preprocessor 15 a macro processor
that is used automatically by the C compiler to transform our source before actual compilation. Over

and above a preprocessor performs the following activities:

Y Collects all the modules, files in case if the source program is divided into different modules
stored at different files.

¥ Expands short hands / macros into source language statements,

Compiler: Is a translator that takes as input a source program written in high level language and
converts it into its equivalent target program in machine language. In addition to above the compiler
also

Y Reports to its user the presence of errors in the source program,
¥ Facilitates the user in rectifying the errors, and execute the code.

Assembler: Is a program that takes as input an assembly language program and converts it into its
equivalent machine language code.

Loader / Linker: This is a program that takes as input a relocatable code and collects the library
functions, relocatable object files, and produces its equivalent absolute machine code.

Specifically,

' Loading consists of taking the relocatable machine code, altering the relocatable addresses,
and placing the altered instructions and data in memaory at the proper locations.

-1

Linking allows us to make a single program from several files of relocatable machine
code. These files may have been result of several different compilations, one or more
may be Library routines provided by the system available to any program that needs them,

In addition to these translators, programs like interpreters, text formatters etc., may be used in
language processing system. To translate a program in a high level language program to an
executable one, the Compiler performs by default the compile and linking functions,

Normally the steps in a language processing system includes Preprocessing the skeletal Source
program which produces an extended or expanded source program or a ready to compile unit of
the source program, followed by compiling the resultant, then linking / loading , and finally its

equivalent executable code is produced. As I said earlier not all these steps are mandatory. In
some cases, the Compiler only performs this linking and loading functions implicitly,

The steps involved in a typical language processing system can be understood with following
diagram.

Source Program | Example: filename.C |

Preprocessor

Modified Siu::n Program | Example: filename.C |

Compiler

Target Assembly Program

Assembler
Relocatable Machine Code | Example: filename.obj |

}

Loader/Linker | «——Library files
Relocatable Ohject files

Target LLl:hinr.! Code | Example: filename. exe |
Figurel.d : Context of a Compiler in Language Processing System

TYPES OF COMPILERS:

Based on the specific input it takes and the output it produces, the Compilers can be classified
into the following types;

Traditional Compilers(C, C++, Pascal): These Compilers convert a source program in a HLL
into its equivalent in native machine code or object code.

Interpreters(LISP, SNOBOL, Javal.0): These Compilers first convert Source code into
intermediate code, and then interprets (emulates) it to its equivalent machine code.

Cross-Compilers: These are the compilers that run on one machine and produce code for
another machine,

Incremental Compilers: These compilers separate the source into user defined—steps;
Compiling/recompiling step- by- step; interpreting steps in a given order

Converters (e.g. COBOL to C++): These Programs will be compiling from one high level
language to another.

Just-In-Time (JIT) Compilers (Java, Micosoft.NET): These are the runtime compilers from
intermediate language (byte code, MSIL) to executable code or native machine code. These
perform type =based verification which makes the executable code more trustworthy

Ahead-of-Time (AOT) Compilers (e.g., NET ngen): These are the pre-compilers to the native
code for Java and .NET

Binary Compilation: These compilers will be compiling object code of one platform into object code
ol another platform.

PHASES OF A COMPILER:

Due to the complexity of compilation task, a Compiler typically proceeds in o Sequence of
compilation phases. The phases communicate with each other via clearly defined interfaces.
Generally an interface contnins a Data structure (e.g., tree), Set of exported functions. Each
phase works on an abstract intermediate representation of the source program, not the source
program text itself (except the first phase)

Compiler Phases are the individual modules which are chronologically executed o perform their
respective Sub-activities, and finally integrate the solutions to give target code,

It is desirable 1o have relatively few phases, since il takes time to read and write immediate files,
Following diagram (Figurel 4) depicts the phases of a compiler through which it goes during the
compilation, There fore a typical Compiler 15 having the following Phases:

. Lexical Analyzer (Scanner), 2. Syntax Analyzer (Parser), 3.Semantic Analyzer,
4.Inermediate Code Generator(ICG), 5.Code Optimizer(CO) , and 6.Code
Generator(CG)

In addition to these, it also has Symbol table management, and Error handler phases. Not all
the phases are mandatory in every Compiler. e.g, Code Optimizer phase is optional in some

cases. The description is given in next section.

The Phases of compiler divided in to two parts, first three phases we are called as
Analysis part remaining three called as Synthesis pan.

Nowice progy mn

i

Lexical analyses

i

Taaget progimn

Figurel.4 : Phases of a Compiler

PHASE, PASSES OF A COMPILER:

In some application we can have a compiler that is organized into what is called passes.
Where a pass is a collection of phases that convert the input from one representation to a
completely deferent representation. Each pass makes a complete scan of the input and produces

its output to be processed by the subsequent pass. For example a two pass Assembler.

THE FRONT-END & BACK-END OF A COMPILER

All of these phases of a general Compiler are conceptually divided into The Front-end,
and The Back-end. This division is due to their dependence on either the Source Language or
the Target machine. This model is called an Analysis & Synthesis model of a compiler.

The Front-end of the compiler consists of phases that depend primarily on the Source
language and are largely independent on the target machine. For example, front-end of the
compiler includes Scanner, Parser, Creation of Symbol table, Semantic Analyzer, and the

Intermediate Code Generator,

The Back-end of the compiler consists ol phases that depend on the target machine, and
those portions don’t dependent on the Source language, just the Intermediate language. In this we
have different aspects of Code Optimization phase, code generation along with the necessary

Error handling, and Symbaol table operations,

LEXICAL ANALYZER (SCANNER): The Scanner is the first phase that works as interface
between the compiler and the Source language program and performs the following functions:

Y Reads the characters in the Source program and groups them into a stream of tokens in
which each token specifies a logically cohesive sequence of characters, such as an
identifier , a Keyword , a punctuation mark, a multi character operator like ;= .

L The character sequence forming atoken is called a lexeme of the token.

Y The Scanner generates a token-id, and also enters that identifiers name in the Symbol
table if it doesn't exist.

Y Also removes the Comments, and unnecessary spaces,

The format of the token is < Token name, Attribute value>

SYNTAX ANALYZER (PARSER): The Parser interacts with the Scanner, and its subsequent
phase Semantic Analyzer and performs the following functions:

Y Groups the above received, and recorded token stream into syntactic structures, usually
into a structure called Parse Tree whose leaves are tokens.

-1

The interior node of this tree represents the stream of tokens that logically belongs
together.

Y It means it checks the syntax of program elements.

SEMANTIC ANALYZER: This phase receives the syntax tree as input, and checks the
semantically correctness of the program. Though the tokens are valid and syntactically correct, o

may happen that they are not correct semantically. Therefore the semantic analyzer checks the
semantics (meaning) of the statements formed.

¥ The Syntactically and Semantically correct structures are produced here in the form of a
Syntax tree or DAG or some other sequential representation like matrix,

INTERMEDIATE CODE GENERATOR(ICG): This phase takes the syntactically and
semantically correct structure as input, and produces its equivalent intermediate notation of the
source program. The Intermediate Code should have two important properties specified below;

Y It should be easy to produce,and Easy to translate into the target program. Example
intermediate code forms are:

Y Three address codes,
¥ Polish notations, etc.

CODE OPTIMIZER: This phase is optional in some Compilers, but so useful and beneficial in
terms of saving development time, effort, and cost. This phase performs the following specific
functions:

L Attempts to improve the IC so as to have a faster machine code. Typical functions
include —Loop Optimization, Removal of redundant computations, Strength reduction,
Frequency reductions etc,

=1

Sometimes the data structures used in representing the intermediate forms may also be
changed.

CODE GENERATOR: This is the final phase of the compiler and generates the target code,
normally consisting of the relocatable machine code or Assembly code or absolute machine
code.

Y Memory locations are selected for each variable used, and assignment of variables to
registers 15 done,

¥ Intermediate instructions are translated into a sequence of machine instructions.

The Compiler also performs the Symbol table management and Error handling throughout the
compilation process. Symbol table is nothing but a data structure that stores different source
language constructs, and tokens generated during the compilation. These two interact with all
phases of the Compiler.

For example the source program 1s an assignment statement; the following figure shows how the
phases of compiler will process the program.

The input source program is Position=initial+rate*60

position = imitial + rate = 60

Lexical 1-.-1;-:--]

(a, 1) (=) Gd,2) f—-: (i1, 3) (=) (60)

Syntax :\n-l.rm

- Ir;m. z? TS
Gada,3y” 2 60

e
Semantic Analyzer
— Y
GRAY™ T
PCEE " e
Gd. 3y inttofloat
L |
Al a0
[Intermediate Code Generator

A
tl = inttofloat{(60)
t2 = 3d43 = ¢t1
t3 = §42 + €2
idl = =3

i

Code Optimizser
Fo

Tl = id3 = 60.0
idl = i4d2 + 1

| '
| Code Generator
v

LDF R2. id3
MULF R2, R2, #80.0
LDF Ri. 142
ADDF R1i, R1. R2
STF idili, R1

Figurel.5: Translation of an assignment Statement

LEXICAL ANALYSIS:

As the first phase of a compiler, the main task of the lexical analyzer is to read the
input characters of the source program, group them into lexemes, and produce as output tokens
for each lexeme in the source program. This stream of tokens is sent to the parser for syntax
analysis. It is common for the lexical analyzer to interact with the symbal table as well.

When the lexical analyzer discovers a lexeme constituting an identifier, 1t needs to
enter that lexeme into the symbol table, This process is shown in the following figure,

token
source Lexical - to semantic
— Parser — - :
program Analyzer | analysis
getNextToken
Symbol
Table

Figure 1.6 : Lexical Analyzer

When lexical analyzer identifies the first token it will send it to the parser, the parser
receives the token and calls the lexical analyzer to send next token by issuing the
getNextToken() command. This Process continues untl the lexical analyzer identifies all the
tokens. During this process the lexical analyzer will neglect or discard the white spaces and
comment lines.

TOKENS, PATTERNS AND LEXEMES:

A token is a pair consisting of a token name and an optional attribute value. The token
name is an abstract symbol representing a kind of lexical unit, e.g., a particular keyword, or a
sequence of input characters denoting an identifier. The token names are the input symbaols that
the parser processes. In what follows, we shall generally write the name of a token in boldface.
We will often refer to a token by its token name.

A pattern is a description of the form that the lexemes of a token may take | or match]. In the
case of a keyword as a token, the pattern is just the sequence of characters that form the
keyword. For identifiers and some other tokens, the pattern is a more complex structure that is
matched by many strings.

A lexeme is a sequence of characters in the source program that matches the pattern for a
token and is identified by the lexical analyzer as an instance of that token,

Example: In the following C language statement |
printf ("Total = %d\n", score) ;

both printfl and score are lexemes matching the pattern for token id, and "Total = %din”
is @ lexeme matching literal [or string).

TOKEN | INFORMAL DESCRIPTION i SAMPLE LEXEMES
if characters i, f if
else characters e, 1, 8, e else
comparison | < or > or <= or >= or == or = <= |=
id letter followed by letters and digits | pi, score, D2
number any numeric constant 3.14169, 0, 6.02e23
literal anything but ", surrounded by "'s | "core dumped"

Figure 1.7: Examples of Tokens

LEXICAL ANALYSIS Vs PARSING:

There are a number of reasons why the analysis portion of a compiler is normally separated into
lexical analysis and parsing (syntax analysis) phases.

L 1. Simplicity of design is the most important consideration. The separation of Lexical

and Syntactic analysis often allows us to simplify at least one ol these tasks. For
example, a parser that had to deal with comments and whitespace as syntactic units
would be considerably more complex than one that can assume comments and
whitespace have already been removed by the lexical analyzer,

=1

2. Compiler efficiency is improved. A separate lexical analyzer allows us to apply
specialized techniques that serve only the lexical task, not the job of parsing. In addition,
specialized buffering technigues for reading input characters can speed up the compiler
significantly,

¥ 3. Compiler portability is enhanced: Input-device-specific peculiarities can be
restricted to the lexical analyzer,

INPUT BUFFERING:

Before discussing the problem of recognizing lexemes in the input, let us examine
some ways that the simple but important task ol reading the source program can be speeded.
This task 1s made difficult by the fact that we often have to look one or more characters beyond
the next lexeme before we can be sure we have the right lexeme. There are many situations
where we need to look at least one additional character ahead. For instance, we cannot be sure
we've seen the end of an identifier until we see a character that i1s not a letter or digit, and
therefore is not part of the lexeme for id. In C, singlecharacter operators like -, =, or <
could also be the beginning of a two-character operator like ->, ==, or <=, Thus, we shall
introduce a two-buffer scheme that handles large look aheads safely. We then consider an
improvement involving "sentinels” that saves time checking for the ends of buffers.

Bulfer Pairs

Because of the amount of time taken to process characters and the large number of characters
that must be processed during the compilation of a large source program, specialized buffering
technigues have been developed to reduce the amount of overhead required to process a single
input character. An important scheme involves two buffers that are alternately reloaded.

Bl = mitfcis ez
X forward
lexemeBegin

Figurel.8 : Using a Pair of Input Buffers

Each buffer is of the same size N, and N is usually the size of a disk block, e.g., 4096

bytes, Using one system read command we can read N characters in 1o a buffer, rather than
using one system call per character. If fewer than N characters remain in the input file, then a

special character, represented by eof, marks the end of the source file and is different from any
possible character of the source program,

Y Two pointers to the input are maintained:

I. The Pointer lexemeBegin, marks the beginning of the current lexeme, whose exient
we are attempting to determine.

2. Pointer forward scans ahead until a pattern match is found: the exact strategy
whereby this determination is made will be covered in the balance of this chapter.

Once the next lexeme is determined, forward is set to the character at its right end. Then,
after the lexeme is recorded as an attribute value of a token returned to the parser, lexemeBegin
is set to the character immediately after the lexeme just found. In Fig, we see forward has passed
the end of the next lexeme, ** (the FORTRAN exponentiation operator), and must be retracted

one position to its left.

Advancing forward requires that we first test whether we have reached the end of one
of the buffers, and if so, we must reload the other buffer from the input, and move forward (o
the beginning of the newly loaded buffer. As long as we never need to look so far ahead of the
actual lexeme that the sum of the lexeme's length plus the distance we look ahead is greater
than N, we shall never overwrite the lexeme in its buffer before determining it.

Sentinels To Improve Scanners Performance:

If we use the above scheme as described, we must check, each time we advance forward,
that we have not moved off one of the buffers; if we do, then we must also reload the other
buffer. Thus, for each character read, we make two tests: one for the end of the buffer, and one
to determine what character 1s read (the latter may be a multi way branch). We can combine the
buffer-end test with the test for the current character if we extend each buffer to hold a sentinel
character at the end. The sentinel is a special character that cannot be part of the source program,
and a natural choice is the character eof. Figure 1.8 shows the same armngement as Figure 1.7,
but with the sentinels added. Note that eol retains its use as a marker for the end of the entire

input,

2 el inivietlcieieizil T e
i |
forward
lexemeBegin

Figure 1.8 : Sentential at the end of each bulfer

Any eof that appears other than at the end of a buffer means that the input is at an end. Figure 1.9
summarizes the algorithm for advancing forward, Notice how the first test, which can be part of

a multiway branch based on the character pointed to by forward. is the only test we make, except
in the case where we actually are at the end of a buffer or the end of the input.

switch (*forward++)

{

case eof: if (forward is at end of first buffer)

break:

reload second buffer;
forward = beginning of second buffer;
!
else if (forward is at end of second buffer)

[
reload first buffer;

forward = beginning of first buffer;

else /* eof within a buffer marks the end of input #/

terminate lexical analysis;

Figure 1.9: use of switch-case for the sentential

SPECIFICATION OF TOKENS:

Regular expressions are an important notation for specifying lexeme patterns, While they cannot express
all possible patterns, they are very effective in specifying those types of patterns that we actually need for

tokens.,

LEX the Lexical Analyzer generator

Lex 15 a tool used to generate lexical analyzer, the input notation for the Lex tool is
referred to as the Lex language and the tool itself is the Lex compiler. Behind the scenes, the
Lex compiler transforms the input patterns into a transition diagram and generates code, in a
file called lex .yy .c, it is a ¢ program given for C Compiler, gives the Object code. Here we need
to know how to write the Lex language. The structure of the Lex program is given below,

™ I s

Structure of LEX Program : A Lex program has the following form:

Declarations
%%
Translation rules
Ve %o
Auxiliary functions definitions

The declarations section : includes declarations of variables, manifest constants (identifiers
declared to stand for a constant, e.g.. the name of a token), and regular definitions. It appears
between % (. . .%)

In the Translation rules section, We place Pattern Action pairs where each pair have the form
Pattern [Action |

The auxiliary function definitions section includes the definitions of functions used to install
identifiers and numbers in the Symbol tale.

LEX Program Example:
% |

/* defimtions of manifest constants LT, LE.EQ,NE.GT.GE, IF, THEN, ELSE,ID, NUMBER,
RELOP */

% |

M regular definitions */

delim [\\n]

WS | delim |+

letter |A-Za-z]

digit lo-91]

i [letter) ({letter} | [digit}) *

number [digit}+ (\. {digit}+)? (E [+-1]?{digit}+)?
% %

[ws) {/* no action and no return */}

if [return(1F) ; |

then

else

(id)
(number)
"o

b {=‘

%o %

{return(THEN) : }

[return(ELSE) ; |

{yylval = (int) installID(); return(1D):)

{yylval = (int) installNum() ; returniNUMBER}) ; }
{yylval = LT; return{(RELOP) ;)}

[yylval = LE; return(RELOP) ; |

[yylval = EQ ; return(RELOP) ; |

yylval = NE: return(RELOP); |

[yylval = GT: return{RELOP);)]

[yylval = GE: return(RELOP);)

int installIDOC) {/* function to install the lexeme, whose first character is pointed 10 by yytext,

and whose length is yyleng, into the symbol table and return a pointer

thereto */

int installNum() {/* similar to installID, but puts numerical constants into a separate table */}

Figure 1.10 : Lex Program for tokens common tokens

SYNTAX ANALYSIS (PARSER)

THE ROLE OF THE PARSER:

In our compiler model, the parser obtains a string of tokens from the lexical analyzer,
as shown in the below Figure, and verifies that the string of token names can be generated
by the grammar for the source language, We expect the parser to report any syntax errors in
an intelligible fashion and to recover from commonly occurring errors to continue processing the
remainder of the program. Conceptually, for well-formed programs, the parser constructs a parse

tree and passes it to the rest of the compiler for further processing.

source
prograim

Lexical
Analyzer

token

h_-_-_.h

get nert

1

Parger +~==-

token

Symbol
Table

tree

| parse 1 Rest of

' Front End

1

intermediate

Figurel.1: Parser in the Compiler

i
representation

During the process of parsing it may encounter some error and present the ervor information back

to the user

Syntactic errors include misplaced semicolons or extra or missing braces; that s,
“t"or "} " As another example, in C or Java, the appearance of a case statement without
an enclosing switch is a syntactic error (however, this situation is usually allowed by the
parser and caught later in the processing, as the compiler attempts to generate code).

Based on the way/order the Parse Tree is constructed, Parsing is basically classified in to
following two types:

1. Top Down Parsing : Parse tree construction start at the root node and moves to the
children nodes (i.e., top down order).

2. Bottom up Parsing: Parse tree construction begins from the leaf nodes and proceeds
towards the root node (called the bottom up order).

TOP DOWN PARSING:

L Top-down parsing can be viewed as the problem of constructing a parse tree for the given
input string, starting from the root and creating the nodes of the parse tree in preorder
(depth-first left to right),

-1

Equivalently, top-down parsing can be viewed as finding a leftmost derivation for an
input string.

It is classified in to two different variants namely; one which uses Back Tracking and the other is
Non Back Tracking in nature,

Non Back Tracking Parsing: There are two variants of this parser as given below.
1. Table Driven Predictive Parsing :

1. LL (1) Parsing
2. Recursive Descent parsing

Back Tracking
1. Brute Force method
NON BACK TRACKING:
LL (1) Parsing or Predictive Parsing

LL ¢ 1) stands for, left to nght scan of input, uses a Left most derivation, and the parser
tukes 1 symbaol as the look ahead symbaol from the input in taking parsing action decision.

A non recursive predictive parser can be built by mantaming a stack exphcitly, rather
than implicitly via recursive calls. The parser mimics a leftmost derivation. If w is the input
that has been matched so far, then the stack holds a sequence of grammar symbols a such
that

S = wao
{7

The table-driven parser in the figure has

Y An input buffer that contains the string to be parsed followed by a $ Symbol, used to
indicate end of input.

Y A stack, containing a sequence of grammar symbols with a $ at the bottom of the stack,
which initially contains the start symbaol of the grammar on top of $,

! A parsing table containing the production rules to be applied. This is a two dimensional
array M [Non terminal, Terminal].

Y A parsing Algorithm that takes input String and determines if it is conformant to

Crammar and it uses the parsing table and stack to take such decision,

T I e s &

Input a |+ | b | %

Predictive
EaSEEE— Parsing —® Qutput
Frogram

Stack

o |y |~ =

Parsing
Table
M

Figure 2.2: Model for table driven parsing

The Steps Involved In constructing an LL(1) Parser are;

Write the Context Free grammar for given input String

Check for Ambiguity. If ambiguous remove ambiguity from the grammar

Check for Left Recursion. Remove left recursion if it exists.

Check For Left Factoring. Perform left factoring if it contains common prefixes in
more than one alternates.

5. Compute FIRST and FOLLOW sets

6. Construct LL(1) Table

7. Using LL(1) Algorithm generate Parse tree as the Output

B —

Context Free Grammar (CFG): CFG used 1o describe or denote the syntax of the
programming language constructs. The CFG is denoted as G, and defined using a four tuple
notation,

Let G be CFG, then G is written as, G=(V, T, P, §)

Where

L

-1

Mt |

V is a finite set of Non terminal; Non terminals are syntactic variables that denote sets of
strings. The sets of strings denoted by non terminals help define the language generated
by the grammar. Non terminals impose a hierarchical structure on the language that
1s key to syntax analysis and translation.

T is a Finite set of Terminal; Terminals are the basic symbols from which strings are
formed. The term "loken name” is a synonym for "terminal” and frequently we will use
the word "token” for terminal when 1t is clear that we are talking about just the token
name. We assume that the terminals are the first components of the tokens output by the
lexical analyzer,

S is the Starting Symbol of the grammar, one non terminal is distinguished as the start
symbol, and the set of strings it denotes is the language generated by the grammar, P
is finite set of Productions; the productions of a grammar specify the manner in which the

terminals and non terminals can be combined to form stnings, each production 1s in a->[}
form, where « 1s a single non terminal, [} 1s (VUT)* Each production consists of’

(@ A non terminal called the head or left side of the production: this
production defines some of the strings denoted by the head.

() The symbol -=>. Some times: = has been used in place of the arrow,

ic) A body or right side consisting of zero or more terminals and non-
terminals. The components of the body describe one way in which strings of the non
terminal at the head can be constructed.

Y Conventionally, the productions for the start symbol are listed first.
Example: Context Free Grammar to accept Arithmetic expressions,
The terminals are +, *, -, (,), id.

The Non terminal symbols are expression, term, Factor and expression is the starting symbol.

expression —* expression + ferm
expression —» expression — term
expression —* ferm

term —» term * factor
term —» term / factor

term — factor

factor —» (expression)
factor — id

Figure 2.3 : Grammar for Simple Arithmetic Expressions

Notational C ions Used In Writine CFGs:

To avoid always having to state that “these are the terminals," "these are the non
terminals,” and so on, the following notational conventions for grammars will be used
throughout our discussions.

1. These symbols are terminals:

(a) Lowercase letters early in the alphabet, such as a, b, e.

