Part 0
Why Use Logic?
Why Prove Programs Correct?

A story

We have just Mlimished writing a large program (3000 lecs) Among
other 1hangi, 1he program compules as miermediate results the quotenl ¢
and remainder ¢ ansing from dovding & non-negative indcger v by a pose
tive imteger v For example, with 1 =7 and v =2, the program calculates
§ =) jsinge T+2= 3 and r = | jsince the remainder when 7 iy divided by
Inml)

Our program appears below, with dots . " representing the parts of
ihe program that precede and follow the remaimder-guotent calkoulation.
The cakculation is performed as given because the program will sometnmes
be caeculed on 8 micro-computer that hay no mteger divimon, and porta-
Bty must be maintained a1 all costs’ The remaindergquotient calculation
actually serms quite wmple, uace + cannol be wied, we have elected 10
repeatedly subtract diveor v from & copy of x, keeping wack of how
many subtractions are made, untl another subtraction would yxcld a mcga-
Ve inleges

r=u; g=0;
while r >y do
begin rie r—y. g™ g+l end.

We're ready 10 debug the program Wiah rospect 1o the remainder-
quotient calculation. we're smarn enough to realize that the divisor should
mitially be grester than O and thal upom i wrminatios the vanables
should satndy the {ormula
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0 we add some output statements 10 check the calculanions

write (dividend & =, x, 'divisor ¥ =, ¥},
r=x. =0
while » >y do

beginr " r—y. g% g+l end.
write(pg +r =, y®q 1)

Unfortunawly, we get voluminous outpul because the program segment
occurs in a loop, 30 our firsl test rum i3 wasied. We try to be more sclec-
tive about what we prinl. Actuslly. we necd 1o know valuey only when an
crron s detected Having heard of a new feature just imserted imto the
compiler, we decide o iy . If & Boolean expression appears within
braces | and | at a point s the program, then, whenever “flow of control™
reaches that point during exccution. it s cheched if false, 8 message and
& dump of the program ariables are pristed, il tree, enecution continees
normally. IThew Boolean cxpressions are called aswwrtioms, wnce in efTect
we are asscrring that they should be true when low of control reaches
them  The systems prople encourage leaving assertions in the program,
because they help document in,

Protests aboutl ineflicmncy dunng produchion rum arc swepl amde by
the statcmgnt 1hat there w a swtch i the compalor 1o turn ofl asscrtion
checking  Also, afier some thought, we decide it may be better 1o always
check asseriions  detection of an error dunng production would be well
worth the catra cost

S0 we sdd asscrtions 1o the program

Iy >0}
rEa.g=o
(1) while r >y do
begimr=r=y. g=q*l end

jx =g +r)

Testing now resulic in far less outpul, and we make progress. Asscrtion
cheching detects an error during & tes run becauss v s O just belore a
remainder-gquotesd calkculation, and i 1akey oaly four hours 1o lind the
error in the calowlanion of 3 and fix it
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But then we spend 4 day tracking down an ertor for which we recerved
no mice false-assernion message We fimally derermine that the remainder-
guotient calculation resulied n

x=6y=)g=1r=3

Swre emough, bath awertions v (1) are true with these values, the problem
s that the remainder should be less than the divisor, and it e, We
detcrmine that the loop condmon should be r 2y matead of r >¢. I
oaly the revult awcition wore sirong caough — only we had used the
sssertion ¥ =% +r and r <y — we would have saved 2 day of work!
Why didnt we think of o’

We fin the error and snseri the sironger asserison

Lv >>0j
rzx, g=ik
while r =y do
beginr =r -y, g =gt ond
lx =y%g +r omdr <jy|

Things go fline for a while, but one day we et incompre hensible oulpul.
It tures oul that the quotieni-remamder algonithm resulled in & ncgative
remuimder ¢ = —7  But the remander shouldn be negative’ And we find
out that 7 wai scgative bevauie metially v was =2 Ahhk, anoiher error
im calculating the input 10 the guotient.remainder algorthm — r na't s
pored 1o be nepative’ But we could have caught the error curber and
saved 1wo dayy scarching. w (act we showld have caught @ carher; all we
had (o do was make the nnal and Naal sssermions lor the program seg-
ment siroag cnough. Once more we [ix an ervor and strengihen an asser-
tion

0%y and 0<y|
T E, gt
whille r =y do
begin ro= r=y. girn g+l end
la="g+r sndOr <y|)

oW

It sure would be nice to be able to vent the nght assertions Lo use in
iess ad Aoc fmasmon Why cant we think of them® Does @ have 1o be &
tral-and-crror procew” Part of our problem here wan carclosaness s
speciflying what the program segment was 1o do —we should have written
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the mitial sssertion (0 €y and 0<y ) and the linal ssserion (& = 3% +»r

ond O5r <y) beforr writing the program segment. for they form the
definmon of guotsnt and remander

But what sbout the ermor we made in the condition of the while loop®
Could we have prevented that lrom the beginming® s there s & way 1o
prove. just from the program asd sssertions, that the aseriions sre 1rue
when Mlow of control reaches them? Let's see what we can do.