(b) Operator symbals such as +, *, and so on.

(¢) Punctuation symbols such as parentheses, comma, and so on,

(d) The digits 0, 1. .. 9,

(e) Boldface strings such as id or if, each of which represents a single

terminal symbol.

2. These symbols are non terminals:
(a) Uppercase letters early in the alphabet, such as A, B, C.
(b) The lewer S, which, when it appears, is usually the start symbol.
() Lowercase, italic names such as expr or stmt.

(d) When discussing programming constructs, uppercase letters may be used to represent
Non terminals for the constructs. For example, non terminal for expressions, lerms,
and factors are often represented by E, T, and F, respectively.
Using these conventions the grammar for the arithmetic expressions can be written as
E"E+T|E-T|T
T—+» T*F|T/F|F

F-—+ (E)|id

DERIVATIONS:

The construction of a parse tree can be made precise by taking a derivational view, in
which productions are treated as rewriting rules. Beginning with the start symbol, each rewriting
step replaces a Non terminal by the body of one of its productions. This dernivational view
corresponds to the top-down construction of a parse tree as well as the bottom construction of the

parse tree.,

> Derivations are classified in to Let most Derivation and Right Most Derivations.

Left Most Derivation (LMD):

It 1s the process of constructing the parse tree or accepting the given input string, in
which at every time we need to rewrite the production rule it is done with left most non terminal
only.

Ex: - If the Grammar is E-> E+E | E*E | -E| (E) | id and the input string 15 id + id* id

The production E -> - E signifies that if E denotes an expression, then — E must also denote an
expression. The replacement of a single E by - E will be described by writing

E => -E which is read as “E derives _E"

For a general definition of denvation, consider a non terminal A in the middle of a
sequence of grammar symbols, as in aAf, where a and § are arbitrary strings of grammar
symbol. Suppose A ->y 15 a production. Then, we wnte aAfl => ayp. The symbol => means
“derives in one step”. Often, we wish to say, "Derives in zero or more steps.” For this purpose,
we can use the symbol +';3' . If we wish to say, "Derives in 5- one or more steps.” We cn use
the symbol -;—l.> . | => a, where S is the start symbol of a grammar G, we say thal a is a
sentential form of G,

The Leftmost Derivation for the given input string id + id* id is
E=>E +E

==id + E

= id+E*E
==id+id* g
=> id + id * id

NOTE: Every time we need to start from the root production only, the under line using at Non
terminal indicating that, it is the non terminal (left most one) we are choosing to rewrite the
productions to acceplt the string.

Right Most Derivation (RMD):
It is the process of constructing the parse tree or accepting the given inpul string, every
time we need to rewrite the production rule with Right most Non terminal only,

The Right most derivation for the given input string id + id* id is

E=>E+E
==E+E*E
=E+E*id
= E+id *id
=>id +id * id

NOTE: Every time we need to start from the root production only, the under line using at Non
terminal indicating that, it is the non terminal (Right most one) we are choosing to rewrite the
productions to accept the string.

What is a Parse Tree?

A parse tree is a graphical representation of a derivation that filters out the order in which
productions are applied to replace non terminals,

Y Each interior node of a parse tree represents the application of a production.

Y All the interior nodes are Non terminals and all the leaf nodes terminals.

Y All the leaf nodes reading from the left to right will be the output of the parse tree.

Y If a node n is labeled X and has children nl.n2.n3.... nk with labels X1.X2_ . Xk

respectively, then there must be a production A->X1X2. . Xk in the grammar,

Examplel:- Parse tree for the input string - (id + id) using the above Context free Grammar 15

id id
Figure 2.4 : Purse Tree for the input string - (id + id)

The Following figure shows step by step construction of parse tree using CFG for the parse tree
for the input string - (id + id).

E = /E\ = /E\
% E - E
et
(E)
= E = E =% E
N P . AN
= E - E - E
Pl 7 i e 2N
N N LTINS
E/+ E E <+ E ?‘ + .T
III id id

Figure 2.5 : Sequence outputs of the Parse Tree construction process for the input strning —(id+id)

Example2;- Parse tree for the input string id+id*id using the above Context free Grammar is

/l\
| /l\

id
| !

id id
Figure 2.6: Parse tree for the input string id+ id*id

AMBIGUITY in CFGs:
Definition: A grammar that produces more than one parse tree for some sentence (input string)
is said o be ambiguous.

In other words, an ambiguous grammar is one that produces more than one leftmost
derivation or more than one rightmost derivation for the same sentence.

Or If the right hand production of the grammar is having two non terminals which are
exactly same as left hand side production Non terminal then it is said to an ambiguous grammar,

Example : If the Grammar is E-> E+E | E*E | -E| (E) | id and the Input String is id + id* id

Two parse trees for given input string are

/f\

E° + ' E

| > 18"
E * E

id E + E id
| | | |
id id id id
(a)
(b)
Two Left most Derivations for given inpul String are :

E=>E+E E=>E*E
==id + E => E+E*E
=id+E*E =>id+E*E
= id+id*E = id+ id* E
== id + id * id => id + id * id

(a) (b)

The above Grammar is giving two parse trees or two derivations for the given input string so, it
15 an ambiguous Grammar

Note: LL (1) parser will not accept the ambiguous grammars or We cannot construct an
LL(1) parser for the ambiguous grammars. Because such grammars may cause the Top
Down parser to go into infinite loop or make it consume more time for parsing. If necessary
we must remove all types of ambiguity from it and then construct.

ELIMINATING AMBIGUITY: Since Ambiguous grammars may cause the top down Parser
go into infinite loop, consume more time during parsing,.

Therefore, sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. The
general form of ambiguous productions that cause ambiguity in grammars is

A7 Aa|p

This can be written as (introduce one new non terminal in the place of second non terminal)

A-p A

Al*aA'le

Example : Let the grammar is E=» E+E | E*E | -E| (E) | id . It is shown that it is ambiguous that
can be written as

E-—+ E+E
E-—+ E-E
E—* E*E
E—+ -E
E-» (E)
E-» id

In the above grammar the 1" and 2™ productions are having ambiguity. So, they can be written

ils

E-> E+E | E*E this production again can be writlen as

E-> E+E | B, where pis E*E

The above production is same as the general form. so, that can be written as
E->E+TIT

T->[

The value of [} 1s E*E so, above grammar can be written as
1) E->E+T|T
2) T->E*E The first production is free from ambiguity and substitute E->T in

the 2™ production then it can be written as

T-=T*T | -E| (E) | id this production again can be written as

T-=T*T | p where [§1s -E| (E) | id, introduce new non terminal in the Right hand side
production then it becomes

T->T*F | F

F->-E | (E)|id now the entire grammar tumed in to it equivalent unambiguous,

The Unambiguous grammar equivalent to the given ambiguous one 1s

) E*E+T|T
2H T"T*F|F
3 F—».E|(E)|id

LEFT RECURSION:

Another feature of the CFGs which is not desirable 1o be used in top down parsers is lefi

recursion, A grammar is left recursive if it has a non terminal A such that there 1s a derivation
A=>Aa for some string a in (TUV)* LL{1) or Top Down Parsers can not handle the Leli
Recursive grammars, so we need to remove the left recursion from the grammars before being
used in Top Down Parsing,

The General form of Left Recursion 1s

A+ Aa |p

The above left recursive production can be written as the non left recursive equivalent :
A—* A’
A'—=» aA'|€
Example : - Is the following grammar left recursive? If so, find a non left recursive grammar

equivalent to it

E*E+T|T

T=>T*F|F

F-+-E|(E)|id
Yes .the grammar is left recursive due to the first two productions which are satisfying the
general form of Left recursion, so they can be rewritten after removing left recursion from
E—E+T,and T T*F is

E-* TE'

E=++TE'|€

T+ FT'

T»*FT'|€

F—+ (E)|id

LEFT FACTORING:

Left factoring is a grammar transformation that is useful for producing a grammar suitable for
predictive or top-down parsing. A grammar in which more than one production has common
prefix is to be rewntten by factoring out the prefixes.

For example, in the following grammar there are n A productions have the common prefix o,
which should be removed or factored out without changing the language defined for A,

A+ aAl |aA2 | aA3 |
aA4 |... | aAn

We can factor out the @ from all n productions by adding a new A production A —» @A’
, and rewriting the A' productions grammar as

A= gA’
A’ A1|A2|A3|A4...|An

FIRST and FOLLOW:

The construction of both top-down and bottom-up parsers is aided by two functions,
FIRST and FOLLOW, associated with a grammar G. During top down parsing, FIRST and
FOLLOW allow us to choose which production to apply, based on the next input (look a head)
symboaol,

Computation of FIRST:

FIRST function computes the set of terminal symbols with which the right hand side of
the productions begin, To compute FIRST (A) for all grammar symbols, apply the following
rules until no more terminals or € can be added to any FIRST sel.

1. If A is aterminal, then FIRST (A} = [A).
2. If A is a Non terminal and A-=>X1X2 .. Xi
FIRST(A)=FIRST(X1) if X1is not null, if X1 is a non terminal and X1->€, add
FIRST(X2) to FIRST(A), if X2-> € add FIRST(X3) to FIRST(A). ... if Xi->€ ,
i.e., all Xi's for =1..1 are null, add € FIRST(A).
3. If A ->€ 15 a production, then add € to FIRST (A}

Computation Of FOLLOW:
Follow (A) is nothing but the set of terminal symbols of the grammar that are
immediately following the Non terminal A, If a is to the immediate right of non terminal A, then

Follow(A)= [a]. To compute FOLLOW (A) for all non terminals A, apply the following rules
until no more symbaols can be added to any FOLLOW set.

I. Place § in FOLLOW(S), where § is the start symbol, and $ is the input right end

marker.

If there 1s a production A-> aB[3, then everything in FIRST () except € 15 1n

FOLLOW(B).

3. If there is a production A->uB or a production A-> aB} with FIRST([}) contains €,
then FOLLOW (B) = FOLLOW (A).

P-d

Example: - Compute the FIRST and FOLLOW values of the expression grammar
. E-*TE
2. E'++TE'|€
3. 1 = FY"
4. T'—=»*FT'|E
5. F - (E)|id

Computing FIRST Values:

FIRST (E) = FIRST (T) = FIRST (F) = {(, id}
FIRST (E") = {+. €]
FIRST (T') = {*, €]

Computing FOLLOW Values:
FOLLOW(E)=1{ 5.)| Because it 1s the start symbol of the grammar,

FOLLOW (E") = [FOLLOW (E)) satisfying the 3™ rule of FOLLOW()

={$.))
FOLLOW (T) = { FIRSTE') It is Satisfying the 2™ rule.
U | FOLLOW(E") }
= {+ FOLLOW (E")
= (+%)]
FOLLOW (T') = | FOLLOW(T)) Satisfying the 3" Rule
= 'I 4 5.) =‘
FOLLOW (F) = | FIRST (T") | It is Satisfying the 2" rle.
U { FOLLOW(E") |
= [*, FOLLOW (T))
= { % +5.))
NON TERMINAL FIRST FOLLOW
E [id] [$,)}
E’ { %) | $.)}
) { £ 1d] { +.%.))
T (*, €] [+.8.))
F [(, id) {*+5)]

Table 2.1: FIRST and FOLLOW values

Constructing Predictive Or LL (1) Parse Table:

It is the process of placing the all productions of the grammar in the parse table based on the
FIRST and FOLLOW values of the Productions,
The rules to be followed 1o Construct the Parsing Table (M) are .

For Each production A-> a of the grammar, do the bellow steps.

2. For each terminal symbol “a” in FIRST (), add the production A->a to M [A, a].
3. 1 If€1sn FIRST () add production A->u to M | A, b], where b is all terminals in
FOLLOW (A).
i IF € 1s 1n FIRST(a) and $ is in FOLLOW (A) then add production A->a to
M [A, B].
4. Mark other entries in the parsing table as error
INPUT SYMBOLS
NON-TERMINALS

s E TE E i

E E" +TF E' € E €
¥

T i LR . | ;i FT'

= T € |T T T € T e

5 F (E) Fooid

by LL(1) Parser.

Table 2.2: LL (1) Parsing Table for the Expressions Grammar
Note: if there are no multiple entries in the table for single a terminal then grammar is accepted

LL (1) Parsing Algorithm:
The parser acts on basis on the basis of two symbols
A, the symbaol on the top of the stack
a, the current inpul symbol
There are three conditions for A and “a’, that are used fro the parsing program.
If A=a=S$ then parsing is Successful,
I A=a#$ then parser pops off the stack and advances the current input pointer to the

i
i,

I,
2,

3.

next.

If A is a Non terminal the parser consulis the entry M A, a] in the parsing table, If

M[A, a] is a Production A-> XX, X, then the program replaces the A on the top of
the Stack by X;X;..X,, in such a way that X; comes on the top.

STRING ACCEPTANCE BY PARSER:

If the input string for the parser is id + id * id, the below table shows how the parser
accept the string with the help of Stack.

Stack loput Action LComments
SE id+id*idS |E TE E on top of the stack is replaced by TE'
SE'T w+d*ids | T FI T on top of the stack is replaced by FT'
$SETF + id*idS [F Fon top of the stack is replaced by id
$E'T id i+ 1d*id $ | pop and remove id | Condition 2 is satisfied
SE'T +Hd*idS T € T on top of the stack is replaced by €
$SE’ +Hd*id$ E' +TE E' on top of the stack is replaced by +TE
SE'T+ +id*id$ Pop and remove + Condition 2 is satisfied
SE'T id*id$ T P T on top of the stack is replaced by FT
3E'T'F id*id$ F id F on top of the stack is replaced by id
SE'T id id * id$ pop and remove id | Condition 2 is satisfied

% 1Ty .

SE'T *1dS I *Fr T on top of the stack is replaced by *FI"
SE'T F* *ids pop and remove * Condition 2 is satisfied
3E'T'F idS Foad F on top of the stack 1s replaced by id
SE T id 1d3 Pop and remove id Condition 2 is satisfied

(SE'T b T £ T on top of the stack is replaced by €
SE $ E’ € E on top of the stack is replaced by €
5 $ Parsing is successful | Condition 1 satisfied

Table2.3 : Sequence of steps taken by parser in parsing the input token stream id+ id* id

E
T/\
/1 /K“\\
FT+

/\ |

id
wE 1 AR
II:I-lF'.r
[

I
id

Figure 2.7: Parse tree for the input id + id* id

ERROR HANDLING (RECOVERY) IN PREDICTIVE PARSING:

In table driven predictive parsing, it 1s clear as to which terminal and Non terminals the
parser expects from the rest of input. An error can be detected in the following situations:

1. When the terminal on top of the stack does not match the current input symbol.

2. when Non terminal A is on top of the stack, a is the current input symbol, and

MIA, a] is empty or error

The parser recovers from the error and continues its process. The following error recovery
schemes are use in prediclive parsing:

Panic mode Error Recovery :

It is based on the idea that when an error is detected, the parser will skips the
remaining input until a synchronizing token is en countered in the input, Some examples are
listed below:

I. For a Non Terminal A, place all symbols in FOLLOW (A) are adde into the
synchronizing set of non terminal A. For Example, consider the assignment statement
¢=." Here, the expression on the right hand side 1s missing. So the Follow of this 1s
considered. It 15 " and 1s taken as synchromzing token. On encountenng it, parser
emits an error message “Missing Expression”,

2. For a Non Terminal A, place all symbols in FIRST (A) are adde into the
synchronizing set of non terminal A. For Example, consider the assignment statement
“22¢=a + b,” Here, FIRST (expr) 1s 22 It is *,” and 1s taken as synchromzing token
and then the reports the error as “extraneous token™,

2N AT 5 v s

Phrase Level Recovery :

It can be implemented in the predictive parsing by filling up the blank entries in
the predictive parsing table with pointers to error Handling routines, These routines can
insert, modify or delete symbols in the input.

RECURSIVE DESCENT PARSING :

A recursive-descent parsing program consists of a set of recursive procedures, one for each non
terminal. Each procedure is responsible for parsing the constructs defined by its non terminal,
Execution begins with the procedure for the start symbol, which halts and announces success if
its procedure body scans the entire input string,

If the given grammar is

E =+ TE'
E'-» +TE' | €
e i
T = *FT"| €
F — (E)|id
Reccursive procedures for the recursive descent parser for the given grammar are given below,
procedure E()
I
T
E()
I
procedure T ()
{
FC)
T'C)
|
Procedure E'()
{
if input = *+’
[
advance()
TO)
E'();
refurn true;
|
else error,
J
procedure T'()
{
i input = **°
[
advance()

F{)

T);
return true;

|

else return error;
|
procedure F()
|
if input = ("
|
advance();
E()
if input = °)’
advance();
return true;

|
else il input = “1d”

{

advance();
return true;

!

else return error:

J

advance()

[

J

BACK TRACKING: This parsing method uses the technique called Brute Force method
during the parse tree construction process, This allows the process o go back (back track) and
redo the steps by undoing the work done so far in the point of processing,

input = next token;

Brute force method: It is a Top down Parsing technique, occurs when there is more
than one alternative in the productions to be tried while parsing the input string. It selects
alternatives in the order they appear and when it realizes that something gone wrong it tries with
next alternative,

For example, consider the grammar bellow,

5 =+ cAd
A-»ab|a

To generate the input string “cad”, imually the first parse tree given below 1s generated,
As the string generated is not “cad”, input pointer is back tracked to position “A”, to examine the
next alternate of “A” Now a match to the input string occurs as shown in the 2™ parse trees
given below,

BOTTOM-UP PARSING

Bottom-up parsing corresponds to the construction of a parse tree for an inpul string
beginning at the leaves (the bottom nodes) and working up towards the root (the top node). It
involves “reducing an input string *w’ to the Start Symbaol of the grammar. in each reduction
step, a perticular substring matching the right side of the production is replaced by symbol on the
left of that production and it is the Right most derivation. For example consider the following
Grammar:

E = E+T|T

T —» T+*F
F — (E)jid
Bottom up parsing of the input string “id * id “is as follows:

INPUT STRING SUB STRING REDUCING PRODUCTION
d*id Id F->id
Fid T F->T
T*d Id F->1d
f b o " T->T*F
f bd 3 E->T
Start symbol. Hence, the input
String is accepted

Parse Tree representation is as follows:

id « id F » id « id + F T E
| i ki (B 1 |
id F F id /ol ¢ i
1 | I | /1IN
id id T‘ id T * .!I"f'
id .T‘ id
id

Figure 3.1 : A Bottom-up Parse tree for the input String “id*id"
Botiom up parsing is classified in to 1. Shift-Reduce Parsing, 2. Operator Precedence parsing ,
and 3. [Table Driven] L R Parsing

i. SLR(1)
il. CALR(1)
i, LALR(1)

Shift-reduce parsing is a form of bottom-up parsing in which a stack holds grammar
symbols and an input buffer holds the rest of the string to be parsed, We use $ 1o mark the
bottom of the stack and also the right end of the input. And it makes use of the process of shifi
and reduce actions to accept the input string. Here, the parse tree 1s Constructed bottom up from

the leal nodes towards the root node.

When we are parsing the given input siring, if the match occurs the parser takes the

reduce action otherwise it will go for shift action, And it can accept ambiguous grammars also,

For example, consider the below grammar to accept the mput string “1d * 1d”, using S-R parser

E— E+T(T
T=* T*F | F
F— (E)id

Actions of the Shift-reduce parser using Stack implementation

STACK INPUT ACTION

5 Id*idS Shift

Sid *idS Reduce with F-#d
SF *id$ Reduce with T-»F
ST *1dS Shift

sT* id$ Shift

$T*id $ Reduce with F-»id
$T*F $ Reduce with T-*T*F
ST b Reduce with E-*T
SE b Accept

Consider the following grammar:

S+ aAcBe
A+ Ablb
B> d

Let the input string 15 “abbede™. The series of shift and reductions to the start symbol are as
follows.
abbede > nAbede > aAcde T aAcBe > 8
Note: in the above example there are two actions possible in the second Step, these are as
follows :
L Shift action going to 3" Step
2, Reduce action, that is A->h
If the parser is taking the 1" action then it can successfully accepts the given input string,
if 1t 15 going for second action then it can’t accept given input string, This 1s called shift reduce
conflict. Where, S-R parser is not able take proper decision, so it not recommended for parsing.
OPERATOR PRECEDENCE PARSING:
Operator precedence grammar is kinds of shift reduce parsing method that can be applied to a
small class ol operator grammars. And it can process ambiguous grammars also,
Y An operator grammar has two important characteristics:
1. There are no € productions.
2. No production would have two adjacent non terminals.

Y The operator grammar to accept expressions is give below:

E= E+E/E—* E-E/E—» E*E/E—+» E/E/E—» E*E/E~ -E/E-» (E)/E—*
id
Two main Challenges in the operator precedence parsing are:

I. Identification of Correct handles in the reduction step, such that the given input should be
reduced to starting symbol of the grammar,

2. Identification of which production to use for reducing in the reduction steps, such that we
should correctly reduce the given input to the starting symbol of the grammar,

Operator precedence parser consists of:

I. An input buffer that contains string to be parsed followed by a$, a symbol used to
indicate the ending of input.

2. A stack containing a sequence of grammar symbols with a § at the bottom of the stack.

3. An operator precedence relation table O, containing the precedence ralations between the
pair of terminal. There are three kinds of precedence relations will exist between the pair
of terminal pair “a” and *b" as follows:

4. The relation a<sb implies that he termunal “a’ has lower precedence than terminal “b’

5. The relation a==b implies that he termuinal “a’” has higher precedence than terminal *b’,

6. The relation a==b implies that he termunal “a’ has lower precedence than terminal *b’

7. An operator precedence parsing program takes an input string and determines whether it
conforms to the grammar specifications. It uses an operator precedence parse table and
stack to amrive at the decision,

al a2 }3 e : S Input Buffer
Operator precedence
- Parsing Algorithm
—— Output
5
Stack
Operator Precedence Table

Figurel.2: Components of operator precedence parser

Example, If the grammar is

E-» E+E
E-+» E-E
E~* E’E

| i
E—*
|

E/E
E"E

-E

E-» (E)
E —* id , Construct operator precedence table and accept input string * id+id*id”

The precedence relations between the operators are
(id)>(*)>(*/)>(+-)>8,"" operator is Right Associative and reaming all operators
are Left Associative

. . / A id () $

+ .- - < < <e <n <e - -

= - L <= <. e e <. "> L5

* [t -~ " L < < < " -

i . - s - <» < e - -

A L - S L < = e L "

Id “ <> CF > *> Err |Err |*> >

(<a <u <a <w < <n < = Err
) > - "> = "~ Err Err "> -

$ = . il < <o <s <e Err Err

= b B B & RPTIpy

The intention of the precedence relations is to delimit the handle of the given input String with <=
marking the left end of the Handle and «> marking the right end of the handle.
Parsing Action:

To locate the handle following steps are followed:

Add % symbol at the both ends of the given input string.

2. Scan the input string from left to right until the night most = 15 encountered.
3. Scan towards left over all the equal precedence’s until the first <= precedence is
encountered.
4. Every thing between <+ and == 15 a handle,
5. $on S means parsing is success,
Example, Explain the parsing Actions of the OPParser for the input string is *id*id™ and the
gramimar is:
E—* E+E
E -+ E*E
E~* id
L.$<eid s> *<efjde=$

The first handle is “id” and match for the “id “in the grammar is E=» id ,
50, 1d is replaced with the Non terminal E. the given input string can be
writlen as

2.S <o E o> *<e > §
The parser will not consider the Non terminal as an input. So, they are not
considered in the input string. So , the string becomes

J. § <o ¥ce iﬂ-}T$
The next handle is “id" and match for the “id “in the grammar s E = id .
S0, 1d 1s replaced with the Non terminal E. the given input string can be
written as

4. § <o v Eo> §
The parser will not consider the Non terminal as an input. So, they are not
considered in the input string. So, the string becomes

5.§<e*enf§

The next handle is **" and match for the * “in the grammaris E-=+ E*E .
So, id is replaced with the Non terminal E. the given input string can be
written as

6.5E$
The parser will not consider the Non terminal as an input. So, they are not

considered in the input string. So, the string becomes

2 I TF & o s

7.5%
$ On $ means parsing successful.