Just before the loop it secms that part of our result,
(2) x =g +r

holds, unce 1 =7 and ¢ =0 And from the asugnments in The loop body
we conclude that of (2) B e before cuecution of the loop body thew it s
true after sy excoution, so o will be true just belore and alicr Fvery dera-
thon of the loop  Leths imsen it a1 an assertion i the obvious places, and
Kty alno make all asseriions aa sirong o pomible

[0y and Oy

riex; gio

[0xr and Dy mnll v = y*g +r|

while » 2>y do

begin (O<r and 0 <y Cr and v =y +r]

rer=y, g=q+l
0<r amd O<y amnd x = y*g +r|

end.

05r <y anll v = 3% +r|

Now, how can we canily determune a corret loop condition. or, given the
condiion, how can we prosve il m cormeet™ When the loop terminstes |he
condmion » false. Upon termination we want r <<y, 50 that ibe comple-
ment, r 2y must be the correct loop conditvon. How casy that was!

ht secms that if we koew how 1o make all sssertions aa strong as possi-
bic and ol we learned how Lo reason carcfully aboul assertions and pro-
grams, them we woulda'l! make so many mstakes. we would Amow our
program was cofrect, and we woulda’ sced 10 debug programs s all'
Hence, the days spent running test cases, looking through output and
sarching for erroms could be spent in other ways
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The story suggests that assertioms, of simply Boolean eupressions, are
really necded in programming.  Bul ot s not enough 10 keow how 10 wrile
Boolean ¢ uprossaons, one neods 1o know how (o regson with them 1o wm-
pidy them, 1o prove that one (ollows lrom another, 1o prove thal onc
Bl troe in some state, and w0 fonth. Asd, lnier on, we will wee that it s
mecessary Lo use @ hind of sasertion that is aot part of the usual Boolean
capression language of Pascal, PL/I or FORTRAN, the “guanisfied™
waacilion

Kaowing how 1o reason about assertions i one thing. knowing how 10
reason aboul programa is another. (n the pant 10 vears, compuler sOence
has come a long way in the study of provang programs correct. We are
rcachiag the point where the subgeet can be laught 1o uadergradusics, o
1o anyome with some waining in programming and the will 10 become
more proficieal. More importantly, the study of program correcimess
proofs has led to the discovery and clucdation of methods for developing
programs  Basically, one attempts 10 develop & program and s proof
hand-in-hand, with the prool sdeas kading the way' I the methods are
pracioed with care, they can lead 10 programs that are free of crrors, that
tshke much less time 1o develop and debug. and that are much maore easily
undertood (by thow who have studed the subject)

Above, | mentioned that programs could be free ol errors and, 0 &
way, | imphed that debugpng would be unnecewsary  This poved needs
some clarification. Feea though we can become more proficient i pro-
gramming. we will still make errors, even f oaly of a symtactic nature
itypoa). We are only human. Hencr, some testing will always br neces-
sary. But o should sot be called debuggng. for the word debugging
implies the exmience of bugs, whech are wernbly difficult 1o climinaie. No
matier how many fles we swal, there will always be more. A dascplined
mothod of programming showld pye more confidomcr than that! We
should 1un el casey not 1o ook for bugs. bul o increase our confsdencr
ina program we are guile sare & correct; Minding an ermor should be the
excephion rather than ihe rule.

With ths motivation, ket us turm 1o owr first subyect, the study of loge
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and Predicates

Chapter | defings the syniax of propowtions — Boolcan cxprossons
uung only Boolcan varables — and shows how to evalusie theem Chapacr
2 pves rules for manipulsting propositions, which o ofien done i order
1o fimd sumpler but equivalent ones Ths chapler n ymportand lor Turt her
work on programming. and ihould be studicd carefully

Chapter 3 introduces a marwal deduction syitem for proving theorems
shout propositsons. which s supposed 1o mimic 10 some sense Lhe way we
“naturalhy” argue. Such svilemi are used m rescarch on mechanscal verifi-
catiom of proofy of progiam correciness, and one should become (amaluar
with them But the matenal 5 st needed 10 understand the rest of the
book and may be shipped entirely

Chapier 4 cxiends propositions (o mclude vanables of types besudes
Boolkean and istroduces quantification A predicare colewlur n pven, in
which ome can express and manpulate the swsertions we make aboul pro-
gram varmables. “Bousd™ and “free™ varables are introduced and the
notwon of lestsal substitution s stedied. This materal = necessary for
further reading

Chapier 3 concersi arrays  Thiakiag of aa array &t 3 Tuscon froim
subscript valees to array clement values, msicad of s a collecuon of
indepeadent varabies, leads 1o some nest sotation and rubes for dealing
with arrays. The first two sectiom of thin chapier should be read. but ihe
third may be skipped on fire reading

Fimalty, chapter & discusses brefly the use of asseruions in programs,
thus motvating the next two parts of the book



Chapter 1

We wani 1o be able 1o describe sets of states of program variables and
to wride and mampulatc clear, unambiguous avscrions aboul program
variables. We begin by comdening only vanables (and enpresssons) of
tvpe Booleam from the operational powt of view. each vanable contains
one of the values T and F, which represent our notions of “truth™ and
“laluty”™, respectively  The woed Boolran comes lrom the name of & 19h
century Faglanh maihematwian, Geotge Boole, who imitisted 1he sigebraic
siudy of truth values,

Like many logiaans, we will usc the mord proposinon for the kind of
Boolcan ar logical expression 1o be defined and discunsed in this chapicr

Propowlions sie umilar (o stdhmetc capicsons There sic aperands,
which represent the values T or F (instead of inlegers), and operaton
(c.g. and, or instcad of ®. +). and paremtheses are used 10 asd i determin-
g order of evaluatuon The problem will not be in deliming and cvaluat-
mg proposdions, but in learming how 10 cXpress asseriions wrillen in
Enghsh as propoatsens and 1o reason wilh those propossiions.