Operator Parsing Algorithm:
The operator precedence Parser parsing program determines the action of the parser depending
on

I. ‘a’ is top most symbol on the Stack

2. b’ 1s the current input symbol
There are 3 conditions for “a” and *b’ that are important for the parsing program

1. a=b=5, the parsing is successful

2. a<ehbora=h, the parser shifts the input symbol on to the stack and advances the
input pointer to the next input symbal,

3. a*> b, parser performs the reduce action. The parser pops out elements one by
one from the stack until we find the current top of the stack element has lower
precedence than the most recently popped out terminal,

Example, the sequence of actions taken by the parser using the stack for the input string “i1d * 1d
*and corresponding Parse Tree are as under.

STACK INPUT OPERATIONS

5 id*id$ $ <+ id. shift “1d" in to stack

$id Yid 8 id == *_ reduce “id" using E-> id
SE *id § $ <= * shift **" in to stack

SE* ids *<eid, shift “id” in to Stack
SE*id 5 id «> §, reduce “1d” using E->id
SE*E $ *o>§, reduce “*" using E->E*E
SE » $=%=8, so parsing is successful

E
71 %
E “I" E
i|r.l iltl
Advantages and Disadvantages of Operator Precedence Parsing:
The following are the advantages ol operalor precedence parsing
1. It is simple and easy to implement parsing technique.
2. The operator precedence parser can be constructed by hand after understanding the
grammar. It is simple to debug.
The following are the disadvantages of operator precedence parsing:
1. Itis difficult to handle the operator like *-*which can be either unary or binary and hence

ditterent precedence’s and associativities,
2. It can parse only a small class of grammar.

Y LT o o0 s

3. New addition or deletion of the rules requires the parser to be re written,
4. Too many error entries in the parsing tables.

LR Parsing:

Most prevalent type of bottom up parsing is LR (k) parsing. Where, L is left to right scan of the
given input string, R 1s Right Most derivation in reverse and K is no of input symbols as the
Look ahead.

. Itis the most general non back tracking shift reduce parsing method
Y The class of grammars that can be parsed using the LR methods is a proper superset of

the class of grammars that can be parsed with predictive parsers,
¥ An LR parser can detect a syntactic error as soon as it is possible to do so. on a left to

right scan of the input.

al a2 83 s 5 Input Buffer
? LR PARSING ALGORTHM > OUTPUT
S
Shift GOTO
Stack .
LR Parsing Table

Figure 3.3: Components of LR Parsing
LR Parser Consists of
Y An input buffer that contains the stwring to be parsed followed by a § Symbol, used 1o
indicate end of input,

Y A stack containing a sequence of grammar symbols with a $ at the bottom of the stack,
which initially contains the Initial state of the parsing table on top of $.
L A parsing table (M), it is a two dimensional array M| state, terminal or Non terminal] and

It contains two parts

1. ACTION Part
The ACTION part of the table is a two dimensional array indexed by state and the
input symbol, i.e. ACTION[state][input], An action table entry can have one of
following four kinds of values in it. They are:
1. Shift X, where X is a State number.
2. Reduce X, where X is a Production number,
3. Accept, signifying the completion of a successful parse.
4, Error entry,
2. GO TO Part
The GO TO part of the table is a two dimensional array indexed by state and a
Non terminal, ie. GOTO[state][NonTerminal]. A GO TO entry has a stale
number in the table.

Y Aparsing Algorithm uses the current State X, the next input symbol ‘a’ to consult the
entry at action[X|[a]. it makes one of the four following actions as given below:

b

Il the action[X][a]=shift Y, the parser executes a shift of Y on to the top of the stack
and advances the input pointer.
If the action| X][a]= reduce Y (Y is the production number reduced in the State X), if

the production is Y->f3, then the parser pops 2%} symbols from the stack and push Y
on to the Stack.

. IF the action[X]lal= wccept, then the parsing is successful and the input string is

accepted.
If the action[X]|a]l= error, then the parser has discovered an error and calls the error

routine.

The parsing is classified in to

ILLR({O)
2. Simple LR (1)
3, Canonical LR(1)

4. Look ahead LR(1)

LR (1) Parsing: Various steps involved in the LR (1) Parsing:

1. Write the Context free Grammar for the given input string

Check for the Ambiguity

Add Augment production

Create Canonical collection of LR (00) items

Draw DFA

Construct the LR (0) Parsing table

Based on the information from the Table, with help of Stack and Parsing algorithm
generate the output,

S

Augment Grammar

408 1

The Augment Grammar G, 1s G with a new starting symbol § an additional production
5" = this helps the parser to identify when to stop the parsing and announce the acceptance of
the input. The mnput string 1s accepted if and only if the parser is about to reduce by $* 8. For
example let us consider the Grammar below:

E—+ E+T|[T
T=* T*F
F-—+(E) |id the Augment grammar G is Represented by

E=» E

E-*> E+T|T

T* T*F

F-+(E)|id
NOTE: Augment Grammar is simply adding one extra production by preserving the actual
meaning of the given Grammar G,
Canonical collection of LR (0) items

LR (0} items

An LR (0) item of a Grammar is a production G with dot at some position on the right
side of the production. An item indicates how much of the input has been scanned up to a given
point in the process of parsing. For example, if the Production is X =* YZ then, The LR (())
ems are:

I. X = +AB, indicates that the parser expects a string derivable from AB.

2. X =* A=B, indicates that the parser has scanned the string derivable from the A and

expecting the string from Y,

3. X = ABe, indicates that he parser has scanned the string derivable from AB.
If the grammar is X=* € the, the LR (0) item is

X—* « indicating that the production 1s reduced one.
Canonical collection of LR(0) Items:
This is the process of grouping the LR (0) items together based on the closure and Go 1o
operations

Closure operation
If 1is an initial State, then the Closure (1) 1s constructed as follows:
I. Imitially, add Augment Production to the state and check for the = symbol in the Right
hand side production, if the « 1s followed by a Non terminal then Add Productions
which are Stating with that Non Terminal in the State L

2. If a production X#+Af} 15 in I, then add Production which are starting with X in the
State L Rule 2 is applied until no more productions added to the State I{ meaning that

the = 1s followed by a Terminal symbol).

Example :
0. E=» E E-»+«E
1. E-* E+T LR (0)items for the Grammaris E “®+«E+T
2 T=+F T=# +F
3 T—+ T*F T=» «T*F
4. F—» (E) F-* «(E)
5. F—+»id F-* «id

Closure (Iy) State
Add E == * E in I State
Since, the “«" symbol in the Right hand side production is followed by A Non
terminal E. So, add productions starting with E in to lo state. So, the state
becomes
E* *E —»
0. E-» sE+T

L. T=®sF

The 1" and 2™ productions are satisfies the 2" rule. So, add productions
which are starting with Eand T in Iy
Note: once productions are added in the state the same production should
not added for the 2™ time in the same state, So, the state becomes

E=» *E

E—* «E+T

w I=®sF

T=»T*F

F-» +(E)

. F=»eojd

e

GO TO Operation

Go to (ly, X), where L is set of tems and X is the grammar Symbeol on which we
are moving the *** symbol, It is like finding the next state of the NFA for a give State Iy and the
input symbol is X. For example, if the production is E -€+T

Go to (Ig, E) is E=» «E, E=* E~+T

Note: Once we complete the Go to operation, we need to compute closure operation for the
output production

A T TF sa an

Go to (In, E) is E=» E«+T,E'—» E. = Closure ({E— E+, E =+ E*+T})

Construction of LR (0) parsing Table:

Once we have Created the canonical collection of LR (0) items, need to follow the steps
mentioned below:

If there is a transaction from one state (I;) to another state(l;) on a terminal value then,
we should write the shift entry in the action part as shown below:

a States ACTION GO TO
A->aeaf A->aasp a 5 A
1 5,
I I
l

If there is a transaction from one state (I,) to Hﬂﬂthhﬁmwmlﬂ
then, we should wnte the subscript value of Ij in the GO TO part as shown below: part as shown
below

% States ACTION GO TO
A->a-AR A->ahsf :"‘Hh a S A
li i
I 1
i |

If there is one state (I;), where there is one production which has no transitions. Then, the
production is said to be a reduced production. These productions should have reduced entry in
the Action part along with their production numbers. If the Augment production 1s reducing then,
write accept in the Action part.

States ACTION GO TO

- 44 |Page

I;
For Example, Construct the LR (0) parsing Table for the given Grammar (G)
S al
B+ bhB|b

Sol: 1. Add Augment Production and insert *+' symbol at the first position for every
production in G

0. 8= <§

1. S —» «aB

2. B+ -bB

3 B~%
Lo State;

1. Add Augment production to the 1; State and Compute the Closure

In = Closure(8'~% +§)
Since “+" s followed by the Non terminal, add all productions starting with S in to I, State, So,
the I State becomes
Ia= §' =+ §

S =+ =aB Here, in the 8 production . Symbol is followed by aterminal value so close
the state,
Ii= Go to (1y, S)

S+ S

Closure(8= S*) = §'-* S+« Here, The Production 1s reduced so close the State.

LicS' = S

I:= Go to (Iy, a) = closure (5 ~* a+H)

Here, the **" symbol is followed by The Non terminal B. So, add the productions which are
Starting B.

L= B —* B
B —* «b Here, the " symbol in the B production is followed by the terminal value. So,
Close the State.

| I S+ aBB
B -+ «hB

AE 1 Th

B —* «h
ILi=Goto(I; ,B)= Closure(S—* aB*) = §—* aB-

L= Goto(Iy, b) =closure ({B—* b*B, B-* b+})
Add productions starting with B in L.

B -+ +hB
B = *bh The Dot Symbol is followed by the terminal value. So, close the State,

1. B —+ bhB
B —+ +hB

B —* *h
B~ b

I:= Go to (I3 b) =Closure (B=* he*) =B -* h*

Is= Go to (14, B) = Closure (B =* bB+) = B —» bB*

IL=Goto(Ly b)=1
Drawing Finite State diagram DFA; Following DFA gives the state transitions of the parser

and is useful in constructing the LR parsing table,

LR Parsing Table:

g ACTION GOTO

Rl a B $ S B
Iy S» | |
I, ACC
L S, 3
Ia R R R,
| R Sy/Rj R; 3
Is R: R2 Ra

Note: if there are multiple entries in the LR (1) parsing table, then it will not accepted by the
LR(1) parser. In the above table |5 row 15 giving two entries for the single terminal value *b’ and
it is called as Shifi- Reduce conflict.

Shift-Reduce Conflict in LR (0) Parsing: Shift Reduce Conflict in the LR (0) parsing
occurs when a state has

1. A Reduced item of the form A —» o+ and

2. An incomplete item of the form A —» [l*ac as shown below:

1A->fesan States | Action GOTO
. |) a 5 A B
2 B->be I
l| Siil"rl r

Reduce - Reduce Conflict in LR (0) Parsing:
Reduce- Reduce Conflict in the LR (1) parsing occurs when a state has two or more
reduced items of the form
1. A—+»ar
2. B—p pe as shown below:

States

Action

GOTO

rfr2| rf

SLR PARSER CONSTRUCTION: What is SLR (1) Parsing

Various steps involved in the SLR (1) Parsing are:

2

3.

Write the Context free Grammar for the given input string

. Check for the Ambiguity

Add Augment production

. Create Canonical collection of LR (0) items

Draw DFA
Construct the SLR (1) Parsing table

Based on the information from the Table, with help of Stack and Parsing algorithm

generate the output,

SLR (1) Parsing Table Construction

Once we have Created the canonical collection of LR (0) items, need to follow the steps
mentioned below:

If there is a transaction from one state (I;) to another state(I;) on a terminal value then,

we should write the shift entry in the action part as shown below:

below:

If there 1s a transaction from one state (I;) to another state (1;) on a Non terminal value
then, we should write the subscript value of I in the GO TO part as shown below: part as shown

o -
I

States ACTION GO TO
a S A

l S

I

States ACTION GOTO
a 5 A
I i

I I

1 If there is one state (I, where there is one production (A->ape) which has no transitions
to the next State. Then, the production is said to be a reduced production, For all
terminals X in FOLLOW (A), write the reduce entry along with their production
numbers. If the Augment production is reducing then write accept.,

15->+aAb

2 A->afe
Follow(8) = {§]
Follow (A) = (b)

e
I States ACTION GO TO
2 A->ape > alb|s |s]| A
|| r
$
SLR (1) table for the Grammar
S—+ aB
B —* bB|b
Follow (S) = {$}, Follow (B) = {$)
States ACTION GOTO
oo A b $ S B
Iy Sz 1
I; ACCEPT
Iz Sa 3
I R,
I Sy K; 5
1= R

Note: When Multiple Entries occurs in the SLR table. Then, the grammar i1s not accepted by

SLR(1) Parser.

Conflicts in the SLR (1) Parsing :

When multiple entries occur in the table. Then, the situation is said to be a Conflict.

Shift- Reduce Conflict in SLR (1) Parsing : Shift Reduce Conflict in the LR (1) parsing occurs
when a state has
1. A Reduced item of the form A —» u* and Follow{ A) includes the terminal value
..ﬂ‘.
2. An incomplete item of the form A = [j=aa as shown below:

States | Action GOTO

I Si/r2

Reduce - Reduce Conflict in SLR (1) Parsing

Reduce- Reduce Conflict in the LR (1) parsing occurs when a state has two or more
reduced items of the form
1. A—»a*
2. B—» [}* and Follow (A) N Follow(B) £ null as shown below:
If The Grammar is
5-> aAaBa
A>n
B-> 3
Follow(S)= {§)
Follow(A)=|a} and Follow(B)= [a}

States | Action GOTO

a 5 A B

I ryfr2

I
Canonical LR (1) Parsing: Various steps involved in the CLR (1) Parsing:

I. Write the Context free Grammar for the given inpul string

2. Check for the Ambiguity

3. Add Augment production

4. Create Canonical collection of LR (1) items
5. Draw DFA
6. Construct the CLR (1) Parsing table

7. Based on the information from the Table, with help of Stack and Parsing
algorithm generate the output.

LR (1) items :
The LR (1) item is defined by production, position of data and a terminal symbol. The
terminal is called as Look ahead symbol.

General form of LR (1) item is S->aeAB, S

A-> oy, FIRST(B,S)

Rules to create canonical collection:
. Everyelement of 1 is added to closure of |
2. Ifan LR (1) item [X-> A«BC, a] exists in I, and there exists a production B-=bjb;
then add item [B->¢ bibz, z] where z is a terminal in FIRST(Ca), if it is not already
in Closure(l).keep applying this rule until there are no more elements adde.

For example, if the grammar 15

S->CC

C->cC

C->d

The Canonical collection of LR (1) 1items can be created as follows:

0. §"->+5 (Augment Production)
1.5->«CC

2, C->ecC

3. C->ed

I State : Add Augment production and compute the Closure, the look ahead symbol for the Augment
Production is %,

§'->+8, §= Closure(S'->+5, §)

The dot symbol is followed by a Non terminal S. So, add productions starting with Sin I
State.

§->+CC, FIRST ($), using 2 rule

5->+CC, 5

The dot symbol is followed by a Non terminal C. So, add productions starting with Cin [
State.

E'}"I:c, FIRS-I.[E; $]
C->«d, FIRST(C, %)

FIRST(C) = |c, d] so, the items are

C->ecC,c/d
C->ed, c/d

The dot symbol is followed by a terminal value. So, close the I; State. So, the productions in the
Iy are

S'->5,8%
S->+CC, §
C->scC, c/d
C->ed, c/d

I; = Goto (10,5)= §'->5+.%
I = Goto (I, C)= Closure(5->CeC, §)

5> C->ecC,$§
C->+d,$ So, the [State is

§->Ce(,$
C->=cC,$
C->+d, 5

Ix- Gotolly.c)= Closure(C->c¢+(, ¢/d)
C->=cC,c/d
C->+d, c/d So, the I: State is

C->ceC, ¢/d
C-==cC, ¢/d
C->ed, c/d

Li- Goto(Iy, d)= Colsure(C-=d=, ¢/d) = C-=d-, ¢/d
Is = Goto (Iz, C)= closure(S->CCs,8)= 5->CCs, §

le= Goto (Iz ¢)= closure(C->c+C, §)=
C->ecC, §
C->+d, $ 50, the I, State is

C-=c«C, S
C->scC, %
C->ed,%

I7 =Go to (12, d)= Closure(C->d=5) = C->d+, $
Goto(Is, c)= closure(C->+cC, c/d)= I1.

ls= Go to (I3, C)= Closure(C->cCs, ¢ /d) = C->cCe, ¢/d
Go to (Is, c)= Closure(C->c+C, ¢/d) =15
Go to (I3, d)= Closure(C->ds, ¢/d) = 14

lo= Go to (1s, C)= Closure(C->cCe , §) = C->cCe, §
Go to (I, c)= Closure(C->c+C, §) =1,

Go to (ls, d)= Closure(C->d+,$) =15

Drawing the Finite State Machine DFA for the above LR (1) items

0S"->85,8%

1S->+CC,$
2C->cC,c/d
3 C->ed ,c/d

C->c+C, c/d
C->ecC, c/d
C->+d,c/d
d L

Construction of CLR (1) Table

Rulel: if there is an item [A->a*X[},b] in I, and goto(l; X) is in || then action [1j][X]= Shift
. Where X is Terminal,

Rule: if there is an item [A-=ae, b] in I, and (A£8) set action [];][b]= reduce along with
the production number.

Rule3: if there is an item [S™->8<, $] in |, then set action [L;][$]= Accept.

Ruled: if there is an item [A-=a*X[,b] in I, and go to(I; X} is in I; then goto [L][X]=],
Where X is Non Terminal,

] ACTION GOTO

States 2 d $ C
Iy S Sy 1 1
I ACCEPT
I: Sa 89 5
I S S4 S
L Rs Rj 5
| B R,
Iy Sg 57 9
I R
Iy R2 R:
Iy R:

Table : LR (1) Table
LALR (1) Parsing

The CLR Parser avoids the conflicts in the parse table. But it produces more number of
States when compared to SLR parser. Hence more space is occupied by the table in the memory.
S0 LALR parsing can be used. Here, the tables obtained are smaller than CLR parse table. But it

also as efficient as CLR parser. Here LR (1) items that have same productions but different look -
aheads are combined to form a single set of items.

For example, consider the grammar in the previous example. Consider the states Iy and I
as given below:

Li- Goto(Iy, d)= Colsure(C->d=, ¢/d) = C->d+, ¢/d

Ir = Go to (13, d)= Closure(C->d*§) = C->d+, §

These states are differing only in the look-aheads. They have the same productions, Hence these

states are combined to form a single state called as Ly,

Similarly the states Iz and I differing only in their look-aheads as given below:
L= Goto(lyc)=

C->c+C, ¢c/d
C->ecC, c/d
C->=d,c/d

Is= Goto (1z c)=
C->ceC, §
C->ecC, $
E-}-d,i

These states are differing only in the look-aheads. They have the same productions. Hence these
states are combined to form a single state called as Is.

Similarly the States Iy and Iy differing only in look-aheads. Hence they combined to form
the state lgg,

ACTION GOTO
States c d 3 S §
I 334 547 1 2
I, ACCEPT
Iz Sﬁn S-I‘F 5
L Sig Su7 29
| I R; R; K e
Is R,
II-I'I| R: R: Rg
Table: LALR Table
Conflicts in the CLR (1) Parsing : When multiple entries occur in the table. Then, the
situation 1s said to be a Conflict.
Shift-Reduce Conflict in CLR (1) Parsing
Shift Reduce Conflict in the CLR (1) parsing occurs when a state has
3. A Reduced item of the form A —» o+, a and
4. An incomplete item of the form A = [j=aa as shown below:
i States | Action | GOTO

2 B->be ,a

I :]]: a 5 A B
I Sifr2

Reduce / Reduce Conflict in CLR (1) Parsing

Reduce- Reduce Conflict in the CLR (1) parsing occurs when a state has two or more
reduced items of the form
3. A—-»ar
4. B—» [i= Il two productions in a state (I) reducing on same look ahead symbol
as shown below:

States | Action GOTO
b a S |A | B
I ryfr2
I
String Acceptance using LR Parsing:
Consider the above example, if the input String is cdd
ACTION GOTO
ik c D $ S C

Iy S1 S | 2

I; ACCEPT

I, Sy S1 5

I 33 ¥ X

| R R: 5

]5 RI

s Ss Sy 9

11 R]

Iy R R:

lg RI
0 §'->+8 (Augment Production)
15->+CC
2 C->ecC
3 C->od
STACK INPUT ACTION
s cdds Shift S;
Slc3 dds Shift 84
Slc3d4 ds$ Reduce with R3,C->d, pop 2*B symbols from the stack
SciC d$ Goto (15, C)=8Shift S

Sc3C8 d$ Reduce with R, ,C->cC, pop 2*B symbols from the stack
S0C ds Goto (Ip, C)=2

S0C2 d$ Shift 54

S0C2d7 S Reduce with R3,C->d, pop 2*B symbols from the stack
S0C2C % Goto (I, C)=5

SOC2C5 b Reduce with R,5->CC, pop 2*p symbols from the stack
S0S 5 Goto (1y, S)=1

S051 5 Accept

Handing Ambiguous grammar

Ambiguity: A Grammar can have more than one parse tree for a string . For example, consider
grammar,

string steing + string

| string - string

[O11].19

String 9-5+2 has two parse trees

A grammar is said to be an ambiguous grammar if there is some string that it can generate in
more than one way (i.e., the string has more than one parse tree or more than one leftmost
derivation), A language is inherently ambiguous if it can only be generated by ambiguous
grammars,

For example, consider the following grammar;
string strng + string

| string - string

10 1].19

In this grammar, the string 9-5+2 has two possible parse trees as shown in the next slide.

string + string string - string
~ 1> | B
string - string 2 9 string + string
| | | |
9 b B e

Consider the parse trees for string 9-5+2, expression like this has more than one parse tree. The
two trees for 9-5+2 correspond to the two ways of parenthesizing the expression: (9-5)+2 and 9-
(5+2). The second parenthesization gives the expression the value 2 instead of 6.

¥ Ambiguity is problematic because meaning of the programs can be incorrect
Y Ambiguity can be handled in several ways
- Enforce associativity and precedence
- Rewrite the grammar (cleanest way)
There are no general techniques for handling ambiguity, but
, It is impossible to convert automatically an ambiguous grammar to an unambiguous one

Ambiguity is harmful to the intent of the program. The input might be deciphered in a way which
was not really the intention of the programmer, as shown above in the 9-5+2 example. Though
there is no general technique to handle ambiguity i.e., it 1s not possible to develop some feature
which automatically identifies and removes ambiguity from any grammar. However, it can be
removed, broadly speaking, in the following possible ways:-

1) Rewriting the whole grammar unambiguously.

2) Implementing precedence and associatively rules in the grammar, We shall discuss this
technique in the later slides.

If an operand has operator on both the sides, the side on which operator takes this operand is the
associatvity of that operator

. In a+b+c b is taken by left +
.+, - *, [are left associative
., = are right associative

Grammar to generate strings with right associative operators right a letter = right | letter letter
—-albl|z

A binary operation * on a set S that does not satisfy the associative law is called non-
associative. A left-associative operation is a non-associalive operation that is conventionally
evaluated from left to nght vLe.. operand 1s taken by the operator on the left side.

For example,
6*5%4 = (6%5)*4 and not 6%(5%4)
&/5/4 = (6/5)/4 and not 6/(5/4)

A right-associative operation is a non-associative operation that is conventionally evaluated from
right to left i.e., operand is taken by the operator on the right side.

For example,

INTERMEDIATE CODE GENERATION

In Intermediate code generation we use syntax directed methods to translate the source
program into an intermediate form programming language constructs such as declarations,
assignments and flow-of-control statements,

il i cochs
parser ﬂnﬁt | code '"ﬂ:;’m A genetator —>
ety generation

Figure 4.1 : Intermediate Code Generator
Intermediate code is:

¥ The output of the Parser and the input to the Code Generator.
L Relatively machine-independent and allows the compiler to be retargeted.
L Relatively easy to manipulate (optimize).

What are the Advantages of an intermediate language?
Advantages of Using an Intermediate Language includes :

1. Retargeting is facilitated - Build a compiler for a new machine by attaching a new code
generator to an existing front-end.

2. Optimization - reuse intermediate code optimizers in compilers for different languages
and different machines.

Note: the terms “intermediate code”, “intermediate language™, and “intermediate
representation” are all used interchangeably,

Types of Intermediate representations / forms: There are three types of intermediate
representation:-

1. Syntax Trees
2. Posthx notation
3. Three Address Code

Semantic rules for generating three-address code from common programming language
constructs are similar to those for constructing syntax trees of for generating postfix notation.

(sraphical Representations

A syntax tree depicts the natural hierarchical structure of a source program. A DAG
(Directed Acyclic Graph) gives the same information but in a more compact way because
common sub-expressions are identified. A syntax tree for the assignment statement a:=b*-c+b*-c
appear in the following figure,

assign

/N

L
/\ /\

uniminus uniminus

C L
Figure 4.2 : Abstract Syntax Tree for the statement a=b*-c+b*-c

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of the in
which a node appears immediately after its children. The postfix notation for the syntax tree in
the fig is

ab ¢ uminus + b ¢ uminus * + assign

The edges in a syntax tree do not appear explicitly in postfix notation. They can be
recovered in the order in which the nodes appear and the no. of operands that the operator at a
node expects. The recovery of edges is similar to the evaluation, using a staff, of an expression in
postiix notation.

What is Three Address Code?
Three-address code is a sequence of statements of the general form : X :=Y Op Z

where x, y, and z are names, constants, or compiler-generated temporaries; op stands for
any operator, such as a hxed- or floating-point arithmetic operator, or a logical operator on
Boolean-valued data. Note that no built-up arithmetic expressions are permitted, as there i1s only
one operator on the right side of a statement. Thus a source language expression like x+y*z
might be translated into a sequence

tli=y*z
R:=x+1tl

Where t1 and 12 are compiler-generated temporary names. This unraveling of
complicated anthmetic expressions and of nested flow-of-control statements makes three-address
code desirable for target code generation and optimization. The use of names for the intermediate
values computed by a program allow- three-address code to be easily rearranged — unlike postfix
notation. Three - address code is a linearzed representation of a syntax tree or a dag in which
explicit names correspond to the interior nodes of the graph.

Intermediate code using Syntax for the above arithmetic expression

tl =
2:=b*il
3= ¢
=13
=t12+14
=l

The reason for the term three-address code” is that each statement usually contains three
addresses, two for the operands and one for the result. In the implementations of three-address
code given later in this section, a programmer-defined name 1s replaced by a pointer tc a symbol-
table entry for that name,

Types of Three-Address Statements

Three-address statements are akin to assembly code. Statements can have symbolic labels
and there are statements for flow of control. A symbolic label represents the index of a three-
address statement in the array holding inter- mediate code. Actual indices can be substituted for
the labels either by making a separate pass, or by using "back patching,” discussed in Section
8.6. Here are the common three-address statements used in the remainder of this book:

1. Assignment statements of the form x: = y op 2, where op 1s a binary arithmetic or logical
operation.

2. Assignment instructions of the form x:= op y. where op 1s a unary operation. Essential unary
operations include unary minus, logical negation, shift operators, and conversion operators that,
for example, convert a fixed-point number to a floating-point number.

3. Copy statemenits of the form x: = y where the value of y is assigned to x.

4. The unconditional jump goto L. The three-address statement with label L 1s the next to be
executed,

5. Conditional jumps such as if x relop y goto L. This instruction applies a relational operator
(<, =, >=, et¢.) to X and v, and executes the statement with label L next if X stands in relation
relop to y. If not, the three-address statement following if x relop y goto L is executed next, as in
the usual sequence.

6. param x and call p, n for procedure calls and return y, where y representing a returned value
is optional. Their typical use is as the sequence of three-address statements

param x|
param x2
param xn
call p. n

Generated as part of a call of the procedure p(x.. x~,.... X”). The integer n indicating the number
of actual parameters in “call p, n” 15 not redundant because calls can be nested. The
implementation of procedure calls is outline d in Section 8.7.

7. Indexed assignments of the form x: = y[1 | and x [1 |: = y. The first of these sets X to the
vilue in the location 1 memory units beyond location y. The statement x[i]:=y sets the contents of
the location i units beyond x to the value of y. In both these instructions, x, y, and i refer to data
objects.

8. Address and pointer assignments of the form x:= &y, x:= *y and *x: = y. The first of these
sets the value of X to be the location of y. Presumably y 1s a name, perhaps a temporary. that
denotes an expression with an I-value such as Ali, j], and x is a pointer name or temporary. That
is, the r-value of X is the l-value (location) of some object!. In the statement x: = ~y, presumably
y 15 a pointer or a temporary whose r- value is a location. The r-value of x is made equal to the
contents of that location. Finally, +x: = y sets the r-value of the object pointed to by X to the r-
value of y.

The choice of allowable operators 15 an important 1ssue in the design of an intermediate
form. The operator set must clearly be rich enough to implement the operations in the source
language. A small operator set is easier to implement on a new target machine. However, a
restricted instruction set may force the front end to generate long sequences of statements for
some source, language operations. The optimizer and code generator may then have to work
harder if good code is to be generated.

SYNTAX DIRECTED TRANSLATION OF THREE ADDRESS CODE

When three-address code 15 generated, temporary names are made up for the mterior
nodes of a syntax tree. The value of non- terminal E on the left side of E [0 E1 + E will be

computed into a new temporary t. In general, the three- address code for id: = E consists of code
to evaluate E into some temporary 1, followed by the assignment id place: = t. If an expression is
a single identifier, say y, then y itself holds the value of the expression. For the moment, we
create a new name every lime a temporary is needed: techniques for reusing temporaries are
given in Section S.3. The S-attributed definition in Fig. 8.6 generates three-address code for
assignment statements. Given input a; = b+ = ¢ + b+ — ¢, it produces the code in Fig. 8.5(a). The
synthesized attribute S.code represents the three- address code for the assignment S. The non-
terminal E has two attributes:

1. E.place, the name that will hold the value of E, and
2. E.code, the sequence of three-address statements evaluating E.

The function newtemp returns a sequence of distinct names tl, 12,... in response to
successive calls. For convenience, we use the notation gen(x " =" v "+" z) in Fig. 8 6 to represent
the three-address statement x: = y + z. Expressions appearing instead of variables like x, y, and
are evaluated when passed to gen, and quoted operators or operands, like "+, are taken literally,
In practice, three- address statements might be sent to an output file, rather than built up into the
code attributes. Flow-of-control statements can be added to the language of assignments in Fig.
8.6 by productions and semantic rules)like the ones for while statements in Fig. 8.7. In the
figure, the code for § - while E do §, is generated using’ new attributes S.begin and S.after to
mark the first statement in the code for E and the statement following the code for S,
respectively.

mm
FRODUCTION I SEMANTIC RULES

§ = d := E S.code := Ecode | gen(M.place ':=" E.place)

E - E, -Eilﬁ.phrrti Aewlemp ;

E.code := E,.code | E;.code |

gralE pluce =" E ploce '+' E, ploce)
E=-E, » E, | Eploce := newtemp;
Ecode .= E| codde | Egconde |

geniE.place ':=" E, place '+’ K, place)

E ==& E.pluce .= newtemp;
E.code := E, .code | gen(E ploce ":1=' 'uminus' £, place)

E—~-\ £) E.place := E, place;
| Ecode = E,.code

E -~ id E.piace := 4 place;
I E.code :—= ''

These attributes represent labels created by a function new label that returns a new label
every time it is called.

IMPLEMENTATIONS OF THREE-ADDRESS STATEMENTS:

A three-address statement is an abstract form of intermediate code. In a compiler, these
statements can be implemented as records with fields for the operator and the operands. Three
such representations are quadruples, triples, and indirect triples.

QUADRUPLES:

A quadruple is a record structure with four fields, which we call op, arg |, arg 2, and
result. The op field contains an internal code for the operator. The three-address statement x:= y
op z is represented by placing y in arg 1. z in arg 2. and X in result, Statements with unary
operators like x: = — y or x: = vy do not use arg 2. Operators like param wuse neither arg2 nor
result. Conditional and unconditional jumps put the target label in result. The quadruples in Fig.
H.S(a) are for the assignment a: = b+ - ¢ + b i —= ¢. They are obtained from the three-address code
.The contents of fields arg 1, arg 2, and result are normally pointers to the symbol-table entries
for the names represented by these fields. If so, temporary names must be entered into the
symbol table as they are created.

TRIPLES:

To avoud entering temporary names into the symbol table. We might refer to a temporary
value bi the position of the statement that computes it. If we do so, three-address statements can
be represented by records with only three fields: op, arg | and arg2, as Shown below. The fields
arg | and arg2, for the arguments of op, are either pointers to the symbal table (for programmer-
defined names or constants) or pointers into the triple structure (for temporary values). Since
three fields are used, this intermediate code format 15 known as triples.” Except for the treatment
of programmer-defined names, triples correspond to the representation of a syntax tree or dag by
an array of nodes, as in

op Argl AIEE Result op Argl | Arg2
(0) | uminus | ¢ L (0) | uminus | C
()| * b 1l 12 (1)) * B ()
(2) | uminus | ¢ L3 (2) | uminus | C
3| * b K 14 (3)| * B (2)
@ =+ 12 14 15 4)| + (1) | 3)
5)| = t5 A (5)| := A | (4
Table 8.8 (a) : Qudraples TableB.8(b) : Triples :Triples

Parenthesized numbers represent pointers into the triple structure, while symbol-table
pointers are represented by the names themselves. In practice, the information needed to interpret
the different kinds of entries in the arg | and arg2 fields can be encoded into the op field or some
additional fields. The triples in Fig. 8.8(b) correspond to the quadruples in Fig. 8.8(a). Note that

the copy statement a:= t5 1s encoded in the triple representation by placing a in the arg 1 field
and using the operator assign. A ternary operation like x[i]J: = ¥ requires two entries in the triple
structure, as shown in Fig. 8.9(a), while x: = y[1] is naturally represented as two operations in
Fig. 8.9(b).

“ -
op argl | erg2
{4 [}= x i (0 =[] y i
(1) | assign (o v (1) | assign = (0)
(a) x[{L) = ¥y (b) = := wl(i)

Fig. 8.9. More iniple represcnlations,

Indirect Triples

Another implementation of three-address code that has been considered 1s that of listing
pointers to triples, rather than listing the triples themselves. This implementation is naturally
called indirect triples. For example, let us use an array statement to list pointers to triples in the
desired order. Then the triples in Fig. 8.8(b) might be represented as in Fig. 8.10,

== = = ﬁﬂﬁﬁ_ﬁ
slittement P arg | E. iirg 2
(0) i14) (14) | uminua c
(1) (15) (15 . b (14)
(2) (16) (l16) | uminus c
(3 (17) (17) . b (16)
. (4) (I8) (1K) v (15) | (07
(5) (19) (19) | assign a (1K)
Figure 8.10 : Indirect Triples

SEMANTIC ANALYSIS : This phase focuses mainly on the

. Checking the semantics ,

. Error reporting e —
EaCap v . —
. Disambiguate overloaded operators i T - =
. Type coercion , s “u » a
-t b 0 “ b

. static checking

L il arel

- Type checking

-Control flow checking

- Uniqueness checking

- Name checking aspects of translation

Assume that the program has been venified to be syntactically correct and converted into
some kind of intermediate representation (a parse tree). One now has parse tree available. The
next phase will be semantic analysis of the generated parse tree. Semantic analysis also includes
error reporting in case any semantic error 1s found out.

Semantic analysis is a pass by a compiler that adds semantic information to the parse tree
and performs certain checks based on this information. It logically follows the parsing phase, in
which the parse tree 1s generated, and logically precedes the code generation phase, in which
(intermediate/target) code is generated. (In a compiler implementation, it may be possible to fold
different phases into one pass.) Typical examples of semantic information that is added and
checked is typing information (type checking) and the binding of variables and function names
to their definitions (object binding). Sometimes also some early code optimization is done in
this phase. For this phase the compiler usually maintains symbol tables in which 1t stores what
each symbol (variable names, function names, etc.) refers to.

FOLLOWING THINGS ARE DONE IN SEMANTIC ANALYSIS:

Disambiguate Overloaded operators: If an operator is overloaded, one would like to specify
the meaning of that particular operator because from one will go into code generation phase next.

TYPE CHECKING: The process of verifying and enforcing the constraints of types is called
type checking. This may occur either at compile-ime (a static check) or run-time (a dynamic
check). Static type checking is a primary task of the semantic analysis carnied out by a compiler.
Il type rules are enforced strongly (that is, generally allowing only those automatic type
conversions which do not lose information), the process is called strongly typed, if not, weakly

typed.

UNIQUENESS CHECKING: Whether a variable name is unique or not, in the its scope.

Type coersion: If some kind of mixing of types is allowed. Done in languages which are not
strongly typed. This can be done dynamically as well as statically.

NAME CHECKS: Check whether any variable has a name which is not allowed. Ex. Name is

same as an identifier (Ex. int in java).

Parser cannot catch all the program errors
There is a level of correctness that is deeper than syntax analysis
Some language features cannot be modeled using context free grammar formalism

~-1 = r+-

- Whether an identifier has been declared before use, this problem is of identifying a language
(waw|weZ*)

- This language is not context free

A parser has its own limitations in catching program errors related to semantics, something that
is deeper than syntax analysis, Typical features of semantic analysis cannot be modeled using
context free grammar formalism. If one tries to incorporate those features in the definition of a
language then that language doesn't remain context free anymore.

Example: in

string x; int y;

y=x+23 the use of x is a type error
int a, b;
a=b+c¢ ¢ is not declared

An identifier may refer to different variables in different parts of the program . An identifier
may be usable in one part of the program but not another These are a couple of examples which
tell us that typically what a compiler has to do beyond syntax analysis. The third point can be
explained like this: An identifier x can be declared in two separate functions in the program,
once of the type int and then of the type char, Hence the same identifier will have to be bound to
these two different properties in the two different contexts. The fourth point can be explained in
this manner: A vanable declared within one function cannot be used within the scope of the
definition of the other function unless declared there separately. This is just an example.
Probably you can think of many more examples in which a variable declared in one scope cannot
be used in another scope.

ABSTRACT SYNTAX TREE: Is nothing but the condensed form of a parse tree, It is

Y Useful for representing language constructs so naturally,
¥ The production S =#if B then s1 else s2 may appear as

if-then-else

B s1 52

In the next few slides we will see how abstract syntax trees can be constructed from syntax
directed definitions. Abstract syntax trees are condensed form of parse trees. Normally operators
and keywords appear as leaves but in an abstract syntax tree they are associated with the interior
nodes that would be the parent of those leaves in the parse tree. This is clearly indicated by the
examples in these slides.

Chain of single productions may be collapsed, and operators move to the parent nodes

E +
b + T - id3
| L %
T F 1dl d2
T ./,.I,\ F ij3
: a2
id1

Chain of single productions are collapsed into one node with the operators moving up to become
the node.

CONSTRUCTING ABSTRACT SYNTAX TREE FOR EXPRESSIONS:
In constructing the Syntax Tree, we follow the convention that

. Each node of the tree can be represented as a record consisting of at least two fields to store
operators and operands.

operators @ one field for operator, remaining fields ptrs to operands mknode(op.left,right)

Adentifier : one field with label id and another ptr to symbol table mkleaf(id, id.entry)

number : one field with label num and another to keep the value of the number mkleaf{num,val)

Each node in an abstract syntax tree can be implemented as a record with several fields. In the
node for an operator one field idenufies the operator (called the label of the node) and the
remaining contain pointers to the nodes for operands. Nodes of an abstract syntax tree may have
additional fields to hold values (or pointers to values) of attributes attached to the node. The
functions given in the slide are used to creale the nodes of abstract syntax trees for expressions,
Each function returns a pointer 1o a newly created note.

For Example: the following P
sequence of function
calls creates a parse
ree for w=a-4 + ¢

P 1 = mkleaf({id, entry.a) Rl
P 2 = mkleaf{inum, 4)

P 3 =mknode(-,P1,P2)

P4 = mkleafl(id, entry.c) sairyata

entry of c

P 5= mknode(+,P3,P4)

An example showing the formation of an abstract syntax tree by the given function calls for the
expression a-4+¢. The call sequence can be defined based on its posthix form, which is explained
hlow,

A- Write the postfix equivalent of the expression for which we want to construct a syntax tree

For above string w=a-4+c, it is ad-c+

B- Call the functions in the sequence, as defined by the sequence in the postfix expression which
results in the desired tree. In the case above, call mkleaf() for a, mkleaf() for 4, mknode() for

-, mkleaf() for ¢ , and mknode() for + at last.

1. P1 = mkleaf(id, a.entry) : A leaf node made for the identifier a, and an entry for a is made in
the symbaol table.

2. P2 = mkleaf(num4) : A leal node made for the number 4, and entry for its value,

3. P3 = mknode(-.P1,P2) : An internal node for the -, takes the pointer to previously made nodes
Pl, P2 as arguments and represents the expression a-4.

4. P4 = mkleaf(id, c.entry) : A leaf node made for the identifier ¢ , and an entry for c.entry made
in the symbol table,

5. P5 = mknode(+,P3,P4) : An internal node for the + , takes the pointer to previously made
nodes P3,P4 as arguments and represents the expression a- 4+4c .

Following 1s the syntax directed definition for constructing syntax tree above

E—E1+T E.ptr = mknode(+, E1 .ptr, T.ptr)
E—T E.ptr = T.ptr

T—T1*F T.ptr := mknode(*, T1 .ptr, F.ptr)
T —F T.ptr :=F.ptr

F —(E) F.ptr := E.ptr

F —id F.ptr := mkleaf{id, id.entry)
F— num F.ptr .= mkleaf(num, val)

Now we have the syntax directed definitions to construct the parse tree for a given grammar. All
the rules mentioned in slide 29 are taken care of and an abstract syntax tree is formed.

ATTRIBUTE GRAMMARS: A CFG G=(V,T,P,S), is called an Attributed Grammar iff ,
where in G, each grammar symbol XE VUT, has an associaled set of attributes, and each
production, p €P, is associated with a set of attribute evaluation rules called Semantic Actions.

In an AG, the values of attributes at a parse tree node are computed by semantic rules. There are
two different specifications of AGs used by the Semantic Analyzer in evaluating the semantics
of the program constructs. They are,

- Syntax directed definition(SDD)s
o High level specifications
o Hides implementation details
o Explicit order of evaluation is not specified
- Syntax directed Translation schemes(SDT)s
* Nothing but an SDD, which indicates order in which semantic rules are to be
evaluated and
Y Allow some implementation details to be shown.

An attribute grammar is the formal expression of the syntax-derived semantic checks
associated with a grammar. It represents the rules of a language not explicitly imparted by the
syntax. In a practical way, it defines the information that is needed in the abstract syntax tree in
order to successfully perform semantic analysis. This information is stored as attributes of the
nodes of the abstract syntax wee, The values of those attributes are calculated by semantic rule.

There are two ways for writing attnbutes:

1} Syntax Directed Definition(SDD): Is a context free grammar in which a set of semantic
actions are embedded (associated) with each production of G.

It is a high level specification in which implementation details are hidden, e.g., S.sys =
Asys + Busys,

/* does not give any implementation detals. It just tells us. This kind of attribute
equation we will be using, Details like at what point of time is it evaluated and in what manner
are hidden from the programmer.*/

E—El+T { E.val = El .val+ E2.val |
E—T { E.val =T.val |
T—T1*F { T.val =TI .val+ F.val)
T —F { T.val = F.val }

F —(E) { F.val = E.val }

F —id | F.val = id.lexval |

F— num | F.val = num.lexval |

2) Syntax directed Translation(SDT) scheme: Sometimes we want to control the way the
attributes are evaluated, the order and place where they are evaluated. This is of a slightly lower
level,

An SDT is an SDD in which semantic actions can be placed at any position in the body of the
production.

For example , following SDT prints the prefix equivalent of an anthmetic expression consisting a
+ and ¥ operators.

L—+ En{ printf{‘E.val’)]

E — { printf(*+") JE1 + T

E— T

T = { printf(**") }T1*F
T—F

F—(E)

F — { printf(‘id.lexval’) }id

F—s | printf(*num.lexval’) |} num

This action in an SDT, is executed as soon as its node in the parse tree is visited in a preorder
traversal of the tree.

Conceptually both the SDD and SDT schemes will:

¥ Parse input token stream

Y Build parse tree

¥ Traverse the parse tree to evaluate the semantic rules at the parse tree nodes
Evaluation may:

¥ Generate code
Y Save information in the symbol table
E].‘i!il.lE-' cror ITIEHEHE{'.E-

[~

Perform any other activity

To avoid repeated traversal of the parse tree, actions are taken simultaneously when a token is
found. So calculation of attributes goes along with the construction of the parse tree.

Along with the evaluation of the semantic rules the compiler may simultaneously generate code,
save the information in the symbol table, and/or 1ssue error messages etc, at the same time while
building the parse tree.

This saves multiple passes of the parse tree.

Example

Number —sign list
SIgN —e+ | -

list —= list bit | bit
bit —0| 1

Build attribute grammar that annotates Number with the value it represents

. Associate attributes with grammar symbols

symbol attributes

Number value

sign negative

list position, value
bit position, value

production Attribute rule number —#sign list
list.position 0

if sign.negative

then number.value - list.value

else number.value list.value

sign =+ sign.negative [alse sign = sign.negative
bit.position st position

list.value bit.value

listg =#list | bit

listy position list position + |

bit.position list o .position

listy, .value list; .value + bit.value

bit =0 bit.value 0 bit =1 bit.value ~ 2Mposton

Explanation of attribute rules

true list =—hit

Num -> sign list /*since list 1s the rightmost so 1t 1s assigned position 0

*Sign determines whether the value of the number would be

same or the negative of the value of list/

Sign -> + | - /*5et the Boolean atribute (negative) for sign®/

List -> bit /*bit position is the same as list position because this bit is the nghtmost

value of the list is same as bit./
List0 -> Listl bit /*position and value calculations®/
Bit-=0]1 /*set the corresponding value®/

Attributes of RHS can be computed from attributes of LHS and vice versa.

The Parse Tree and the Dependence graph are as under

Number Veol=-9 =

—
; £
SIgnN neg=true —

f

Pos=1 list

o~ - .
- -—-‘"‘H‘—_ﬁ:-‘_h"'" = |
=2 list valz4 Pos=1 bit Vai=0

e

Pos=2 bit valz=4 /

1 o - 1

Dependence graph shows the dependence of attributes on other attributes, along with the
syntax tree. Top down traversal is followed by a bottom up traversal to resolve the dependencies.
MNumber, val and neg are synthesized attributes. Pos is an inherited attribute,

Attributes : . Attributes fall into two classes namely synthesized attributes and inherited
attributes. Value of a synthesized attribute is computed from the values of its children nodes.
Value of an inherited attribute is computed from the sibling and parent nodes.