1.1 Fully Parenthesired Propositions

Propoutions are formed according to the {ollowing rules (the operaion
will be deflined subseguenily) As can br swoen, parenthosey are reguired
around cach propossiion (hal mchudn an operaiion. This reslniction,
which will be weakened later om, allows us 10 dspense momentanly with
probicmy of precedence of operaton

L. T and F arc propositions

2 An identificr s & proposition.  (An identifier s » sequence of
one or more digits and letiers, the first of whach s a letter.)
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1 WA e propoution, thes sow (s )

d W b and ¢ are propositions, them so are (b Ac), (bVe),
(b =¢)ond (b =¢)

This syntax may be easier 1o understand in the form of a BNF grammar
(Appendix | gives a shorn istroduction to BNFE

(1L11) <proposition> =% T | F | <idestifier>

Example. The foliowing are propositions (separaied by commas).
F. (+Th (b v¥xpz) («b)aier =d)),
llabe | =il jrid)) O

Example The following are not propositions
FF. ibVic) (b)A) a=+¢ O

As seem in the above syman, five operstors are deflined over values of
type Booiran:

pegation: (ol B), of (+ B)
conjunction: (b and ¢ ), or (b Ac)
dipunction: (b ar o). or (AV¥e)
implication. (b bmp c), or (b ®&¢)
equality (b equabs c), or (b =¢c)

Two dilferens notations have been ghven for cach operator, a name and a
mathematical symbol. The name mdwates how ta pronounce il. and s
use abo makes typing caser when a Dypewnter docs aot have the
corresponding malhemateal symbal

The followiag lermmology s wsed. (b Ar) is called & confemction, it
opcrands & and ¢ called commmcts. (b Vo) 0 called a Nowmcnon; its
opcrands b and ¢ are called divhwris. (b % ¢ ) s called an implication,
its amtecedens is b and ity conseguens i o
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1.1 Evaluation of Constant Propositions

Thus far we have given a spmiax for propositions; we have defimed the
st of wellformed propostionas. We now grve 3 semantics (mearing) by
showiag how 1o cvalaate ihem

We began by deliming cvaluation ol comuani propoasition — propos -
tons that comtain only constants ss operands— and we do this in three
cases based on the siructure of a propostion ¢ for ¢ with no operalors,
for ¢ with one operator. and for ¢ with more than one operator

(1L.21) Case ). The value of propostion 7 i T the value of F s F.

(122) Case2 The values of (+b)L (b Ac) (BVe ) (B =c)and (b =r),
where b and ¢ are each one of the constants T and F, are given
by the following bl (called a trah table) Esch row of ihe
table contams possible values for the operamds & and « and. {on
these valwes, shows the value of cach of 1he five operatons. Fow
example, from the last row we see that the value of («F) s F
and that the values of ( FTATLITY ML IT=T)ad (T'=T) are

al T
B ¢ l(sd) (BAg) IBYe) Bh™e) (b=¢g)
F F| T F F r T
(L1M F rNr F T r F
r F| F F r F F
r Tl F T r r r

(124) Case 3} The value of a constant propoution with more than one
operater v lound by repeatedly appiying (1.2 2) 10 & subpropos-
won of the constan! propoution and replacing the subpropostion
by s valor, untd the proposition & reduced Lo T or F

We pive an cxample of evaluation of a propotlion

Urarm=Fr)
=(F*F)
= F

Remark The descnption of the operatons wn terms of 8 truth b, which
lists all possible operand combinanons and their values. can be given onhy
becavar the wt of posuble values 18 line. For example, no such able
coiild be given lof eperations on ntegers 0

The mames of ihe operations correspond fairly closcly to their mean:
ings w Englnh.  For example, “not iruc™ uwsually meam “falwe™, and “not
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false™ “true™ But note thal operstion o denotes “imclusive o™ and not
“eaclusive or™ That s, (TVT) is T. while the “exclusive ov™ of T and T
n labe

Ao, 1here ik no causably imphed by operation imp. The walence "I
i rans, the pacnec 8 concelicd™ can be wriiion in proposdionsl form as
(rain = no picaic ). From the Englich watence we infer that the lack of
rain means there will be & punic. but o such micrence can be made from

the proposition (rerm “* no peenec ).