The attributes are divided into two groups, called synthesized attributes and inherited
attributes, The synthesized attributes are the result of the attribute evaluation rules also using the
values of the inhented attributes. The values of the inherited attributes are inherited from parent
nodes and siblings.

Each grammar production A —sa has associated with it a set of semantic rules of the form
b=f(e;, €2,), Where fis a function, and either ,b is a synthesized attribute of A Or
- b is an inherited attribute of one of the grammar symbols on the nght

.attribute b depends on attributes ¢; , €3, ... Ck

Dependence relation tells us what atributes we need (o know before hand to calculate a
particular attribute.

Here the value of the attribute b depends on the values of the attributes ¢; 1o ¢ . If ¢ 1o ¢
belong to the children nodes and b to A then b will be called a synthesized attribute. And if b
belongs to one among a (child nodes) then it is an inherited attribute of one of the grammar
symbols on the right.

Synthesized Attributes : A syntax directed definition that uses only synthesized attributes
15 said to be an S- attributed definition

. A parse tree for an S-attributed definition can be annotated by evaluating semantic rules for
attributes

S-attributed grammars are a class of attribute grammars, comparable with L-attributed grammars
but characterized by having no inherited attributes at all. Inherited attributes, which must be
passed down from parent nodes (o children nodes of the abstract syntax tree during the semantic
analysis, pose a problem for bottom-up parsing because in bottom-up parsing, the parent nodes
of the abstract syntax tree are created afrer creation of all of their children. Attribute evaluation
in S-attributed grammars can be incorporated conveniently in both top-down parsing and bottom-
up parsing .

Syntax Directed Definitions for a desk calculator program

L—En Print (E.val}
E—E+T Eval =E.val + T,val
E—T E.val = T.val
T—T*F T.val = T.val * F.val
T —F T.val = F.val

F —(E) F.val = E.val

F —sdigit F.val = digit.lexval

. terminals are assumed to have only synthesized attribute values of which are supplied by lexical
analyzer

. start symbol does not have any inherited attribute

This is a grammar which uses only synthesized attributes. Start symbaol has no parents, hence no
mherited attributes.

Parse treefor3* 4 +5n

L Print I7

Val ﬂ/Tf< n
‘u’alm=5

| | | |

Val=1ZT F Val=&
L)
Val=3 T . Fyal=q id
l y,
Val=3 F id
'
\id

Using the previous attribute grammar calculations have been worked out here for 3 * 4 + 5 n.
Bottom up parsing has been done.

Inherited Attributes: An inherited attribute is one whose value is defined in terms of
attributes at the parent and/or siblings

. Used for finding out the context in which it appears

. possible to use only S-attributes but more natural to use inherited attributes

D—TL L.in = T.type

T —sreal T.type = real

T —int T.type = int

L—sL, . id L .in = L.in; addtype(id.entry, L.in)
L —sid addiype (id.entry,L.in)

Inherited attributes help to find the context (type, scope etc.) of a token e.g., the type of a token
or scope when the same variable name is used multiple times in a program in different functions.
An inherited attribute system may be replaced by an S -attribute system but it is more natural to
use inherited attributes in some cases like the example given above,

Here addtype(a, b) functions adds a symbol table entry for the id a and attaches (o it the type of b

Parse tree forreal X, y, 2

type=real L el —
AL S
real L in-real
addiftypet v eal)
=real | y e

Dependence of attributes in an inherited attribute system. The value of in (an inherited attribute)
at the three L nodes gives the type of the three identifiers x . y and z . These are determined by
computing the value of the attribute T.type at the left child of the root and then valuating L.in top
down at the three L nodes in the right subtree of the root. At each L node the procedure addtype
is called which inserts the type of the identifier to its entry in the symbol table. The figure also
shows the dependence graph which 1s introduced later.

Dependence Graph : . If an attribute b depends on an attribute ¢ then the semantic rule for b
must be evaluated after the semantic rule for ¢

. The dependencies among the nodes can be depicted by a directed graph called dependency
graph

Dependency Graph : Directed graph indicating interdependencies among the synthesized and
inherited attributes of various nodes in a parse tree,

Algorithm to construct dependency graph
for each node n in the parse tree do
for each attribute a of the grammar symbol do
construct a node in the dependency graph
for a
for each node n in the parse tree do
for each semantic rule b=f(¢c,.cs.,c;) do

| associated with production at n)

fori=1tokdo

Construet an edge from ¢jto b

An algonthm to construct the dependency graph. After making one node for every
attribute of all the nodes of the parse tree, make one edge from each of the other attributes on
which it depends.

For example ,

* Suppose Aa=1{X.x, Y.y is asemautic nidetor A XY

X/ \‘H" X./r\

-

= W production A — XY has the samantic tule X.x = giA.a, Y.y)

A

N

X, =—Y.,

The semantic rule A.a = f(X.x , Y.y) for the production A -> XY defines the synthesized
attribute a of A to be dependent on the attribute x of X and the atiribute y of Y . Thus the
dependency graph will contain an edge from X.x to A.a and Y.y to A.a accounting for the two
dependencies. Similarly for the semantic rule X.x = g(A.a , Y.y) for the same production there
will be an edge from A.a to X.x and an edg e from Y.y 1o X.x.

Example
. Whenever following production is used in a parse tree
E—E1+E2 Eval=E 1 val +E 2 .val

we create a dependency graph

E.val

/\

E,.val E..val

The synthesized attribute E.val depends on El.val and E2.val hence the two edges one
each from E | .val & E 2 .val

For example, the dependency graph for the sting real idl, id2, id3

. Put a dummy synthesized attribute b for a semantic rule that consists of a procedure call

The figure shows the dependency graph for the statement real 1d1, 1d2, id3 along with the
parse tree. Procedure calls can be thought of as rules defining the values of dummy synthesized
attributes of the nonterminal on the left side of the associated production, Blue arrows constitute
the dependency graph and black lines, the parse tree. Each of the semantic rules addtype
(id.entry, L.in) associated with the L productions leads to the creation of the dummy attribute.

Evaluation Order ;

Any topological sort of dependency graph gives a valid order in which semantic rules must be
evaluated

ad = real

ad =ad
addtype(id3.entry, a5)
a7l =al

addiype(id2.entry, a7)

a9 := a7 addtype(id | .entry, a9)

A wopological sort of a directed acyclic graph is any ordering m1, m2, m3......mk of the
nodes of the graph such that edges go from nodes earlier in the ordering to later nodes. Thus if
mi -> mj 1s an edge from mi to mj then mi appears before mj in the ordering. The order of the
statements shown in the slide is obtained from the topological sort of the dependency graph in
the previous slide. 'an' stands for the attribute associated with the node numbered n in the
dependency graph. The numbering is as shown in the previous slide.

Abstract Syntax Tree is the condensed form of the parse tree, which is

. Useful for representing language constructs.
. The production : § —#if B then s1 else s2 may appear as

i-then-else

B 51 s2

In the next few slides we will see how abstract syntax trees can be constructed from
syntax directed definitions. Abstract syntax trees are condensed form of parse trees. Normally
operators and keywords appear as leaves but in an abstract syntax tree they are associated with
the interior nodes that would be the parent of those leaves in the parse tree, This is clearly
indicated by the examples in these slides.

. Chain of single productions may be collapsed, and operators move to the parent nodes

AT <
1 My
|

idl id2
ﬂ\ id3

T
: .
F ldE
idl

Chain of single production are collapsed into one node with the operators moving up to become
the node.

For Constructing the Abstract Syntax tree for expressions,
. Each node can be represented as a record

-aperators : one hield for operator, remaining fields ptrs to operands mknode(
op.left,night)

- identifier : one field with label id and another ptr to symbol table mkleaf(id,entry)

. number : one field with label num and another to keep the value of the number
mkleaf{num,val)

Each node in an abstract syntax tree can be implemented as a record with several fields.
In the node for an operator one field identifies the operator (called the label of the node) and the
remaining contain pointers to the nodes for operands. Nodes of an abstract syntax tree may have
additional fields to hold values (or pointers to values) of attributes attached to the node. The
functions given in the slide are used to create the nodes of abstract syntax trees for expressions,
Each function returns a pointer 1o a newly created note.

Example : The following
sequence of function

calls creates a parse
tree for a- 4 + ¢

P 1 = mkleaf(id, entry.a)
P 2 = mkleaf{inum, 4)

P 3 =mknode(-, P1,P2)
P 4 = mkleaf(id, entry.c) entry of a
P5=mknode(+,P3,P4)

An example showing the formation of an abstract syntax tree by the given function calls for the
expression a-4+¢. The call sequence can be explained as:

1. P1 = mkleafiid.entry.a) : A leaf node made for the identifier Qa R and an entry for Qa R is
made in the symbol table.

2. P2 = mkleaf(inum.4) : A leal node made for the number Q4 R.

3. P3 = mknode(-.P1,P2) : An internal node for the Q- Q.1 takes the previously made nodes as
arguments and represents the expression Qa-4 R.

4. P4 = mkleaf(id,entry.c) : A leal node made for the identifier Qc R and an entry for Q¢ R is
made in the symbol table.

5. P5 = mknode(+,P3,P4) : An internal node for the Q+ Q.] takes the previously made nodes as
arguments and represents the expression Qa- 4+c R.

A syntax directed definition for constructing syntax tree

E—E1+T E.ptr = mknode(+, E 1 .ptr, T.ptr)
E—T E.ptr =T.ptr

T—T1*F T.ptr := mknode(*, T | .ptr, F.ptr)
T —F T.ptr := F.ptr

F —(E) F.pur = E.pu

F —id F.ptr := mkleaf(id, entry.id)

F—+ num F.ptr := mkleaf(num,val)

Now we have the syntax directed definitions to construct the parse tree for a given grammar, All
the rules mentioned in slide 29 are taken care of and an abstract syntax tree is formed.

Translation schemes @ A CFG where semantic actions occur within the right hand side of
production, A transkition scheme to map infix to posthix,

E~TR
R addop T { print(addop)} R | e
T = num {print(num)}

Parse tree for9-5+2

N
A, -2

maem primtinuem) addop T Print (addop)

%y {-/l // | \
maEwe priotimum) aciokog prlr il I'-.n:l-l:lv:-[.‘i
(s l-/p/ ~ I
EET printirmam) E
(2%

We assume that the actions are terminal symbols and Perform depth first order traversal to obtain
95-2+

¥ When designing translation scheme, ensure attribute value is available when referred to

Y In case of synthesized attribute it is trivial (why?)

In a translation scheme, as we are dealing with implementation, we have to explicitly
worry about the order of traversal. We can now put in between the rules some actions as part of
the RHS. We put this rules in order to control the order of traversals. In the given example, we
have two terminals (num and addop). It can generally be seen as a number followed by R (which

necessarily has to begin with an addop). The given grammar is in infix notation and we need to
convert it into postfix notation. If we ignore all the actions, the parse tree is in black, without the
red edges. If we include the red edges we get a parse tree with actions, The actions are so far
treated as a terminal. Now, if we do a depth first traversal, and whenever we encounter a action
we execute 1t, we get a post-fix notation. In translation scheme, we have to take care of the
evaluation order; otherwise some of the parts may be left undefined. For different actions,
different result will be obtained. Actions are something we write and we have to control it
Please note that translation scheme 1s different from a syntax driven definition. In the latter, we
do not have any evaluation order; in this case we have an explicit evaluation order. By explicit
evaluation order we have to set correct action at correct places, in order to get the desired output.
Place of each action is very important. We have to find appropriate places, and that is that
translation scheme is all about. If we talk of only synthesized atiribute, the translation scheme is
very trivial. This is because, when we reach we know that all the children must have been
evaluated and all their attributes must have also been dealt with. This is because finding the place
for evaluation is very simple, it is the rightmost place.

In case of both inherited and synthesized attributes

. An inhented attribute for a symbol on rhs of a production must be computed in an action before
that symbaol

S=A1A2 {Al.in=1LA2.in=2}
A -a |print{A.in}}

‘H'\-
-Hb-l
e

A, Ao A, In=1
/ | . A.in=2
prict(A in) @ printiAin)

Depth first order traversal gives error undefined

. A synthesized attribute for non terminal on the lhs can be computed after all attributes i
references, have been computed. The action normally should be placed at the end of rhs

We have a problem when we have both synthesized as well as inherited attnibutes. For the given
example, if we place the actions as shown, we cannot evaluate it, This is because, when doing a
depth first traversal, we cannot print anything for Al. This is because Al has not vet been
initialized. We, therefore have to find the correct places for the actions. This can be that the
inherited attribute of A must be calculated on its left. This can be seen logically from the
definition of L-attribute definition, which says that when we reach a node, then everything on its
left must have been computed. If we do this, we will always have the attribute evaluated at the

correct place. For such specific cases (like the given example) calculating anywhere on the left
will work, but generally it must be calculated immediately at the lefi.

Example: Translation scheme for EQN

S =B B.pts = 10
S.ht= B.ht

B —B, B; B; .pts = B.pts
B ; .pts = B.pts

B.ht = max(B ; ht.B; .ht)
B=B;subB; B, .pts=B.pis;

B ; pts = shrink(B.pts)

B.ht = disp(B, .ht,B; .ht)
B —text B.ht = text.h * B pis

We now look at another example. This is the grammar for finding out how do I compose text.
EQN was equation setting system which was used as an early type setting system for UNIX, It
was earlier used as an latex equivalent for equations. We say that start symbol is a block: § - >B
We can also have a subscript and superscript. Here, we look at subscript. A Block is composed
of several blocks: B -> B1B2 and B2 is a subscript of B1. We have to determine what is the point
size (inherited) and height Size (synthesized). We have the relevant function for height and point
size given along side. After putting actions in the right place

S— {Bpts =10} B
{S.ht = B.ht}
B — {B,;.pts=Bpts} B,
{B;. pts = B.pts} B.
B.ht = max{(B, .ht B—p ht)}
B — B, pts=B.pts} B; sub
B..pts = shn nk(Bgts 1}
B.ht = disp{B, .ht hit)}

B — text{B. ht=texth™B pts}

We have put all the actions at the correct places as per the rules stated. Read it from left o nght,
and top to bottom. We note that all inhented attribute are calculated on the left of B symbols and
synthesized attributes are on the right.

Top down Translation: Use predictive parsing to implement L-attributed definitions
E®1+ TEval :=E 1 .val + T.val

EBP1-TEval :=E 1 val - T.val

E =T E.val := T,val
T -E) T.val := E.val
T =num T.val := num.lexval

We now come to implementation. We decide how we use parse tree and L-attribute
definitions to construct the parse tree with a one-to-one correspondence. We first look at the top-
down translation scheme. The first major problem is left recursion. If we remove left recursion
by our standard mechanism, we introduce new symbols, and new symbaols will not work with the
existing actions. Also, we have to do the parsing in a single pass.

TYPE SYSTEM AND TYPE CHECKING:

. If both the operands of arithmetic operators -+, -, X are integers then the result is of type integer
. The result of unary & operator is a pointer to the object referred 1o by the operand.
- If the type of operand is X then type of result is pointer to X

In Pascal, types are classified under:

|. Basic types: These are atomic types with no internal structure. They include the types boolean,
character, integer and real.

2. Sub-range types: A sub-range type defines a range of values within the range of another type.
For example, type A = 1..10: B = 100..1000; U ="A'".'Z’;

3. Enumerated types: An enumerated type is defined by listing all of the possible values for the
type. For example: type Colour = (Red, Yellow, Green); Country = (NZ, Aus, SL, WI, Pak, Ind,
SA, ken, Zim, Eng); Both the sub-range and enumerated types can be treated as basic types.

4. Constructed types: A constructed type is constructed from basic types and other basic types.

Examples of constructed types are arrays, records and sets. Additionally, pointers and functions
can also be treated as constructed types.

TYPE EXPRESSION:

It is an expression that denotes the type of an expression. The type of a language construct is
denoted by a type expression

¥ Itis either a basic type or it is formed by applying operators called type constructor 1o
other type expressions

Y Aype constructor applied to a type expression 1s a lype expression

v

A basic type 1s type expression

tvpe error : error during type checking
- veid : no type value

The type of a language construct is denoted by a type expression. A type expression 1s either a
basic type or is formed by applying an operator called a type constructor to other type
expressions. Formally, a type expression is recursively defined as:

1. A basic type is a type expression. Among the basic types are boolean , char , integer . and real
.A special basic type, hvpe_error , is used to signal an error during type checking. Another
special basic type 15 void which denotes "the absence of a value” and is used to check statements.
2. Since type expressions may be named, a type name is a type expression.

3. The result of applving a type constructor to a type expression is a type expression.

4. Type expressions may contain variables whose values are type expressions themselves.

TYPE CONSTRUCTORS: are used to define or construct the type of user defined types based
on their dependent types.

Arrays : If T is a type expression and [is a range of integers, then array (I, T) is the type
expression denoting the type of array with elements of type T and index set 1.

For example, the Pascal declaration, var A: array[] .. 10] of integer; associates the type
expression array (1..10, integer) with A,

Products : If 77 and 72 are type expressions, then their Cartesian product T1 X T2 is also a type

expression,

Records @ A record type constructor is applied to a wple formed from field names and field
types. For example, the declaration

Consider the declaration

type row = record

addr : integer;

lexeme : array |1 .. 15] of char
end;

var table: array [1 .. 10] of row;

The type row has type expression : record ((addr x integer) x (lexeme x array(1 .. 15, char)))
and type expression of table is array(1 .. 10, row)

Note: Including the field names in the type expression allows us to define another record type
with the same fields but with different names without being forced to equate the two.

Pointers: If T 1s a type expression, then peinter (T) 1s a type expression denoting the type
"pointer to an object of type T".

For example, in Pascal, the declaration

var p: row declares variable p to have type pointer(row).

Functions : Analogous to mathematical functions, functions in programming languages may be
defined as mapping a domain type D to a range type R. The type of such a function is denoted by
the type expression D R. For example, the built-in function mod of Pascal has domain type int X
int, and range type inf . Thus we say mod has the type: int x int -> int

As another example, according to the Pascal declaration
function f(a, b: char) ; integer;
Here the type of [is denoted by the type expression is char x char pointer(integer)

SPECIFICATIONS OF A TYPE CHECKER: Consider a language which consists ol a
sequence of declarations followed by a single expression

P—=D:E

D—=D:D|id:T

T —schar | integer | array [num] of T |*T

E —sliteral |num |[Emod E |E [E] |[EA

A type checker is a translation scheme that synthesizes the type of each expression from the
types of its sub-expressions. Consider the above given grammar that generates programs

consisting of a sequence of declarations D followed by a single expression E.

Specifications of a type checker for the language of the above grammar: A program generated
by this grammar is

key : integer:
key mod 1999

Assumptions:
1. The language has three basic types: char ., int and type-error

2. For simplicity, all arrays start at 1. For example, the declaration array[256] of char leads to the
type expression array (1.. 256, char).

Rules for Symbol Table entry

D—=id: T addtype(id.entry, T.type)
T =+char T.type = char

T —vinteger T.type = int

T =T, T.type = pointer(T, .lype)

T =sarray [num | of T , T.type = array(l..num, T ; .type)

TYPE CHECKING OF FUNCTIONS :

Consider the Syntax Directed Definition,

E=E;(E;) E. type =il E; .type == s and
E; .lype ==5 =
then t

else type-error

The rules for the symbol table entry are specified above. These are basically the way in which
the symbol table entries corresponding to the productions are done.,

Type checking of functions

The production E -> E (E) where an expression is the application of one expression to another
can be used to represent the application of a function to an argument. The rule for checking the
type of a function application 1s

E->El (E2){ Enpe :=if E2.type == s and El. type = s -> 1 then r else type_error }

This rule says that in an expression formed by applying El to E2, the type of El must be a
function s -> ¢ from the type s of E2 to some range type f : the type of EI (E2) is ¢ . The above
rule can be generalized to functions with more than one argument byconstructing a product type
consisting of the arguments. Thus n arguments of type 71 , T2

. I can be viewed as a single argument of the type T1 X T2 ... X Th . For example,

root : { real real) X real real

declares a function root that takes a function from reals to reals and a real as arguments and
returns a real, The Pascal-like syntax for this declaration is

function root { function f (real) : real; x: real) : real

TYPE CHECKING FOR EXPRESSIONS: consider the following SDD for expressions

E —sliteral E.type = char

E —num E.type = integer

E —+id E.type = lookup(id.entry)

E —E; mod E; Etype =il E | .type == mteger and

E: type==integer
then integer

else type_error

E —E, [E;] E.type = if E; .type==integer and
E; .type==array(s.t)
then 1
else type_error

E—E; * E.type = if E; .type==pointer(t)
then |

else type_error

To perform type checking of expressions, following rules are used. Where the synthesized
attribute type for E gives the type expression assigned by the type system to the expression
generated by E.

The following semantic rules say that constants represented by the tokens literal and num have
type char and integer , respectively:

E ->literal { Etype := char |

E ->num (| Ertype = integer |

. The function lookup (e) is used to fetch the type saved in the symbol-table entry pointed 1o by
e. When an identifier appears in an expression, its declared type is fetched and assigned to the
attribute type:

E->id [Exvpe == lookup (1d . entry))

. According to the followmng rule, the expression formed by applying the mod operator to two
sub-expressions of type integer has type integer , otherwise, its type is tvpe_error .

E -=El mod E2 | Etype = if El.type = integer and E2.tvpe == integer then nteger else
type_error |

In an array reference E1 [E2], the index expression E2 must have type integer . inwhich case
the result is the element type ¢ obtained from the type array (s, ¢t yof EL.

E->El [E2] [Ervpe =if E2.type == integer and El.type = array (5. t) then 1 else
rpe_error |

Within expressions, the postfix operator yields the object pointed to by its operand. The type of E
is the type ¢ of the object pointed to by the pointer E:

E El { E.type :=if ELtype = pointer (t) then t else type_error |

TYPE CHECKING OF STATEMENTS: Statements typically do not have values, Special
hasic type void can be assigned to them. Consider the SDD for the grammar below which
generates Assignment statements conditional, and looping statements,

S —sid := E S.Type = if id.type == E.type
then void
else type_error

S —il E then S1 S5.Type = if E.type == boolean
then S1.type
else type_error

5 —swhile E do 81 S.Type = if E.type == boolean
then S1.type

else type_error

S —S1 382 S.Type = if S1.type = void
and S2.type = void
then void

else type_error

Since statements do not have values, the special basic type void is assigned to them, but if an
error is detected within a statement, the type assigned to the statement is npe_error ,

The statements considered below are assignment, conditional, and while statements. Sequences
of statements are separated by semi-colons. The productions given below can be combined with
those given before if we change the production for a complete program to P -> D; 8. The
program now consists of declarations followed by statements.

Rules for type checking the statements are given below,

1.Sid :=E | S.vpe =il id . vpe == E.tvpe then void else npe_error |

This rule checks that the left and right sides of an assignment statement have the same type.

2. 511 E then S1 | S.type = if Etvpe == boolean then S1.tvpe else tvpe_error |

This rule specifies that the expressions in an if -then statement must have the type boolean

3. S while E do S1 { S.rvpe = if E.rvpe = boolean then 51.tvpe else type_error |

This rule specifies that the expression in a while statement must have the type boolean .

4.5 81; 82 | S.tvpe = if Sl.type == void and S2.tvpe == void then void else tvpe_error }

SYMBOL TABLE
Symbol Table(ST) : Is a data structure used by the compiler to keep track of scope and binding

information about names

- Symbol table is changed every time a name is encountered in the source;
Changes to table occur when ever a new name 1s discovered; new information about an existing
name is discovered
As we know the compiler uses a symbol table to keep track of scope and binding information
about names. It is filled after the AST is made by walking through the tree, discovering and
assimilating information about the names. There should be two basic operations - to insert a new
name or information into the symbol table as and when discovered and to efficiently lookup a
name in the symbol table to retrieve its information,
Two common data structures used for the symbol table organization are -

I. Linear lists:- Simple to implement, Poor performance,

2. Hash tables:- Greater programming / space overhead, but, Good performance.

Ideally a compiler should be able to grow the symbol table dynamically, i.e.. insert new entries
or information as and when needed.
But if the size of the table is fixed in advance then (an array implementation for example), then
the size must be big enough in advance to accommaodate the largest possible program.
For each entry in declaration of a name
- The format need not be uniform because information depends upon the usage of the name
- Each entry is a record consisting of conseculive words
- To keep records uniform some entries may be outside the symbol table
Information is entered into symbol table at various times. For example,
- keywords are entered initially,
- udentifier lexemes are entered by the lexical analyzer.
. Symbol table entry may be set up when role of name becomes clear , attribute values are filled
in as information is available during the translation process.

For each declaration of a name, there i1s an entry in the symbol table. Different entries
need to store different information because of the different contexts in which a name can occur,
An entry corresponding to a particular name can be inserted into the symbol table at different
stages depending on when the role of the name becomes clear. The various attributes that an
entry in the symbol table can have are lexeme, type of name, size of storage and in case of
functions - the parameter list etc.

A name may denote several objects in the same block
- int x; struct x | float y, z; }
The lexical analyzer returns the name itself and not pointer to symbol table entry. A record in the
symbol table 15 created when role of the name becomes clear. In this case two symbol table
eniries are created.

Y Aaitributes of a name are entered in response to declarations

¥ Labels are often identified by colon
The syntax of procedure / function specifies that certain identifiers are formals, characters in a
name. There is a distinction between token id, lexeme and attributes of the names.
It is difficult 1o work with lexemes

L if there is modest upper bound on length then lexemes ¢an be stored in symbol table

Y if limit is large store lexemes separately

There might be multiple entries in the symbol table for the same name, all of them having
different roles. It is quite intuitive that the symbol table entries have o be made only when the
role of a particular name becomes clear. The lexical analyzer therefore just returns the name and
not the symbol table entry as it cannot determine the context of that name. Attributes
corresponding to the symbaol table are entered for a name in response to the corresponding
declaration. There has to be an upper limil for the length of the lexemes for them to be stored in
the symbol wble,

STORAGE ALLOCATION INFORMATION: Information about storage locations is kept in
the symbal wble.

If target code is assembly code, then assembler can take care of storage for various names and
the compiler needs to generate data definitions to be appended to assembly code

If target code is machine code, then compiler does the allocation, No storage allocation is done
for names whose storage is allocated at runtime
Information about the storage locations that will be bound to names at run time is kept in

the symbol table. If the target is assembly code, the assembler can take care of storage for
various names. All the compiler has to do is to scan the symbol table, after generating assembly
code, and generate assembly language data definitions to be appended to the assembly language
program for each name. If machine code is to be generated by the compiler, then the position of
each data object relative to a fixed origin must be ascertained. The compiler has to do the
allocation in this case. In the case of names whose storage is allocated on a stack or heap. the
compiler does not allocate storage at all, it plans out the activation record for each procedure.

STORAGE ORGANIZATION: The runtime storage might be code

subdivided into :

Y Target code ,

Data objects,

Stack to keep track of procedure activation, and
Heap to keep all other mformation

static data

stack

=1 1 =

This kind of organization of run-time storage is used for languages such as
Fortran, Pascal and C. The size of the generated targel code, as well as that of

some of the data objects, is known at compile time. Thus, these can be stored

in statically determined areas in the memory,

STORAGE ALLOCATION PROCEDURE CALLS: Pascal and C use the
stack for procedure activations. Whenever a procedure is called, execution of
activation gets mterrupted, and information about the machine state (like

register values) is stored on the stack.

When the called procedure returns, the interrupted activation can be restarted after restoring the
saved machine state. The heap may be used to store dynamically allocated data objects, and also
other stuff such as activation information (in the case of languages where an activation tree
cannot be used to represent lifetimes). Both the stack and the heap change in size during program
execution, so they cannot be allocated a fixed amount of space. Generally they start from
opposite ends of the memory and can grow as required, towards each other, untul the space

available has filled up.

ACTIVATION RECORD: An Activation Record is a data structure that is activated/ created
when a procedure / function are invoked and it contains the following information about the

function.
Y Temporaries: used in expression evaluation
¥ Local data: field for local data
¥ Saved machine status: holds info about machine status before
procedure call
¥ Access link : to access non local data
¥ Control link : points to activation record of caller
Y Actual parameters: field to hold actual parameters

g |

Returned value : field for holding value to be returmed

The activation record is used to store the information required by a
single procedure call. Not all the fields shown in the figure may be
needed for all languages. The record structure can be modified as per
the language/compiler requirements.

For Pascal and C, the actuivation record is generally stored on the run-
time stack during the period when the procedure is executing.

Of the fields shown in the figure, access link and control link are optional (e.g. FORTRAN
doesn't need access links). Also, actual parameters and return values are often stored in registers

instead of the activation record, for greater efficiency.

Temporaries

local data

machine status

Access links

Control links

Parameters

Return value

>, The activation record for a procedure call is generated by the compiler. Generally, all

field sizes can be determined at compile time.

However, this i1s not possible in the case of a procedure which has a local array whose size
depends on a parameter. The strategies used for storage allocation in such cases will be discussed
in forth coming lines,

STORAGE ALLOCATION STRATEGIES: The storage is allocated basically in the
following THREE ways,

Y Static allocation: lays out storage at compile time for all data objects
Y Stack allocation: manages the runtime storage as a stack
Y Heap allocation :allocates and de-allocates storage as needed at runtime from heap

These represent the differemt storage-allocation strategies used in the distinct parts of the
run-time memory organization (as shown in slide 8). We will now look at the possibility of using
these strategies to allocate memory for activation records. Different languages use differemt
strategies for this purpose. For example, old FORTRAN used static allocation, Algol type
languages use stack allocation, and LISP type languages use heap allocation.

STATIC ALLOCATION: In this approach memory is allocated statically. So.Names are bound
to storage as the program is compiled

Y No runtime support is required

¥ Bindings do not change at run time

L On every invocation of procedure names are bound to the same storage

Y Values of local names are retained across activations of a procedure

These are the fundamental characteristics of static allocation. Since name binding occurs during
compilation, there is no need for a run-ime support package. The retention of local name values
across procedure activations means that when control returns 10 a procedure, the values of the
locals are the same as they were when control last left. For example, suppose we had the
following code, written in a language using static allocation:

function F()
I
int a;
print(a);
a=10;
|

After calling F() once, if it was called a second time, the value of a would initially be 10, and
this is what would get printed.

The type of a name determines its storage requirement. The address for this storage is an offset
from the procedure’s activation record, and the compiler positions the records relative to the
target code and to one another (on some computers, it may be possible to leave this relative

position unspecified, and let the hnk editor link the activation records to the executable code),

After thus position has been decided, the addresses of the activation records, and hence of the

storage for each name in the records, are fixed. Thus, at compile time, the addresses at which the

target code can find the data it operates upon can be filled in. The addresses at which information

15 to be saved when a procedure call takes place are also known at compile time. Static allocation

does have some limitations.

- Size of data objects, as well as any constraints on their positions in memory, must be
available at compile time.

- No recursion, because all activations of a given procedure use the same bindings for local
names.

- No dynamic data structures, since no mechanism is provided for run time storage allocation.

STACK ALLOCATION: Figure shows the activation records that are pushed onto and popped
for the run time stack as the control Mlows through the given activation tree.

Saraw

=N sl &
l#nl‘;ﬁﬂ;;f

fsann

LSS TR ST § s L I'I'Hul'-lllli"l.ﬂ-l

=Xl b |
Iﬂﬂl@‘!"“ g .
grsng RitEarund W) ‘_:;\-_l:..u T P 1

First the procedure is activated. Procedure readarray 's activation is pushed onto the stack, when
the control reaches the first line in the procedure sort . After the control returns from the
activation of the readarray , its activation is popped. In the activation of sort , the control then
reaches a call of gsort with actuals 1 and 9 and an activation of gsort is pushed onto the top of the
stack. In the last stage the activations for partition (1,3) and gsort (1,0) have begun and ended
during the life time of gsort (1.3). so their activation records have come and gone from the stack.,
leaving the activation record for gsort (1,3) on top.

CALLING SEQUENCES: A call sequence allocates an activation record and enters
information into its field. A return sequence restores the state of the machine so that calling
procedure can continue execution.

Calling sequence and activation records differ, even for the same language. The code in the
calling sequence is often divided between the calling procedure and the procedure it calls.

There 1s no exact division of runume tasks between the caller
and the colleen.

As shown in the figure, the register stack top points to the end
of the machine status field in the activation record.

This position is known to the caller, so it can be made
responsible for setting up stack top before control flows to the
called procedure,

The code for the Callee can access its temporaries and the
local data using offsets from stack top.

Call Sequence: In a call sequence, following sequence of operations is performed.

Caller evaluates the actual parameters

Caller stores return address and other values (control link) into callee’s activation record
Callee saves register values and other status information

Callee initializes its local data and begins execution

11

The fields whose sizes are fixed early are placed in the middle. The decision of whether
or not to use the control and access links is part of the design of the compiler, so these fields can
be fixed at compiler construction time. If exactly the same amount of machine-status information
is saved for each activation, then the same code can do the saving and restoring for all
activations. The size of temporaries may not be known to the front end. Temporaries needed by
the procedure may be reduced by careful code generation or optimization. This field is shown
after that for the local data. The caller usually evaluates the parameters and communicates them
to the activation record of the callee. In the runtime stack, the activation record of the caller is
just below that for the callee. The fields for parameters and a potential return value are placed
next to the activation record of the caller. The caller can then access these fields using offsets
from the end of its own activation record. In particular, there is no reason for the caller to know
about the local data or temporaries of the callee.

Return Sequence : In a return sequence, following sequence of operations are performed.

Callee places a return value next 1o activation record of caller
Restores registers using information in status field

Branch to return address

Caller copies return value into its own activation record

t=1 01 1

As described earlier, in the runtime stack, the activation record of the caller is just below
that for the callee. The fields for parameters and a potential return value are placed next to the
activation record of the caller. The caller can then access these fields using offsets from the end
of its own activation record. The caller copies the return value into its own activation record. In
particular, there i1s no reason for the caller to know about the local data or temporaries of the
callee. The given calling sequence allows the number of arguments of the called procedure to
depend on the call. At compile time, the target code of the caller knows the number of arguments
it 1s supplying to the callee. The caller knows the size of the parameter field. The target code of
the called must be prepared to handle other calls as well, so it waits until it is called, then
examines the parameter field. Information describing the parameters must be placed next to the
status field so the callee can find it.

| prrto A

______ptrtoB activation of P
ptrto C
array A t
alray B Lomng length

data

array C l

activation of Q

arrays of Q

Long Length Data:

The procedure P has three local arrays. The storage for these arrays 1s not part of the
activation record for P, only a pointer to the beginning of each array appears in the activation
record. The relative addresses of these pointers are known at the compile time, so the target code
can access array elements through the pointers. Also shown is the procedure QQ called by P . The
activation record for Q begins after the arrays of P. Access to data on the stack is through two
pointers, top and stack top. The first of these marks the actual top of the stack; it points to the

position at which the next activation record begins. The second is used to find the local data. For
consistency with the organization of the figure in slide 16, suppose the stack top points to the end
of the machine status field, In this figure the stack top points to the end of this field in the
activation record for Q. Within the field is a control link to the previous value of stack top when
control was in calling activation of P. The code that repositions top and stack top can be
generated at compile tme, using the sizes of the hields in the activation record. When g returns,
the new value of top is stack top minus the length of the machine status and the parameter fields
in Qs activation record. This length is known at the compile time, at least to the caller, After
adjusting top, the new value of stack top can be copied from the control link of Q.

Dangling References: Referring to locations which have been de-allocated.

void main()

{
int *p,
p = dangle(); /* dangling reference */

I

int *dangle();
[
int i=23;
return &i;

)

The problem of dangling references arises, whenever storage is de-allocated. A dangling
reference occurs when there is a reference o storage that has been de-allocated. Tt is a logical
error to use dangling references, since the value of de-allocated storage is undefined according (o

the semantics of most languages. Since that storage may later be allocated to another datum,
mysterious bugs can appear in the programs with dangling references,

HEAP ALLOCATION: If a procedure wanls to put a value that is to be used after its activation
is over then we cannot use stack for that purpose. That is language like Pascal allows data to be
allocated under program control. Also in certaun language a called activanon may outhive the
caller procedure. In such a case last-in-first-out queue will not work and we will require a data
structure like heap to store the activation. The last case is not true for those languages whose
activation trees correctly depict the flow of control between procedures.

Limitations of Stack allocation: It cannot be used if,

o The values of the local vanables must be retained when an activation ends
o A called acuvation outlives the caller

¥ In such a case de-allocation of activation record cannot occur in last-in first-out fashion
¥ Heap allocation gives out pieces of contiguous storage for activation records

There are two aspects of dynamic allocation -;
- Runtime allocation and de-allocation of data structures.
- Languages like Algol have dynamic data structures and it reserves some part of memory
for it
Initializing data-structures may require allocating memory but where to allocate this
memory, Alter doing type inference we have to do storage allocation. It will allocate some chunk
of bytes. But in language like LISP, it will try to give continuous chunk. The allocation in
continuous bytes may lead to problem of fragmentation i.e. you may develop hole in process of
allocation and de-allocation. Thus storage allocation of heap may lead us with many holes and
fragmented memory which will make ut hard to allocate continuous chunk of memory 1o
requesting program. So,we have heap mangers which manage the free space and allocation and
de-allocation of memory. It would be efficient to handle small activations and activations of
predictable size as a special case as described in the next slide. The various allocation and de-
allocation techniques used will be discussed later,
Fill a request of size s with block of size s " where s ' is the smallest size greater than or equal to s

- For large blocks of storage use heap manager
- Por large amount of storage computation may take some time to use up memory so that
time taken by the manager may be negligible compared to the computation time

As mentioned earlier, for efficiency reasons we can handle small activations and activations of
predictable size as a special case as follows:

1. For each size of interest, keep a linked list if free blocks of that size

2. If possible, fill a request for size s with a block of size s, where s' is the smallest size greater
than or equal to s, When the block is eventually de-allocated, it is returned to the linked list n
came from.

3. For large blocks of storage use the heap manger,

Heap manger will dynamically allocate memory. This will come with a runtime
overhead. As heap manager will have to take care of delragmentation and garbage collection.
But since heap manger saves space otherwise we will have to fix size of activation at compile
time, runtime overhead is the price worth it.

ACCESS TO NON-LOCAL NAMES :

The scope rules of a language decide how to reference the non-local variables. There are two
methods that are commonly used:

1. Static or Lexical scoping: It determines the declaration that applies to a name by examining
the program text alone. E.g., Pascal, C and ADA.

2. Dynamic Scoping: It determines the declaration applicable Lo a name at run time, by
considering the current activations. E.g., Lisp

ORGANIZATION FOR BLOCK STRUCTURES:

A block is a any sequence of operations or instructions that are used to perform a [sub] task. In
any programming language,
Blocks contain its own local data structure.

)

v
-

)

-1

Blocks can be nested and their starting and ends are marked by a delimiter.

They ensure that either block is independent of other or nested in another block, That is,
it is not possible for two blocks B1 and B2 to overlap in such a way that first block Bl
begins, then B2, but Bl end before B2,

This nesting property is called block structure. The scope of a declaration in a block-

structured language is given by the most closely nested rule:

I. The scope of a declaration in a block B includes B,

2. If a name X is not declared in a block B, then an occurrence of X in B is in the scope
of a declaration of X in an enclosing block B ' such that. B "has a declaration of X, and. B
"is more closely nested around B then any other block with a declaration of X.

For example, consider the following code fragment.

malnid

BEGINNING of BO

BEGINNING of B1

{
int a=0
int h=0
int h=1
{
int a=2
print a,
)
{
int h=1
print a,
piint a, b

print a, b
1

BEGINNING of B2

s
END of B2

BEGINNING of B3

I
END of B3

END of B1
END of BO

Scopas B0, B1, B3
Scope BO

Scope B1, B2

Scope B2

Scope B3

For the example, in the above figure, the scope of declaration of b in B0 does not include Bl

because b is re-declared in Bl, We assume that variables are declared before the first statement

in which they are accessed. The scope of the variables will be as follows:

DECLARATION SCOPE

int a=0 B0 not including B2
int h=0) B() not including B
int b=1 B1 not including B3
inta=2 B2 only
mnt b =3 B3 only

The outcome of the print statement will be, therefore:

21
(3
01
D0

Blocks : . Blocks are simpler to handle than procedures

al

. Blocks can be treated as parameter less procedures

. Use stack for memory allocation h0

. Allocate space for complete procedure body at one time

b1

az2,b3

There are two methods of implementing block structure in compiler construction:

. STACK ALLOCATION: This is based on the observation that scope of a declaration does
not extend outside the block in which it appears, the space for declared name can be allocated
when the block is entered and de-allocated when controls leave the block. The view treat block
as a "parameter less procedure” called only from the point just before the block and returning

only to the point just before the block.

2. COMPLETE ALLOCATION: Here you allocate the complete memory at one time. If there
are blocks within the procedure, then allowance is made for the storage needed for declarations
within the books. If two variables are never alive at the same time and are at same depth they can

be assigned same storage.

DYNAMIC STORAGE ALLOCATION:

newl(p): ptr.key =k; pt.info:=i;

I'Hill:l_.i?‘ 3 o 4 2 of T |® nil

Garbage : unreachable cells
‘Lisp does garbage collection
*Pascal and C do not

head”® . next ;= nil;
Dangling reference
dispose(head™.next)

Generally languages like Lisp and ML which do not allow for explicit de-allocation of memory
do garbage collection. A reference to a pointer that is no longer valid is called a 'dangling
reference’. For example, consider this C code:

int main (void)

{
I

int* a=fun();

int* fun()
|
int a=3;
int* b=&a;
return b
|

Here, the pointer returned by fun() no longer points to a valid address in memory as the
activation of fun() has ended. This kind of situation is called a ‘dangling reference’. In case of
explicit allocation it is more likely to happen as the user can de-allocate any part of memory,
even something that has to a pointer pointing to a valid piece of memory.

In Explicit Allocation of Fixed Sized Blocks |, Link the blocks in a list , and Allocation and de-
allocation can be done with very litle overhead.

srsailalle

| R (fapa—— [——

allocated

Tvailable

I | S —
allocated

The simplest form of dynamic allocation involves blocks of a fixed size. By linking the blocks in
a list, as shown in the figure, allocation and de-allocation can be done quickly with little or no
storage overhead.

Explicit Allocation of Fixed Sized Blocks: In this approach, blocks are drawn from

contiguous area of storage, and an area of each block 1s used as pointer to the next block
The pointer available points to the first block

Allocation means removing a block from the available list

De-allocation means putting the block in the available list

Compiler routines need not know the type of objects to be held in the blocks

Each block is treated as a variant record
Suppose that blocks are to be drawn from a contiguous area of storage. Initialization of

the area is done by using a portion of each block for a link to the next block. A pointer available
points to the first block. Generally a list of free nodes and a list of allocated nodes 15 maintained,
and whenever a new block has to be allocated, the block at the head of the free list is taken off
and allocated (added 1o the list of allocated nodes). When a node has to be de-allocated, 1t 1s
removed from the list of allocated nodes by changing the pointer to it in the list to point to the
block previously pointed to by it, and then the removed block is added to the head of the list of
free blocks. The compiler routines that manage blocks do not need to know the type of object
that will be held in the block by the user program. These blocks can contain any type of data
(i.e., they are used as generic memory locations by the compiler). We can treat each block as a
variant record, with the compiler routines viewing the block as consisting of some other type.
Thus, there is no space overhead because the user program can use the entire block for its own
purposes. When the block is returned, then the compiler routines use some of the space from the
block itself to link it into the list of available blocks, as shown in the figure in the last slide.

E I-l II HII Ir E!E - I I Eﬂf BI I &

Limitations of Fixed sized block allocation: In explicit allocation of fixed size blocks, internal
fragmentation can occur, that is, the heap may consist of alternate blocks that are free and in use,
as shown in the figure,

=1 =1 -1 =1 -1

The situation shown can occur if a program allocates five blocks and then de-allocates the
second and the fourth, for example.

Fragmentation is of no consequence il blocks are of fixed size, but if they are of variable size, a
situation like this is a problem, because we could not allocate a block larger than any one of the
free blocks, even though the space is available in principle.

So, if variable- sized blocks are allocated, then internal fragmentation can be avoided, as we only

allocate as much space as we need in a block. But this creates the problem of external
fragmentation, where enough space is available in total for our requirements, but not enough

space is available in continuous memory locations, as needed for a block of allocated memory.
For example, consider another case where we need to allocate 400 bytes of data for the next
request, and the available continuous regions of memory that we have are of sizes 300, 200 and
100 bytes. So we have a total of 600 bytes, which is more than what we need. But still we are
unable to allocate the memory as we do not have enough contiguous storage.

The amount of extemal fragmentation while allocating variable-sized blocks can become very
high on using certain strategies for memory allocation,

S0 we try to use certain strategies for memory allocation, so that we can minimize memory
wastage due to external fragmentation. These strategies are discussed in the next few lines,

. Storage can become fragmented, Situation may arise, If program allocates five blocks
. then de-allocates second and fourth block

RUN TIME STORAGE MANAGEMENT:

To study the run-ume storage management system it 1s sufficient to focus on the statements:
action, call, return and halt, because they by themselves give us sufficient insight into the
behavior shown by functions in calling each other and returning,

And the run-tme allocation and de-allocation of activations occur on the call of functions and
when they return,

There are mainly two kinds of run-time allocation systems: Static allocation and Stack
Allocation. While static allocation is used by the FORTRAN class of languages, stack allocation
is used by the Ada class of languages.

" " L 1etugn acklean
! “"t? ol ¢ o petumn ikl ens
call p
actkn -F - e
vl
action -3 6 i .t 2
Fotion Activation 1ecord Activation recorid fol
for ¢ (64 bytes) p (88 hytes)

T e adih#ss code

STATIC ALLOCATION: In this. A call statement is implemented by a sequence of two

instructions.

¥ A move instruction saves the return address
T A goto transfers control to the targel code.

The instruction sequence is
MOV #here+20, callee static-area

GOTO callee.code-area

callee.static-area and callee.code-area are constants referring to address of the activation record
and the first address of called procedure respectively.