1.3 Evaluation of Propositions in a State

A propostion hike ((~e )vdl) can appesr in 8 program s several places,
lor example in an ssugnment stalement b = [(( ¢ )¥d) and in an B
statement W (isc)vd) iThem - When the statement w which the
propositson appcans » 10 be encouted, the proposiiion i cvaluated wn the
cuirend machine “siaic™ 16 produce ciiher T or F To defline thiv ovalua-
ton requires a carclul explanation of the notioa of “wate™

A siate sssociates sdentalicrs with values For example, in stabe 5 (say),
swentificr ¢ could be associated with valee F and Wdentifier o wuh 7. In
wrms of a3 computer memory, when the computer v in vate 5, locations
named ¢ and 4 Ccontawn 1he values F and T. respeciively. In another
state, the assocwtions could be (« . T) and (o F) The crucial powmt here
is that & state comints of & set of pairs (identifier, value) in which all the
entifiers are distuinct, e the sate = & function:

(131) Definltion A wave ¢ s » fusction Trom & set of wdentifien 1o the
set of values Fand F. O

Example. Lol siate 5 be the funclion defined by ihe set [(a. T (B, F)
ivl. TH Then sia) denotes the value derermined by applyiag siale (fune-
ton) 1+ 1o wentilicr @, sle)=T. Swmilarly, sibs)=F and 11/) =
r. o

(1.12) Definition FProposition ¢ n well defined m srate 5 f cach wlen-
tlier in ¢ B assocatod with cither T or F i sdate v. D

In state s = Jib. Thic.F). proposition (V) s welldefined wikile
proposdtion (b Vd) i not

Let us nove exicnd the aotalion s |idemrifier) 1o define the value ol a
proposcison i 8 siste. For amy viate 5 and proposition ¢, sir) will
denoic the value resulting from evaluating ¢ staie 5. Simce an wdennfier
& i alvo a propostion, we will be carciul 10 make sure that sib ) will suill
denote the value of b in slate 5
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(113 Definltion Lzt propostion ¢ be welldelined wm vate 5. Then
sie ), the value of ¢ in waie 5, s the valee obtained by replacing
all occurrences of identifiers & in ¢ by thar valees sib) and
cvaluating the resulting constamt propowtion according 1o the
rules given in the previows secion 1.2 O

Example sl +A)¥c)) m evaluated in state ¢ = [ib, Thic, F)}

siliah)¥e))
=W« TIVF) (b has been replaced by T, ¢ by F)
=(FVF)
= K 0

1.4 Precedence Rules for Operators

The previous sections dealt with & resncted form of propositions. so
that evalustion of propositions could be expliined withoul having 1o deal
with the precedence of operaton. We mow relax this restnction

Parentheses can be ominted or imscluded a1 will around any proposution.
For example, the proposition (A ¥¢ ) *d ) can be written as b Ve * 4 In
this case, additional rules defline the order of evaluation of subproposs-
tioms, These rubes, which arc wmilar to those lor anthmetic ¢xprosssons
are

I. Sequences of the same operator arc cvaluated from left 10
raght, e g b Ae Ad o eguivalent to ([A Ac )Aad)

2 The oeder of evaluation of differem, adjacent operston s
given by the Lt mot (has highest precedence and binds Tightest),
and, or, imp, equak

It s uscally bettcr 1o make liberal use of parentheies in order 1o make
the order of evaluanion clear, and we will usually do s

Examples b =h Ay s equivalent to (b)) (b Ag)
bV e o4 o oquivalest 1o (A¥{ e )™
b%e ®dne woquivakesiio (b ¥c)¥idae) D

The following BNF grammar defines the synlax of propositions, givieg
enough structure so that precodences can be deduced from . ( The mon-
terminal <dentilier = has been kit undeflined snd has ity usual meanengh
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|, <proposition> = <mpeapr>

2. |  <proposition™> = <imp-cape >
1 <impapr> = <eapr>

4 | <mpexpr> * <expr>
3. <enpr> = <erm>

. | <expe> v <ierm>

1. <perm> = <faqror>

K | <aerm> A <lactor>

9. <lscrow™> = o <lacioe™>

[ | { <propmition> )

. | T

12 | F

(k) | <denmtifier>

We now defime sir). the value of proposition « in stste 5. recursively,
based on the siruciure of ¢ given by the grammar. That is, lor cach rule
of ihe grammar, we show how to cvaluate ¢ of it has the form pven by
that rule For example, rulc & indwcates that for an <eapr> of the form
Ceape ¥ herme, s valee s the value found by applying opcraiion or
1o the values s <eapr>) and o{ <devm> | of itx operands <expr> and
<term>. The values of the five operattons =, =  v_ A and + used in
rules 2. 4. 6, K and 9 are pven by wuth tabie (1.2.3).