. #here+20 in the move instruction is the return address; the address of the instruction following
the goto instruction

. A return from procedure callee is implemented by
GOTO *callee.static-area

For the call statement, we need to save the return address somewhere and then jump 1o
the location of the callee function. And to return from a function, we have to access the return
address as stored by its caller, and then jump to it. So for call, we first say: MOV #here+20,
callee static-arca. Here, #here refers 1o the location of the curremt MOV instruction, and
callee.static- area 1s a fixed location in memory, 20 i1s added to #here here, as the code
corresponding to the call instruction takes 20 bytes (at 4 bytes for each parameter: 4*3 for this
nstruction, and 8 for the next). Then we say GOTO callee. code-area, to take us to the code of
the callee, as callee.codearea is merely the address where the code of the callee starts. Then a
return from the callee is implemented by: GOTO *callee.static area. Note that this works only
because callee static-area is a constant,

Example:

. Assume each 100: ACTION-I
action 120: MOV 140, 364
block takes 20 132: GOTO 200
bytes of space 140: ACTION-2
Start address 160; HALT

of code for ¢ :

and p is 200: ACTION-3

100) and 200 220: GOTO *364

Department of Computer Science & Engineering Course File : Compiler Design

. The activation :
Records 3000:

arestatically 304
allocated starting :

at addresses 364;
300 and 364. 368:

This example corresponds to the code shown in slide 57. Statically we say that the code
for ¢ starts at 100 and that for p starts at 2(0. At some point, ¢ calls p. Using the strategy
discussed earlier, and assuming that callee.staticarea is at the memory location 364, we get the
code as given. Here we assume that a call to 'action’ corresponds to a single machine instruction
which takes 20) bytes.

STACK ALLOCATION : . Position of the activation record 1s not known until run time

Y . Position is stored in a register at run time, and words in the record are accessed with an
offset from the register

¥ . The code for the first procedure initializes the stack by setting up SP to the start of the
stack area

MOV #Stackstart, SP
code for the first procedure

HALT

In stack allocation we do not need to know the position of the activation record until run-
time. This gives us an advantage over static allocation, as we can have recursion. So this is used
in many modern programming languages like C, Ada, etc. The positions of the activations are
stored in the stack area, and the position for the most recent activation is pointed to by the stack
pointer. Words in a record are accessed with an offset from the register. The code for the first
procedure initializes the stack by setting up SP to the stack area by the following command:
MOV #Stackstart, SP. Here, #5tackstart is the location in memory where the stack starts,

A procedure call sequence increments SP, saves the return address and wransfers control to the
called procedure

ADD #caller.recordsize, SP
MOVE #here+ 16, *SP

GOTO callee.code_area

Consider the situation when a function (caller) calls the another function(callee), then
procedure call sequence increments SP by the caller record size. saves the return address and
transfers control to the callee by jumping to its code area. In the MOV instruction here, we only
need to add 16, as SP is a register, and so no space is needed to store *SP. The activations keep
getting pushed on the stack, so #caller.recordsize needs to be added to SP, to update the value of
SP to 1ts new value. This works as #callerrecordsize 15 a constant for a function, regardless of
the particular activation being referred to.

DATA STRUCTURES: Following data structures are used to implement symbol tables

LIST DATA STRUCTURE : Could be an array based or pointer based list. But this
implementation is

= Simplest to implement
- Use a single array to store names and information
- Search for a name is linear
Entry and lookup are independent operations
- Cost of entry and search operations are very high and lot of time goes into book keeping

Hash table: Hash table is a data structure which gives O(1) performance in accessing any
element of it. It uses the features of both array and pointer based hists,

- The advantages are obvious

REPRESENIING SCOPE INFORMATION

The entries in the symbol table are for declaration of names. When an occurrence of a name in
the source text is looked up in the symbol table, the entry for the appropriate declaration,
according to the scoping rules of the language, must be returned. A simple approach is to
maintain a separate symbol table for each scope.

Most closely nested scope rules can be implemented by adapung the data structures
discussed in the previous section, Each procedure is assigned a unique number. If the language is
block-structured, the blocks must also be assigned unique numbers. The name is represented as a
pair of a number and a name. This new name is added to the symbol table. Most scope rules can
be implemented in terms of following operations:

a) Lookup - find the most recently created entry.

b) Insert - make a new entry.

¢) Delete - remove the most recently created entry.
d) Symbol table structure

e) . Assign variables to storage classes that prescribe scope, visibility, and lifetime

f) - scope rules prescribe the symbol table structure

g) - scope: unit of static program structure with one or more variable declarations

h) - scope may be nested

i) . Pascal: procedures are scoping units

1) . C: blocks, functions, files are scoping units

k) . Visibility, lifetimes, global variables

I) .Common (in Fortran)

m) . Automatic or stack storage

n) . Static variables

0) storage class : A storage class 1s an extra keyword at the beginning of a declaration
which modifies the declaration in some way. Generally, the storage class (if any) is the
first word in the declaration, preceding the type name. Ex. static, extern etc.

p) Scope: The scope of a variable is simply the part of the program where it may be
accessed or written. It is the part of the program where the variable's name may be used.
If a variable is declared within a function, it is local to that function. Variables of the
same name may be declared and used within other functions without any conflicts. For
instance,

q) int funl()
[

nt a;
int b;

}

int fun2()

{

int a;
nt c;

}

Visibility: The visibility of a variable determines how much of the rest of the program
can access that varable. You can arrange that a vanable is visible only within one part of
one function, or in one function, or in one source file, or anywhere in the program.

r)} Local and Global variables: A variable declared within the braces [] of a function is
visible only within that function; variables declared within functions are called local

variables. On the other hand, a variable declared outside of any function is a global
variable , and it 1s potentially visible anywhere within the program.

s) Automatic Vs Static duration: How long do variables last? By default. local variables
(those declared within a function) have automatic duration: they spring into existence
when the function is called, and they (and their values) disappear when the function

returns. Global variables, on the other hand, have static duration: they last, and the values
stored in them persist, for as long as the program does. (Of course, the values can in
general still be overwritten, so they don't necessarily persist forever.) By default, local
variables have automatic duration. To give them static duration (so that, instead of
coming and going as the function is called, they persist for as long as the function does),
you precede their declaration with the static keyword: static int i; By default, a
declaration of a global variable (especially if it specifies an initial value) is the defining
instance, To make it an external declaration, of a variable which is defined somewhere
else, you precede it with the keyword extern: extern int j; Finally, to arrange that a global
variable is visible only within its containing source file, you precede it with the static
keyword: static int k; Notice that the static keyword can do two different things: it adjusts
the duration of a local variable from automatic to static, or it adjusts the visibility of a
global variable from truly global to private-to-the-file.

t) Symbol attributes and symbol table entries

u) Symbols have associated attributes

v) Typical attributes are name. type, scope, size. addressing mode ete.

w) A symbol table entry collects together attributes such that they can be easily set and
retrieved

x) Example of typical names in symbol table

Name Type

name character string
class enumeration
size integer

type enumeration

LOCAL SYMBOL TABLE MANAGEMENT :

Following are prototypes of typical function declarations used for managing local symbol table.
The right hand side of the arrows 1s the output of the procedure and the left side has the input.

NewSymTab : SymTab —®5ymTab

DestSymTab : SymTab —®SymTab

InsertSym : SymTab X Symbol =—#boolean

LocateSym : SymTab X Symbol =#boolean

GetSymAtur : SymTab X Symbol X Attr =—#boolean
SetSymAlttr : SymTab X Symbol X Attr X value =boolean
NextSym : SymTab X Symbol =—#5ymbol

MoreSyms : SymTab X Symbol =boolean

A major consideration in designing a symbol table is that insertion and retrieval should be as fast
as possible
. One dimensional table: search is very slow

. Balanced binary tree: quick insertion, searching and retrieval; extra work required to keep the
tree balanced

. Hash tables: quick insertion, searching and retrieval; extra work to compute hash keys
. Hashing with a chain of entries is generally a good approach

A major consideration in designing a symbol table 15 that insertion and retrieval should be
as fast as possible. We talked about the one dimensional and hash tables a few slides back. Apart
from these balanced binary trees can be used too. Hashing 1s the most common approach.

HASHED LOCAL SYMBOL TABLE
—y entry 1.1
entry 2.3
entry n.X
y 2 entry 2.2 —
kwy 2 entry n. 1
keyn
entry 2.1
cntry n.3

Hash tables can clearly implement ‘lookup’ and 'insert’ operations. For implementing the
delete’, we do not want to scan the entire hash table looking for lists containing entries to be
deleted. Each entry should have two links:

a) A hash link that chains the entry to other entries whose names hash to the same value - the
usual link in the hash table.

b) A scope link that chains all entries in the same scope - an extra link. If the scope link is left
undisturbed when an entry 1s deleted from the hash table, then the chain formed by the scope
links will constitute an inactive symbol table for the scope in question,

Nesting structure of an example Pascal program

PRI R S

war o by, i integer

o o asalign o T

war o b, e

Bresapin

a te e
end;

pocadhn e ;

vl o, b lmtegen:

mocadure

wall ©, il hegen;

beagin
C = a*il
LT

I caEdm e i
vl b, d: imagen;
Bre=apiny
b= a+*c

end;

i ocedun e)
vl by, int@gen;

varaping

I 2= el

end;

Ire=qnin

a = he+c

Look at the nesting structure of this program. Variables a, b and ¢ appear in global as
well as local scopes. Local scope of a variable overrides the global scope of the other variable
with the same name within its own scope. The next slide will show the global as well as the local
symbol tables for this structure. Here procedure I and h lie within the scope of g (are nested

within g).

GLOBAL SYMBOL TABLE STRUCTURE The global symbol table will be a collection of

symbol tables connected with pointers.

. Scope and wisibility rules
determine the structure of
global symbol table

For ALGOL class of
languages scoping rules
structure the symbol table as
tree of local tables

- Global scope as root
- Tables for nested scope as

children of the table for the
scope they are nested in

&) 's symtab

Integer a
Integer b
Integer c

e

Integer a
Integer b
Integer c

f{) 's symtab T

h{) ‘s symtab

e

tab ‘s symta
Integer a Integer b
Integer b Integer d

Integer c
Integer d

i{) 's symtab

Integer b
Integer d

The exact structure will be determined by the scope and wvisibility rules of the
language.The global symbol table will be a collection of symbol tables connected with pointers.
The exact structure will be determined by the scope and visibility rules of the language.
Whenever a new scope is encountered a new symbol table is created. This new table contains a
pointer back to the enclosing scope's symbol table and the enclosing one also contains a pointer
to this new symbal table. Any variable used inside the new scope should either be present in its
own symbol table or inside the enclosing scope's symbol table and all the way up to the root
symbaol table. A sample global symbol table i1s shown in the below figure.

BOWL
/Fﬂ' header 1™ T

— to exchange
mﬂm —
.“'H\
readarray cxchange \ quicksort
\ header — header beader
i
v
__m -
P purtition
—— | heador
i
J

Storage binding and symbolic registers : Translates variable names into addresses and the
process must occur before or during code generation

. Each variable is assigned an address or addressing method

. Each variable is assigned an offset with respect to base which changes with every
Invocation

. Variables fall in four classes: global, global static, stack, local (non-stack) static

The variable names have to be translated into addresses before or during code generation,

There 15 a base address and every name is given an offset with respect to this base which changes
with every invocation. The variables can be divided into four categories:

a) Global Variables : fixed relocatable address or offset with respect to base as global pointer

b) Global Static Variables : .Global variables, on the other hand, have static duration (hence
also called static variables): they last, and the values stored in them persist, for as long as the
program does. (Of course, the values can in general still be overwritten, so they don't necessarily
persist forever.) Therefore they have fixed relocatable address or offset with respect to base as
global pointer,

¢) Stack Variables : allocate stack/global in registers and registers are not indexable, therefore,
arrays cannot be in registers

. Assign symbolic registers to scalar variables

. Used for graph coloring for global register allocation

d) Stack Static Variables : By default, local variables (stack variables) (those declared within a
function) have automatic duration: they spring into existence when the function is called, and
they (and their values) disappear when the function returns. This 1s why they are stored in stacks
and have offset from stack/frame pointer.

Register allocation is usually done for global variables. Since registers are not indexable,
therefore, arrays cannot be in registers as they are indexed data structures. Graph coloring 1s a
simple technique for allocating register and minimizing register spills that works well in practice.
Register spills occur when a register is needed for a computation but all available registers are in
use. The contents of one of the registers must be stored in memory to free it up for immediate
use. We assign symbolic registers to scalar vanables which are used in the graph colonng,

a: global I local c[0..9): local

agp: global pointer fp: frame pointer
MIR LIR
a<a2 r1 < [gp+8]
r2 «<r1'2
[gp+8] < r2
b < a+c[1] r3 < [gp+98]
r4 < [fp-28]
rs « r3+r4
[fp-20]€15

Local Vanables in Frame

Requires two half word loads
Requires shift, or, and

Wastes space

-1 11 -1 -1 01 0.0

MNMames bound
to locations

Assign to consecutive locations; allow enough space for each
May put word size object in half word boundaries

Align on double word boundaries

And Machine may allow small offsets

LIR
s0 €« s0°2

s1 < [fp-28]
s2 €« s04+s1

Mames bound

to symbolic
registers

word boundaries - the most significant byte of the object must be located at an address whose

two least significant bits are zero relative to the frame pointer

half-word boundaries - the most significant byte of the object being located at an address

whose least significant bit is zero relative to the frame pointer ,

Sort variables by the alignment they need

- Store largest variables first

- Utomatically aligns all the vanables

- Does not require padding
- Store smallest variables first

- Requires more space (padding)
- For large stack frame makes more variables accessible with small offsets

While allocating memory to the vanables, sort variables by the alignment they need. You may:

Store largest variables first: It automatically aligns all the variables and does not require padding
since the next variable's memory allocation starts at the end of that of the earlier variable

. Store smallest variables first: It requires more space (padding) since you have to accommodate
for the biggest possible length of any variable data structure. The advantage is that for large stack
frame, more variables become accessible within small offsets

How to store large local data structures? Because they Requires large space in local frames
and therefore large offsets

- If large object is put near the boundary other objects require large offset either from fp (if
put near beginning) or sp (if put near end)

- Allocate another base register to access large objects

- Allocate space in the middle or elsewhere; store pointer to these locations from at a small
offset from fp

- Requires extra loads

Large local data structures require large space in local frames and therefore large offsets.
As told in the previous slide's notes, if large objects are put near the boundary then the other
objects require large offset. You can either allocate another base register to access large objects
or you can allocate space in the middle or elsewhere and then store pointers to these locations
starting from at a small offset from the frame pointer, fp.

int i§:

double fMoat x:
short int j:
fMloat vy:

Unsorted aligned

< T v

-16 -18 -20 -24

Sorted frames

- | Y JJ

o -8 -12 -16 -18

In the unsorted allocation you can see the waste of space in green. In sorted frame there is no
waste of space.

STORAGE ALLOCATION FOR ARRAYS

Elements of an array are stored in a block of consecutive locations. For a single dimensional
array, if low is the lower bound of the index and base is the relative address of the storage
allocated to the array 1.e., the relative address of Allow], then the i th Elements of an array are
stored in a block of consecutive locations

For a single dimensional array, if low is the lower bound of the index and base is the
relative address of the storage allocated to the array 1.e., the relative address of A[low], then the i
th elements begins at the location: base + (I - low)*™ w . This expression can be reorganized as
i*w + (base -low*w) . The sub-expression base-low*w 15 calculated and stored in the symbol
table at compile time when the array declaration 1s processed, so that the relative address of Afi]
can be obtained by just adding i*w to it

- Addressing Array Elements

- Arrays are stored in a block of consecutive locations

- Assume width of each element is w

- ith element of array A begins in location base + (i - low) x w where base is relative
address of Allow]

- The expression is equivalent to

- 1 X W+ (base-low x w)

—al X W 4+ const

2-DIMENSIONAL ARRAY: For a row major two dimensional array the address of Ali]])]
can be calculated by the formula :

base + ((i-low;)*n2 +j - low;)*w where low ; and low; are lower values of I and j and n2 is
number of values j can take i.e. n2 = high2 - low2 + 1,

This can again be written as :

((i * n2) +j) *w + (base - ((low; *n2) + low;) * w) and the second term can be calculated at
compile time.

In the same manner, the expression for the location of an element in column major two-
dimensional array can be obtained. This addressing can be generalized to multidimensional
arrays. Storage cun be either row major or column major approach.

Example: Let A be a 10x20 array therefore, n 1 = 10 and n 2 = 20 and assume w =4
The Three address code to access Aly.z] is

I1=}'*2ﬂ
L=t +2
fi=4%1,

t 3 =A-84 {((low; Xn2 Jlow:)Xwi=(1%20+1)*4=84)
ls=t:+13

XK=1l4
Let A be a 10x20 array
nl =10 and n2 = 20

Assume width of the type stored in the array 1s 4. The three address code to access Aly,z] is
tl=y*20
tl=tl+2
12 =4 *l]
13 =base A -84 [((low 1 *n2)+low 2 }*w)=(1*20+1)*4=84)
14 =12 +3
x=14

The following operations are designed : 1. mktable{previous): creates a new svmbol table and
returns a pointer to this table. Previous is pointer to the symbol table of parent procedure.

2. entire(table,name.type.offset): creates a new entry for name in the symbol table pointed to by
table .

3. addwidth{table,width); records cumulative width of entries of a table in its header.

4. enterproc(table,name ,newtable): creates an entry for procedure name in the symbol table
pointed 1o by table . newtable is a pointer to symbol table for name .

P— {t=mktable(nil);
push(t,tblptr);
push(.offset)}

{addwidth(top(tblptr).top(offset));

pop(thlptr);
poploffset)
D—+D; B

The symbol tables are created using two stacks: rbiptr o hold pointers to symbol tables of
the enclosing procedures and offser whose top element is the next available relative address for a
local of the current procedure. Declarations in nested procedures can be processed by the syntax
directed definitions given below. Note that they are basically same as those given above but we
have separately dealt with the epsilon productions. Go to the next page for the explanation.

P -> MD [addwidth (top(thiptr) ,top(offset));
pop(thiptr); pop(offset);

}
M == { t= mktable{nil);
push(t, thiptr);
push(D,offset);
}
D->D1 ; D2
D->procid | ND1 ; S { t = top{thiptr);
addwidth(t, top({offset));
pop(thiptr); pop(offset);|
enterproc(top(thiptr), id.name , t)
}
D->id:'T { enter (top(tbiptr), id.name, T.type , top{offset));
top(offset) = topioffsat) + T.width
}
N-> { t = mktable (op(thiptr));
push(ttbiptr); push(D,offset);
}

D —sproc id:
[t = mktable(top(tblptr)):
push(t, thlptr), push((, offset)]
DI1:5
| t=top(tblptr):
addwidth(t, top(oftser)):
pop(thlptr); pop(offset);;
enterproc{top(tblptr), id.name, 1)}
D—»id: T
| enter(top(tblptr), id.name, T.type. toploffset));
top(offset) = top (offset) + T.width |

The action for M creates a symbaol table for the outermost scope and hence a nil pointer is passed
in place of previous. When the declaration. D proc id ; NDI ; 8§ is processed, the action
corresponding to N causes the creation of a symbol table for the procedure; the pointer to symbaol
table of enclosing procedure is given by top(tblptr). The pointer to the new table is pushed on to
the stack thiptr and 0 is pushed as the initial offset on the offset stack. When the actions
corresponding to the subtrees of N, D1 and S have been executed, the offset corresponding to the
current procedure i.e., toploffset) contains the total width of entries in it. Hence top(offset) is
added to the header of symbol table of the current procedure. The top entries of thiptr and offset
are popped so that the pointer and offset of the enclosing procedure are now on top of these
stacks. The entry for id is added to the symbol table of the enclosing procedure. When the
declaration D -> id :T is processed entry for id is created in the symbol table of current
procedure. Pointer to the symbol table of current procedure is again obtained from top(tblptr).

Offset corresponding to the current procedure i.e. top(offset) is incremented by the width
required by type T to point to the next available location.

STORAGE ALLOCATION FOR RECORDS
Field names in records
T— record

[t = mktable(nil);

push(t, thlptr); push(l), offset)|

> end

[T.type = record(top(tblptr));

T.width = top{offset);

pop(tblptr); poploffset))

T - record LD end [1 = mktable(nil);

push(t, thiptr): push(0, offset)

I
L-> | T.type = record(top(tblptr)),

T.width = top(offset);

pop(tblpir); poploffset)

!

The processing done corresponding to records is similar to that done for procedures.

After the keyword record is seen the marker L creates a new symbol table. Pointer to this table
and offset (0 are pushed on the respective stacks. The action for the declaration D == id :T push
the information about the field names on the table created. At the end the top of the offset stack
contains the total width of the data objects within the record. This is stored in the atribute
T.width. The constructor record 1s applied to the pointer to the symbol table to obtain T.type.
Names in the Symbol table :
S=4d :=E
[p = lookup(id.place);
if p <> nil then emit(p := E.place)
else error|
E —#id
[p = lookup(id.name);
if p <> nil then E.place = p

else error)

The operation lookup in the translation scheme above checks if there is an entry for this
occurrence of the name in the symbol table. If an entry is found, pointer to the entry is returned
else nil is returned. Look up first checks whether the name appears in the current symbol table. If
not then it looks for the name in the symbol table of the enclosing procedure and so on. The
pointer o the symbol table of the enclosing procedure 15 obtained from the header of the symbol
table.

CODE OPTIMIZATION

Considerations for optimization : The code produced by the straight forward compiling
algorithms can often be made to run faster or take less space,or both. This improvement is
achieved by program transformations that are (raditionally called optimizauons. Machine
independent optimizations are program transformations that improve the target code without
taking into consideration any properties of the target machine. Machine dependant optimizations
are based on register allocation and utilization of special machine-instruction sequences.

Criteria for code improvement transformations

Simply stated, the best program transformations are those that yvield the most benefit for
the least effort,

- First, the wansformation must preserve the meaning of programs. That is, the
optimization must not change the output produced by a program for a given input, or
cause an error.

- Second, a transformation must, on the average, speed up programs by a measurable
amount,

- Third, the ranstormation must be worth the effort.

Some transformations can only be applied after detailed, often time-consuming analysis of the
source program, so there is little point in applying them to programs that will be run only a few
times.

Optimizing Compiler: Organization

Front end Code Generator

Transtformations

Control-flow | Data-flow I_
Analysis " Analysis | '

Code Optimizer

OBJECTIVES OF OPTIMIZATION: The main objectives of the optimization techniques are

as follows
I. Exploit the fast path in case of multiple paths fro a given situation.
2. Reduce redundant instructions.
3. Produce minimum code for maximum work.
4. Trade off between the size of the code and the speed with which it gets executed.

5. Place code and data together whenever it s required to avoild unnecessary searching of
data/code

During code transformation in the process of optimization, the basic requirements are as follows:
. Retain the semantics of the source code.
2. Reduce nme and/ or space.

3. Reduce the overhead involved in the optimization process.

Scope of Optimization: Control-Flow Analysis

Consider all that has happened up to this point in the compiling process—Ilexical
analysis, syntactic analysis, semantic analysis and finally intermediate-code generation. The
compiler has done an enormous amount of analysis, but it still doesn’t really know how the
program does what it does. In control-flow analysis, the compiler figures out even more
information about how the program does its work, only now it can assume that there are no
syntactic or semantic errors in the code.

Control-flow analysis begins by constructing a control-flow graph. which is a graph of
the different possible paths program flow could take through a function. To build the graph, we
first divide the code into basic blocks. A basic block i1s a segment of the code that a program
must enter at the beginning and exit only at the end. This means that only the first statement can
be reached from outside the block (there are no branches into the middle of the block) and all
statements are executed consecutively after the first one 1s (no branches or halts unul the exit).
Thus a basic block has exactly one entry point and one exit point. If a program executes the first
instruction in a basic block, it must execute every instruction in the block sequentially after it.

A basic block begins in one of several ways:
» The entry point into the function

* The target of a branch (in our example, any label)
* The instruction immediately following a branch or a return

A basic block ends in any of the following ways:
* A jump statement
« A conditional or unconditional branch
* A return statement

Now we can construct the control-flow graph between the blocks. Each basic block is a
node in the graph, and the possible different routes a program might take are the connections, 1.e.
if a block ends with a branch, there will be a path leading from that block to the branch target.
The blocks that can follow a block are called its successors. There may be multiple successors or
just one. Similarly the block may have many, one, or no predecessors, Connect up the flow graph
for Fibonacct basic blocks given above. What does an if then-else look like in a flow graph?
What about a loop? You probably have all seen the gce warning or javac error about:
"Unreachable code at line XXX." How can the compiler tell when code is unreachable?