I si <propoitoa™) = s <imp-capr>)

2 sl <proposion>) = s <propmition=>) = 5| <impeupr>)
Lsi<impeapr>) = s|<eapr>)

4 s <mpeapr>) = sl <imp-expe>) = 5 <expr>)
S sl <enpe>) = 3 <term>)

6 o Seape>) = g <expa>) ¥ i <sevm>)

1. 5 <ierm>>) = g <lacrtor>)

A i <lerm>>) = g <term>) A si <factor>)

9 sl <lsaaor™>) = sl <lactor>>)

10 s <Teetor>>) = s <proposition>)

1, sl <lactor>) = F

12 sl <facior>>) = F

I s <Iactor>) a s <identifier > ) (ithe value of

<sdentificr.> im 5 )

An example of evalwanon using @ trurh table

Let us cormpute values of the proposition (b % ¢ ) = {ob v ) Tor all pos-
sble operand valoew wing & truth table In the table below, euch row
pves possble values for A& and ¢ and the correaponding values of b,
ah¥e, b % and the limal proposition.  This truth table shows how one
builds a truth table for a proposition, by beginming with the values of the
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sdentifacrs. then showing the values of the smallest subpropaions, then
the nent smalbest. and building up 10 the compleie propostion

As can be sweem, the values of «b Ve and & = ¢ are it aame in cach
state, and hence the propositions are equinalent and can be wied inter-
changeably. In fact, onc oficn fnds b = ¢ defined as o b v Siemlarly.
b= n often deflined av an abbreviation for (b ®c)a(c S b) (see ener-
cme 2i)

b r abh  WBVe b*c (hFo)=(shVye)
F F r T T r
F T T T 1 § T
r rF F F F r
¥y T F r r r

1.5 Tauwtologies

A Tewiclogy v & proposition thal o true in cvery sate m which ot »
welbdefined. For example, proposition T » a tavtology and F » not
The proposution bv « b i & utalogy, as can be seen by evalusting o wih
b=T and b = F:

TvaT =TYF =T
Fyv«F = F¥IF =T

or, in truth-1able form
b | +b  Bveb

Tl F r
Fi T T

The basic way 1o show That & proposition is o lauiology s 10 show that s
cvaluation yebds T wn evory posuble state Unlonunately, cach extia
identifier in a proposition doubles the number of combimations of values
for westifiers — for 3 propostion with | distingt wdentifiers there are
cases' Hence, the wark involved can become tedvous and time consum-
g To dlustrste this, (1.5.1) comtains the truth wable for proposiions
(brcad)s(d b)), which has three duntinet identifliers. By waking some
shoricuts. the work can be reduced. For cxample. a glance at iruth table
(1.2.3) mdwcates that aperation lmp is true whenever its antecodent » falve,
so than s conseguent need only be evalusted i s amtecedent w troe. In
example (1.3.1) there is only one stale in which the antecedent bAc A d s
true —the state in which 5, ¢ and & are true— and hence we need only
the top hne of 1ruth 1able (1.5.1)
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bed bacad | d *b | ibacad)*(d +b)
rrr ' r T
rrr F r r
FTFT F r '
(Lsn TFF F r r
FTT F F T
FTF F r T
FFT F F r
FrF F r r
Usimg such informal resoning heips reduce the number of states in
whach the proposition must be evaluated Nevertheless, the mare distinct

sdentificrs a propovtion has the more slaies 10 mspect, and evaluation
soon becomes infeasible  Laver chapiers imvestigate other methods o

proving that 3 proposition is a laulology

Iesprovimg @ compecrure

Somctimey we conjecture that & proposdion ¢ s 8 lautology. but are
unable 1o develop & proof of i, so we docade 10 try 10 duprove it What
does i1 ke 1o dprove such & conpecture®

It may b posublc to prove the comverse —ic that «r = a lasiology —
but 1he chances are alim  If we had resson 10 believe & conjectiure, W »
unhkely that iy convere o troe. Much more hkely » that @ » true s
most states but false wn one o two, and 1o daprove i| we need only find
ane such stale

To prowvw @ conpecture, W iv mecevsary 1o peove that i iy irue in all
cwiws, to divprove @ conjeciure, 8 iy wifflcient (o find a Lingle cate
where it 15 falsr.

1.6 Propositions as Sets of States

A proposition represenis, of descnibes, the set of states in which 4 o
true. Conversely. for any st of states containing only sdentifien assoo-
sled with T or F we can derive 8 proposilion thal reprosents Thal stule
sel.  Thus, the emply set, the sel contawmng a0 stales, 1 reprosented by
propostion F because F o true in so state. The ser of all states
represented by proposition T because T s true in all states.  The lollow.
ing example llusirates how one can denve a proposition thal represenis &
pven sct ol states.  The rosulting proposition contains only the operaton
and or and mol
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Example. The set of two sates (b, FLic. Fhid,. TH and b, F)
(e, Thid, F), is represented by the proposition

(bacadpvisbacasd) O

The connection betwoen & propositson and the set ol statey o represenis »
so strong thet we oflen idemtlfy the 1mo concepte. Thim, invead of writ-
ing “the set of staies un which & ¥ ¢ i Irue”™ we may wnile “the staies in
bV ar™ Thoughd i asloppy use of English, it s sl imes convenent.