LOCAL OPTIMIZATIONS

Optimizations performed exclusively within a basic block are called “local
optimizations”, These are typically the easiest 1o perform since we do not consider any control
flow information; we just work with the statements within the block. Many of the local
optimizations we will discuss have corresponding global optimizations that operate on the same
principle, but require additional analysis to perform. We'll consider some of the more commaon
local optimizations as examples.

FUNCTION PRESERVING TRANSFORMATIONS

Y Common sub expression elimination
Y Constant folding

Y Variable propagation

Y Dead Code Elimination

¥ Code motion

=

strength Reduction

L C Sub E T T

Two operations are common if they produce the same result. In such a case, it is likely more
efficient to compute the result once and reference it the second time rather than re-evaluate it. An

expression is alive if the operands used to compute the expression have not been changed. An
expression that is no longer alive is dead,
Example :

a=h*c:

d=b*c+x-v;
We can eliminate the second evaluation of b*c from this code if none of the intervening
statements has changed its value. We can thus rewrite the code as

tl=b*c;
a=tl;
d=tl+x-y;

Let us consider the following code

a=b*c;

b=x;

d=b*c+ x-y,
in this code, we can not eliminate the second evaluation of b*c because the value of b is changed
due to the assignment b=x before it is used in calculating d.

We can say the two expressions are common if
Y They lexically equivalent i.e., they consist of identical operands connected to each other

by identical operator,
They evaluate the identical values i.e., no assignment statements for any of their operands
exist between the evaluations of these expressions,
The value of any of the operands use in the expression should not be changed even due 1o
the procedure call.
Example :

c=a*b;

X=a;

d=x*b;

We may note that even though expressions a*b and x*b are common in the above code,
they can not be treated as common sub expressions.

2. Variable Propagation:

Let us consider the above code once again

1

=1

c=a*b;
K=,
d=x*b+4;

if we replace x by a in the last statement, we can identify a*b and x*b as common sub
expressions. This technique is called varnable propagation where the use of one varable 1s
replaced by another variable if it has been assigned the value of same
Compile Time evaluation

The execution efficiency of the program can be improved by shifting execution time
actions to compile ime so that they are not performed repeatedly during the program execution.
We can evaluate an expression with constants operands at compile time and replace that
expression by a single value. This is called folding. Consider the following statement:

a= 2%(22.0/7.0)*r;
Here, we can perform the computation 2*%(22.0/7.0) at compile time itself,

3. Dead Code Elimination:

If the value contained in the variable at a point is not used anywhere in the program
subsequently, the variable 1s said to be dead at that place. If an assignment 1s made to a dead
variable, then that assignment is a dead assignment and it can be safely removed from the
program.

Similarly, a piece of code is said to be dead, which computes value that are never used anywhere
in the program.

c=a*b;

X=a:

d=x*h+4;
Using variable propagation, the code can be written as follows:
c=a*b;
X=a,
d=a*b+d;
Using Common Sub expression elimination, the code can be written as follows:
tl= a*b;
c=tl,
X=a,
d=t1+4;
Here, x=a will considered as dead code. Hence it is eliminated.
t1=a*b;
c=tl,
d=t1+4;

4. Code Movement:

The motivation for performing cade movement in a program is to improve the execution time of
the program by reducing the evaluation frequency of expressions. This can be done by moving
the evaluation of an expression to other parts of the program. Let us consider the bellow code:

If{a<1()

|

b=x"2-y"2,

]

else

|

b=5;

a=(x"2-y"2)*10,

|

Al the time of execution of the condition a<10, x*2-y*2 5 evaluated twice. 50, we can optimize
the code by moving the out side to the block as follows:

1= xA2-y"2;

If(a<10)

5. Strength Reduction:

In the frequency reduction transformation we (ried (o reduce the execution frequency of
the expressions by moving the code. There is other class of transformations which perform
equivalent actions indicated in the source program by reducing the strength of operators. By
strength reduction, we mean replacing the high strength operator with low strength operator with
out affecting the program meaning. Let us consider the bellow example:

i=1;

while (i<10)

{

y=1*4;

]

The above can written as follows:
=]
t=4;

while (1<10)

|

y=t;
t=t+4:
]

Here the high strength operator * is replaced with +,

GLOBAL OPTIMIZATIONS, DATA-FLOW ANALYSIS:

So far we were only considering making changes within one basic block. With some
Additional analysis, we can apply similar optimizations across basic blocks, making them global
optimizations. It’s worth pointing out that global in this case does not mean across the entire
program. We usually optimize only one function at a tme. Inter procedural analysis i1s an even
larger task, one not even attempted by some compilers,

The additional analysis the optimizer does to perform optimizations across basic blocks is
called data-flow analysis. Data-flow analysis 1s much more complicated than control-flow

analysis, and we can only scratch the surface here.

Let’s consider a global common sub expression elimmation optimization as our example
Careful analysis across blocks can determine whether an expression is alive on entry to a block.
Such an expression is said to be available at that point. Once the set of available expressions 15
known, common sub-expressions can be eliminated on a global basis. Each block 1s a node in
the flow graph of a program. The successor set (succ(x)) for a node x is the set of all nodes that x
directlly flows into. The predecessor set (pred(x)) for a node X is the set of all nodes that flow
directly into x. An expression is defined at the point where it is assigned a value and killed when
one of its operands is subsequently assigned a new value. An expression is available at some
point p in a flow graph if every path leading to p contains a prior definition of that expression
which 1s not subsequently killed. Lets define such useful functions in DF analysis in following
lines.

avail[B] = set of expressions available on entry to block B

exit[B] = set of expressions available on exit from B

avail[B] = 1 exit[x]: x € pred[B] (i.e. B has available the intersection of the exit of its
predecessors)

killed[B] = set of the expressions killed in B

defined[B] = set of expressions defined in B

exit[B] = avail[B] - killed[B] + defined[B]

avail[B] = 1N (avail[x] - killed[x] + defined[x]) : x € pred[B]

Here is an Algorithm for Global Common Sub-expression Elimination:
1) Frst, compute defined and killed sets for each basic block (this does not involve any of its

predecessors or SuCCessors).
2) Iteratively compute the avail and exit sets for each block by running the following algorithm
until you hit a stable fixed point:
a) ldentify each statement s of the form a = b op ¢ in some block B such that b op ¢ is
available at the entry to B and neither b nor ¢ is redefined in B prior to s,
b) Follow flow of control backward in the graph passing back to but not through each
block that defines b op ¢. The last computation of b op ¢ in such a block reaches s.
c) Adter each computation d = b op ¢ identified in step 2a, add statement € = d o that
block where t is a new temp.
d) Replacesbya=t
Try an example to make things clearer:
main:
BeginFunc 28,
b=a+2;
c=4*h;
tmpl = b <c¢;
iNZ tmp| goto L1 :
b=1l;
LI1:

d=a+2;
Endlunc ;

First, divide the code above into basic blocks. Now calculate the available expressions for each
block. Then find an expression available in a block and perform step 2c above. What common
sub-expression can you share between the two blocks? What if the above code were:

main:
BeginFunc 28;
b=a+2;
c=4%*h;

mpl =b<c;
IINZ tmpl Goto L1 ;

=}

Z=a + 2 ; <========= an additional line here
L1:

d=a+2;

EndFunc ;

code improvements. For example, peephole optimizations might include elimination of
multiplication by 1, elimination of load of a value into a register when the previous instruction
stored that value from the register to a memory location, or replacing a sequence of instructions
by a single instruction with the same effect. Because of its myopic view, a peephole optimizer
does not have the potential payoff of a full-scale optimizer, but it can significantly improve code
at a very local level and can be useful for cleaning up the final code that resulted from more
complex optimizations. Much of the work done in peephole optimization can be though of as
find-replace activity, looking for certain idiomatic patterns in a single or sequence of two (o three
Instructions than can be replaced by more efficient alternatives.

For example, MIPS has instructions that can add a small integer constant to the value in a
register without loading the constant into a register first, so the sequence on the left can be
replaced with that on the right:

I S0, 10

Iw Stl, -8($fp)

add $12, $t1, $t0

sw Stl, -8(5fp)

Iw $tl, -B($fp)

addi $12, $t1, 10

sw Stl, -B(5fp)

What would you replace the following sequence with?

lw $t0, -8(5fp)

sw $t0, -B(5fp)

What about this one?

mul $tl, $t0, 2

QBIECT CODE GENERATION
Machine dependent code optimization:

In final code generation, there is a lot of opportunity for cleverness in generating efficient
target code. In this pass, specific machines features (specialized instructions, hardware pipeline
abilities, register details) are taken into account to produce code optimized for this particular
architecture,

Register Allocation

One machine optimization of particular importance is register allocation, which is
perhaps the single most effective optimization for all architectures. Registers are the fastest kind
of memory available, but as a resource, they can be scarce. The problem is how to minimize
traffic between the registers and what lies beyond them in the memory hierarchy to eliminate
time wasted sending data back and forth across the bus and the different levels of caches. Your
Decafl back-end uses a very naive and inefficient means of assigning registers, it just fills them
before performing an operation and spills them right afterwards. A much more effective strategy
would be to consider which variables are more heavily in demand and keep those in registers and
spill those that are no longer needed or won't be needed until much later, One common register
allocation technique is called "register coloring”, after the central idea to view register allocation
as @ graph colorng problem. If we have 8 registers, then we try to color a graph with eight
different colors. The graph’s nodes are made of "webs" and the arcs are determined by
calculating interference between the webs. A web represents a vanable’s defintions, places
where it is assigned a value (as in x = ...), and the possible different uses of those definitions (as
iny =x+ 2), This problem, in fact, can be approached as another graph. The definition and uses
of a variable are nodes, and if a definition reaches a use, there is an arc between the two nodes. If
two portions of a vanable’s definition-use graph are unconnected, then we have two separate
webs for a variable. In the interference graph for the routine, each node is a web, We seek 1o
determine which webs don't interfere with one another, so we know we can use the same register
for those two variables, For example, consider the following code:

1= 1K
=20,
X=i+j:
y=j+ki

We say that i interferes with j because at least one pair of i’s definitions and uses 1s
separated by a definition or use of j, thus, i and j are "alive" at the same time. A variable is alive
between the time it has been defined and that definition’s last use, after which the variable is
dead. If two variables interfere, then we cannot use the same register for each. But two variables
that don't interfere can since there is no overlap in the liveness and can occupy the same register.

Once we have the interference graph constructed, we r-color it so that no two adjacent nodes
share the same color (r is the number of registers we have, each color represents a different
register). You may recall that graph-coloring is NP-complete, so we employ a heuristic rather
than an optimal algorithm. Here is a simplified version of something that might be used:
I. Find the node with the least neighbors, (Break ties arbitrarily.)
2. Remove 1t from the interference graph and push it onto a stack
3. Repeat steps | and 2 until the graph is empty.
4. Now, rebuild the graph as follows:
a. Take the top node off the stack and reinsert it into the graph
b. Choose a color for it based on the color of any of its neighbors presently in the
graph, rotating colors in case there is more than one choice.,
¢. Repeat a and b until the graph is either completely rebuilt, or there is no color
available to color the node.
I we get stuck, then the graph may not be r-colorable, we could try again with a different
heuristic, say reusing colors as often as possible. If no other choice, we have to spill a variable to
memaory.

Instruction Scheduling:

Another extremely important optimization of the final code generator is instruction
scheduling. Because many machines, including most RISC architectures, have some sort of
pipelining capability, effectively harnessing that capability requires judicious ordering of
instructions. In MIPS, each instruction is issued in one cycle, but some take muluple cycles to
complete. It takes an additional cycle before the value of a load is available and two cycles for a
branch to reach its destination, but an instruction can be placed in the "delay slot” after a branch
and executed in that slack time. On the left is one arrangement of a set of instructions that
requires 7 cycles. It assumes no hardware interlock and thus explicitly stalls between the second
and third slots while the load completes and has a Dead cycle after the branch because the delay
slot holds a noop. On the right, a more Favorable rearrangement of the same instructions will
execute in 5 cycles with no dead Cycles.

Iw $t2, 4(51p)
Iw $13, 8(Sfp)
noop

add $t4, 512, $13
subi $15, $t5, |
goto L1

naop

Iw 512, 4(5fp)
Iw 5t3, 8(5fp)
subi $15, $15, 1
goto LI

add $t4, 312, 513

Register Allocation

One machine optimization of particular importance is register allocation, which is
perhaps the single most effective optimization for all architectures. Registers are the fastest kind
of memory available, but as a resource, they can be scarce. The problem 15 how 10 minimize
traffic between the registers and what lies beyond them in the memory hierarchy to eliminate
time wasted sending data back and forth across the bus and the different levels of caches. Your
Decal back-end uses a very naive and inefficient means of assigning registers, it just fills them
before performing an operation and spills them right afterwards. A much more effective strategy
would be to consider which variables are more heavily in demand and keep those in registers and
spill those that are no longer needed or won't be needed until much later. One common register
allocation technique is called "register coloring”, after the central idea to view register allocation
as a graph coloring problem. If we have 8 registers, then we try to color a graph with eight
different colors. The graph’s nodes are made of "webs" and the arcs are determined by
calculating interference between the webs. A web represents a vaniable’s definitions, places
where il is assigned a value (as in x = ...), and the possible different uses of those definitions (as
iny = x+ 2). This problem, in fact, can be approached as another graph. The definition and uses
of a variable are nodes, and if a definition reaches a use, there is an arc between the two nodes, If
two portions of a vanable’s defimtion-use graph are unconnected, then we have two separate
webs for a variable. In the interference graph for the routine, each node i1s a web. We seek to
determine which webs don't interfere with one another, so we know we can use the same register
for those two variables, For example, consider the following code:

1= 10:

j = 20;
X=1+]
y=j+k:

We say that i interferes with j because at least one pair of i’s definitions and uses is
separated by a definition or use of j, thus, i and j are "alive” at the same time. A variable is alive
between the time it has been defined and that definition’s last use, after which the vanable is
dead. If two variables interfere, then we cannot use the same register for each. But two variables
that don't interfere can since there is no overlap in the liveness and can occupy the same register,
Once we have the interference graph constructed, we r-color it so that no two adjacent nodes
share the same color (r is the number of registers we have, each color represents a different
register), You may recall that graph-coloring is NP-complete, so we employ a heuristic rather
than an optimal algorithm. Here is a simplified version of something that might be used:

|. Find the node with the least neighbors, (Break ties arbatranly.)
2. Remove it from the interference graph and push it onto a stack
3. Repeat steps 1 and 2 until the graph is empty.
4. Now, rebuild the graph as follows:
a. Take the top node off the stack and reinsert it into the graph

b. Choose a color for 1t based on the color of any of its neighbors presently in the graph,
rotating colors in case there is more than one choice.
¢. Repeat a and b until the graph is either completely rebuilt, or there is no color available
to color the node,
If we get stuck, then the graph may not be r-colorable, we could try again with a different
heuristic, say reusing colors as often as possible. If no other choice, we have to spill a variable to
memaory.

CODE GENERATION:

The code generator generates target code for a sequence of three-address statement. It
considers each statement in turn, remembering if any of the operands of the statement are

currently in registers, and taking advantage of that fact, if possible. The code-generation uses
descriptors to keep track of register contents and addresses for names,

I. A register descriptor keeps track of what is currently in each register. It 1s consulted whenever
a new register is needed. We assume that imtially the register descriptor shows that all registers
are empty. (If registers are assigned across blocks, this would not be the case). As the code
generation for the block progresses, each register will hold the value of zero or more names at
any given time.

2 An address descriptor keeps track of the location (or locations) where the current value of the
name can be found at run time. The locatnon might be a register, a stack location, a memory
address, or some set of these, since when copied, a value also stays where it was. This
information can be stored in the symbol table and is used to determine the accessing method for
a name.

CODE GENERATION ALGORITHM :
for each X =Y op Z do
- Invoke a function getreg to determine location L. where X must be stored. Usually L is a
register.
- Consult address descriptor of Y to determine Y. Prefer a register for Y'. If value of Y not
already in L generate
Mov Y.L

- (Generate

opZ, L

Again prefer a register for Z. Update address descriptor of X to indicate X 1sin L. If L is a
register update its descriptor to indicate that it contains X and remove X from all other register

descriptors.

. If current value of Y and/or Z has no next use and are dead on exit from block and are in
registers, change register descriptor to indicate that they no longer contain Y and/or Z.

The code generation algorithm takes as input a sequence of three-address statements constituting
a basic block. For each three-address statement of the form x := y op z we perform the following
actions:

I. Invoke a function getreg to determine the location L where the result of the
computation y op z should be stored. L will usually be a register, but it could also be a
memory location. We shall describe getreg shortly.

2. Consult the address descriptor for u to determine y', (one of) the current location(s) of
y. Prefer the register for v' if the value of v is currently both in memory and a register. If

the value of u is not already in L, generate the instruction MOV y', L to place a copy of y
in L.

3. Generate the instruction OP 2, L where 2’ 15 a current location of z. Again, prefer a
register 1o a memory location if z is in both, Update the address descriptor to indicate that
x 1s in location L. If L is a register, update its descriptor to indicate that it contains the
value of x, and remove x from all other register descriptors,

4, If the current values of y and/or v have no next uses, are not live on exit from the
block, and are in registers, alter the register descriptor to indicate that, after execution of
X 1=y op z, those registers no longer will contain y and/or 2, respectively.

FUNCTION getreg:

1. If Y is in register (that holds no other values) and Y is not live and has no next use after
X=YoplZ
then return register of Y for L.
2. Failing (1) return an empty register
3. Failing (2) if X has a next use in the block or op requires register then get a register R, store its
content into M (by Mov R, M) and uvse it
4. Else select memory location X as L

The function getreg returns the location L to hold the value of x for the assignment x := y op 2.

L. If the name v is in a register that holds the value of no other names (recall that copy
instructions such as x := y could cause a register to hold the value of two or more variables

simultaneously), and y is not live and has no next use after execution of X := y op 2, then return
the register of y for L. Updale the address descriptor of y to indicate that y is no longer in L.

2 Failing (1), return an empty register for L if there is one.

3 Failing (2), if x has a next use in the block, or op is an operator such as indexing, that requires
a register, find an occupied register R. Store the value of R into memory location (by MOV R,
M) if it is not already in the proper memory location M, update the address descriptor M, and
return R. If R holds the value of several variables, a MOV instruction must be generated for each
variable that needs to be stored. A suitable occupied register might be one whose datum is
referenced furthest in the future, or one whose value is also in memory.,

4. If x is not used in the block, or no suitable occupied register can be found, select the memory
location of x as L.,

Example :
Stmt code reg desc addr desc
t =a-b mov a,R g R o contains t | t,in Ry
sub bR
t; =a-c mov a,R | Ry contains t | 1y in Ry
sub ¢,R, R | contains t; tain Ry
ta =ty +t > add R | Ry R gcontains ts tyin R g
R ; contains t» tsin R,
d=1y +12 addR; Ry R gcontains d din Ry
mov R .d din Ry and
memory

For example, the assignment d = (a - b) + (a - ¢) + (a - ¢) might be translated into the following
three- address code sequence:

ty=a-b

tz=a-¢

tz3=t+ 12

d=t:+ 12

The code generation algorithm that we discussed would produce the code sequence as shown.

Shown alongside are the values of the register and address descriptors as code generation
progresses.

DAG for Register allocation:

DAG (Directed Acyclic Graphs) are useful data structures for implementing
transformations on basic blocks. A DAG gives a picture of how the value computed by a
statement in a basic block is used in subsequent statements of the block. Constructing a DAG
from three-address statements is a good way of determining common sub-expressions
(expressions computed more than once) within a block, determining which names are used inside
the block but evaluated outside the block, and determining which statements of the block could
have their computed value used outside the block.

A DAG for a basic block is a directed cyclic graph with the following labels on nodes:

I. Leaves are labeled by unique identifiers, either variable names or constants, From the
operator applied to a name we determine whether the l-value or r-value of a name 1s needed,
most leaves represent r- values. The leaves represent initial values of names, and we subscript
them with () to avoid confusion with labels denoting "current” values of names as in (3) below,

2. Interior nodes are labeled by an operator symbol,
3. Nodes are also optionally given a sequence of identifiers for labels. The intention is
that interior nodes represent computed values, and the identifiers labeling a node are deemed to

have that value.

DAG representation Example:

b Ly, 55, L prod

2. v, =aly] +

3. ¢, =4 / \

4. t, = b[t.] prod, .

5. t,=t, " ¢, o Xk ()
6. t. = prod +t, [[<=

7. prod:=rt, / W T, / \
8. ¢, =j+1 a b * +4 i 20
9. im=t, P \/ \1t

10.if i <= 20 goto (1) 4 0

For example, the slide shows a three-address code. The comesponding DAG is shown. We

observe that each node of the DAG represents a formula in terms of the leaves, that is, the values
possessed by variables and constants upon eniering the block. For example, the node labeled t 4
represents the formula

b4 * 1]

that is, the value of the word whose address is 4%i bytes offset from address b, which is the
intended value of t 4,

Code Generation from DAG

S;=d*i Si=4%i

S: = addr(A)-4 S 2 =addr(A)4
S3=5:[8,] S53=5:18]
Ss=4%i

Sz = addr(B)-4 S s=addr(B)-4
Sﬁ=55[5_|] 56=SEIS~I]
S7=83%S, S7=5:*8¢

Sg = prod+5;

prod = Sy prod = prod + S 5
Se = 1+1

1=58, I=1+1

If I <= 20 goto (1) If 1 <=20goto (1)

We see how 1o generate code for a basic block from its DAG representation, The
advantage of doing so is that from a DAG we can more easily see how to rearrange the order of
the final computation sequence than we can starting from a linear sequence ol three-address
statements or quadruples. If the DAG is a ree, we can generate code that we can prove is optimal
under such criteria as program length or the fewest number of temporaries used. The algorithm
for optimal code generation from a tree is also useful when the intermediate code 1s a parse tree.

Rearranging order of the code

Consider following basic
block :

x
tl=a+h "*/ \,l’
t2=c+d \ \\
t3=e-t2 b *» b
X=t1-13) / \
C 4

and 1ts DAG given here.

Here, we briefly consider how the order in which computations are done can affect the
cost of resulting object code, Consider the basic block and its corresponding DAG representation

as shown in the slide.

Rearranging order .

Three adress code

Rearranging the code as

for the DAG ts=c+d
(assuming only two
registers are I3=e-t2
available)

ti=a+b
MOV a, Ry X=t;-43
ADD b, Ry gives
MOV R, MOV ¢, Ry
ADD A, R, ADDd, R
MOV Ry . t; Register spilling MOVe,R
MOV ¢, Ry SUBRy, R,
SUBR ;. Ry MOV a, Ry
MOV R, Register reloading ADD b, R,
SUBRy, Ry SUBR,.Rq
MOVR,;.X MOVR,,.X

If we generate code for the three-address statements using the code generation algorithm
described before, we get the code sequence as shown (assuming two registers RO and R1 are
available, and only X is live on exit). On the other hand suppose we rearranged the order of the
statements so that the computation of t | occurs immediately before that of X as:

[1=E+d
tz=e-12
ty=a+b
X=1 -1z

Then, using the code generation algorithm, we get the new code sequence as shown (again only
RO and R1 are available). By performing the computation in this order, we have been able to
save two instructions; MOV RO, t 1 (which stores the value of RO in memory location t |) and
MOV t 1, RI (which reloads the value of t 1 in the register R1).