In comnection with ths discussion, the following termmology » intro-
duced Proposition b s weaker than ¢ i ¢ =b. Correspondingly, ¢ s
said to be stroager tham 5. A stromper proposition males mofe restric
toms on the combinations of valucs it dentifiers can be assocwaied with,
& weaker proposition makes fower I termm of sets of sistes, b s s weak
B e o 0 s "less prancne™ o A% osel of vistes inchades ot least ¢ dates,
and possibly more The weakest proposition s [ (or aay tastology)
because it represents the set of all staves. the stromgest s F, bocause o
represeals the set of po sales

1.7 Transforming English to Propositional Form

Al this poist, we trambaie a fow sentences o propositionsl form
Conuder the sentence “Il #f raims, the preme o cancelled ™ Let wdentilier »
stand for the proposition =0 rams”™ and let swdentilier pr represest “the
prenic s cancelled™. Then the sentence can be wrillen as ¢ = po

As shown by ths example. the techmgue i 10 represenl “slom pars”
of a sentence - how these are chosen i up (o the iranslator by wdeatil -
wiv and (o describe ther relaiiomship using Boolean operators Here are
some more cxamples, using identifiers r, pc. wet, and 5 defined as fol-
lows.

oI i ormins but | siay st home, | mont be wel: (#F As )= g wel
2. 1M be wel if #t rains: r = wer

3 W A ravms and the picaxc » not cancelied or | donaY stay home,
IV be wer: Fither ({r A apc )}V a0 ) = wei of ({# Alaper V o8 ) uel

The Enghsh is ambiguous. the latter proposition is probably the
doured ome.
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4 Whether or not the pionic s cancelied, 1'm siaying home of it
raing: (pc ¥ spc)Air =5 This reduces Lo r =5,

5. Eiher t doesa’l rain of I'm staying home «r Vs

Enercises for Chapies |
b Each lisse comtaine a proposdios and two sisies 8/ and 17 Fvaluaie the prope-
siion jn haeh sbates

[ o

s} simVn)
iB) smVYy

%) silmAnm)

id) amin

ieh imVa)*p

N mv¥in *p)

gl (m=n)rip=g)
(hh e =~(m Alp=gh
i m=(n Ap=g)
W (m=n)ripeg)
(h} im=n Ap)*g
i (m*n)™p *gq)
imh (m *{m *p)) g

hhhhhhhﬂﬂﬂﬂﬂﬂlg
TEEEHEERERE R RN Y S
MMM YN
ph bbb bbb
ﬂﬂﬂﬂﬂﬂﬂﬂﬂhﬁﬁﬁli
NNNMNMWMNY NNN N
o NNMMENNNT Yy

! METmEMMEM MY S

1. Wrile truth tabies 10 show the values of the following propendsny s

i) Avevyg ey sbh *hvge)

TN LYLT i sh=(hve)

i) b ajevd) g (abh=g)¥h

TINATEY ] in (BYehalh *o)pafec *h)
) (b=gc)=(b ®c)rhc ™h)

L Transboie the follon g scrig sors imto peopasst mensl form.

) xSy mma=py,

i) Bt s <y . x=p. x>y

e Wax 2>y and p >0, theem v ™ w.

(d) Thee following asc all vrue ¥ <y, v <2 and v = w

ied A mosd one of the lollosing s iree ¥ Trp. v <ramd v ™ w

i None of the lollowing are ree: ¥ <y vy <7 and v = w.

gl The fallowing are maot all trae ot ihe same time T <y . F< 7 andv=w

i) When s <y, them y <2 when x 2 ¢, then v = w

(if When o <y thoa y <7 means ihal v = w _ but off ¥ 25 then §y <7 doea’
hold, bowever, il v =w then ¥ <.

G W esexmion ol program P s begus wak 1 < §, ihes curculon 0yminaies
with y = 2'

(k) Esecwison of progime P begun wab 5 <0 il ot wsminaie
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4 Below sre vome Englnh wneaces  Imroguce dontiliens 1o represton the 1impie
ongy g f "o’y ramng cath and dops i and then tramiate the sasicnges into pro
ponstiomy.

(n) Whether or not iy rasming. I'm goiag swammang.

i8I 'y raming I'm not povng ysommeng

fc) Wy reoming csts and dops

(dl MY emoming oty or desps

(e} Wt raime cals and dogs 1Y cat my hai, bei | woa's po yeimming.

(N M@ rens cats and dogy whle | am ywimming 11 cat =y het



Chapter 2
Reasoning using Equivalence Transformations

Evaluatimg proposatioss » rarcly our mam task. More often we wih
o manipulate them im some manner in osder 10 derive “equivalent™ but
simpler ones (easier to read and understand)  Two propostions (or, in
general, expressaons) are eguivalent if they have the same value in every
state  For enample, winoe @ *{c ~o ) =¢ » slways troe lor imicger var-
ables @ and ¢ , the two inleger eapiessions @ <(c —a ) and ¢ are eguivalent,
and @ e —a )= ¢ u called an eguivalence

The chapter defines cquivalence of propoutions i terms of the cvalua-
von model of chapier | A list of escfel cquivalences »n prven, Logother
with 1wo rubes fod genersting others. The wlea of » “caleulus™ s discussed,
and the rules are put ia the form of a lormal calculus for “reatoning”
about propostiom.

These rules lorm the basis for much of the mampulations we do with

proposiions and are very imporiani for laier work om developing pro-
grams. The chapier should be sudied carclully

2.1 The Laws of Equivalence

For proposstioms, we define oquivalence m terme of opecrabon equals
and the motion of & tamology as follows:

(211} Defialtleon Propossivons Bl and F) arc equivalens i El = F] »
a utology. In this cave, £7 = £ & an squivalence. O

Thus, an oguivalence v an oguality that u a wutology.

Below, we give s Lt of equivalences, these are the basic equnvalences
from which all others will be derved. w0 we call 1hem the bews of
equavalence.  Actually, they are “scheman™ the identifien £/, E2 and EJ
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within them are parameters, and one armves al a partcular equivalence by
substinuting particular propositions for them. For example, subsituting
xvy for El and 2 lor E] in the fima law of Commutativity. (EJ A E) =
(E2 ~ El), vrelds the equrvalency

lixVp)azi=(zAjx¥yD

Remark Pareniheies are imeriod where acorssary when performmng o sub-
stitufion so that the order of evaluation rema s comalonl with the ong-
nal proposimion. Far example, the result of substasting vy for b in
brazr w (x¥y)azr, and mt xvyaz, which & equivalemt 10
xviyaz) O

I Commutative Laws ( These allow us 1o reorder the operands of and, or
and equality)

(Ela B2y = (EXaE])

(EIvED) = (E2vEI)

(Et=EN = (E2=ED

2 Amodative Laws (Theae allow o 1o dapesse wilth parentheses when
dealing with seguences of and and sweguences of ark
EIniE2nEN = (EilaEN»E} (so wrie both as El» E2A ET)
EiviE2vEDN = (EIvENvVE)

3. Distributive Laws (These are useful in factoning a proposition, in the
same way that we rewrite 2% (3 +4) as (2° ) +H2*d)k

EIVIE2AED = (EIVEDAEIYED

EIr(BEvYEN = (El~ENV(EI» ED

4. De Morgan's Laws (After  Augustus  De Morgan, & I9th contury
Englah mathematwcuan who, sloag with Boolke, lasd much of the lounds-
thons or mathemstcal logicy

WEIAE) = BV E2

MEIVEN = +EiavE2

S Law of Negation +(+El) = EI
6 Law of the Excluded Middle E/v «E! = T

7. Law of Contradiction: £ 5 <£I = F

5 Law of Implication: £/ = E2 = LEIv 2

9. Law of Equallty: (£ = £2) = (EI & ENA(E2% El)
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10 1 aws of or-simplification
EIVE]I = EI

Eilvlr =T
ElvF = K]
EIYEIAE2) = EI

1 Laws of and-simplificstbon
EInEl = E}

EIAT = K}
EInF = F
EIAEINED = EI

12, Law of identiy £l = EV

Don't be alarmed at the number of laws. Most of them you have used
many times, perhaps unknowingly. and ths st will only serve 1o make
you more aware of them. Siudy the laws carclully. for they arc esed over
and over agein in manipulating proposiions. Do some of 1he enercives at
the end of this section untel the wse of these laws becomes second nature
Knowing the laws by name makes docussions of thew ase casecr,

The law of the Excluded Middle deserves some comment. |1 means
that cither & of +b musl be true in any daie. there can b 80 middle
grownd. Some doat bebeve this law, a1 least o all s generality.  In lact,
hete 5 a counicrevample 1o 6, s Faglah Comider the sentence

Tha scntence o fabsc.

which we mught conssder as the meaning of an identiicr b Is it true or
false® I cany be true, because it says it w fabe. 0 can’t be false, because
them it would be true! The semtence s neither true noe fabe. and hence
viokstes the law of the Excluded Middie. The paradox armes bocause of
the scli-referential sspect of the semtence —o indicares something about
wsell, as do all paradoxes. [Here is another paradox 10 ponder. a barber
in a small towa cuts the hair of every perioa in lown except for those who
cut thew own. Who cuts the barber’s haw?] In our formal system., there
will be no way 1o inlroduce such seif-referential treatment, and the law ol
i Excluded Muddie holds. Buil ths means we canniod express all our
thoughts and argumenis s the formal system.

Finally, the laws of Fquality and Imphcation descrve special mention
Together, they defline equality and lmp i 1evms of other operston b =«
can always be replaced by (& =c)ric =6) and b =¢c by b¥c. This
rendorces what we sasd abowt the two operations in chapter 1.
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Proving that the logical laws are equivalences

We have stated, without proof, that laws 112 are equivalences. O
way 1o prove this & to build treth tabley and sote that 1he laws are true in
all states. For example, the lirst of De Morgan™s laws, IE/ A E)) = Kl
¥ « EZ, has the followimg truth table

El E2VEIANE «(EIAEN ~El ~EX ~EIVE|AEIAED ™ +ElvAE2
F F F r Fr T T r
F T F r r ¥ r r
r F F r F T I T
rr’T T F F F F T

Clearly, the law o trug 1a all states (in which 4 & well-defined), so that o
o oA tautology

Eaercise | concerm proving all ihe laws 1o be equivalenors

1.2 The Rules of Substitution and Transitivity

Thua far. we have jusl dincuised some basic equivalimors. We now
turn 1o ways of gencrating olher eguivalencts, withoul haviag 10 chech
their truth wabies One rule we all use in trensforming cxpressions, usualby
without exphcit mention, is the rule of “substnution of eguals for equak”™
Here 1 an example of the wse of ths rule. Simce @ +{c ~a) ™. we can
substitole for capressson @ (e ~a) m (@ +{c ~a))% 10 conclude that
(o e —a )% = c®d, we simply replace a +c —a) in (@ —a))®d by the
simpler, bul eguivalent, cxpreision «

The rule ol substitulion n:

(221) Rule of Sabstitution. Let ¢f =« be an equivalence and £(p) be
& proposiion, wriien o 8 lunctiion of one of i wentihens p
Then Eiel)= Eiel) and Eled) = E(el) are abo equivalences. O

Here s an cxample of the use of the rule of Sebstiiubon The law of
Imphcation indicates that (b ®¢)=(+bve) s an equivalence Comsider
the proposition Elp)~dvp. Wih

el = b=>¢c and
ed = shvy
we hawve

Etel) = dvib =¢)
Eled) = dVi«bV¢)
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so that (4 ¥(h =¢) = d V(b ¥e) o an equivalence.

In wing the 1ule of Substiiwtion, we oficn we the following form. The
proposition (hal we conclede i an equinalence m writlen on onc line The
melial proposiion appean 1o the lefl of the eguality wign and the one that
results from the substtution sppears 1o the nght. followed by 1the mame of
the law ¢/ =¢2 ured in the application:

dvih ®=¢c) = dvi+bve) (Imphcation)
We moed ome more rule {or gencrating oquivalonces

(222 Rule of Transitivity Il ¢/ = ¢2 and £ = ¢ are equivalences, 1hen
som el =ef (and bence ¢l n cquivalent 1o ef). O

Example We show that (b )= (se *ab) s an equivalence (an
explanavion of the format Tollows)

b &y
= hve {Implcation)
= c¥ab (Commuiativily )

= sV b (Negation)
= a0 & 4b (Implucation)

This & read as follows. Fust, lnes | and 2 indicate that b =¢ »
oquivalent 10 +b ¥, by virtue of the rule of Substitution and the law of
Implcation Secoadly, lnes 2 and ) indicate that (+0 ¥ o) s equivalent Lo
e ¥Vab, by virtue of the rule of Substitwtion and the law of Commuta-
tivity. We abo conclude, using the rule of Transitivity, that the fust pro-
position, b ®¢, & equivalent 1o the third, ¢ ¥ «b. Conlinuiag ia this
fashwon, cach paw ol hees pves an cquivalence and the reasoms why the
cquivalesce bolds  We finally conclude that the flirst proposition, b & ¢,
s equivalent 1o the lusi, o S ob O

Example We show ihat the law of Comradicvion can be proved from the
others. The portion of cach proposition to be replaced im each sep W
undcrbined m order 1o make @ camcr 1o wdentily the subsiination

b Aabl = «bv 3 b (e Morgans Law)
= abVh (Necgatson)
ot LEY (Commutativity}
=T |Excluded Middie) O

Generally speaking, such fine detadl s unnecessary. The laws of Com-
mutativity and Assocativity are oflen med without explanation. and Lhe

apphcation ol scveral steps can appear on one ime  For exampie
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(bAlb e >e
= giba(abveyve  (Implhication, I times)
= bV afabve)ve (De Morgan)
- T (Encluded Muddic)

Transforming an implication
Suppost we wani 1o prove that

QINEIAnEANEI®E
is an equivalence  The proposition o transformed as follows

(EIAE2AEN*E
= WMEIAE2AENYE  (Implication)
= JEIV JE2v sEIVE (De Morgan)

The flinal proposition is tree in any sale i which st lesst one of £V,
wE2, oK) and £ s true. Hesce, 10 prove that (2.2.3) s & wsutology we
aced oaly prove thal w any siate o which thiee of them are labe the
fourth & true. And we cam cChoose which three 10 assume false, based on
their form. in order 1o develop the simphest prood.

With an srgument surmilar 1o the one just given, we can soc That the
five satements

ElaBRAE) &
EIrE2AaE = 4 F)
Elrx+ErES = 8B
sEABEaEl + o EI
(224) ~FIvAE2vEIVE

arc oqurvaient and we can choose which 10 work widh  When given a pro-
position Kke (22 3), eliminating implication compleiely in favor of dis
junctions hke (2.2.4) can be heiplul. Likewie, when formulating a prob
lem, put ot in the form of 8 dojusction nght from the begmmng

Example. Prove that
(e =) sl b (e vdI) (e =d)

o a taviology  Fliminate the mamn imphcation and we [De Morgan's law
svlb SV sl b (e VAN ae B d)

Now umplhily sing Negation and climminate the other implations
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(ah ¥ )ik ve vd)vie vd)

Use the laws of Awmocustivity, Commutativity and ersmphlicatwon to
armve at

bV shvevd

which i truc because of the laws of the Excluded Muddie, b¥ «b =T,
and er-umplification  Thin problem, which st firwt looked guite difficule,
bocame wumpic when the smplical:ons were climinated

2.3 A Formal System of Axioms and Inference Rules

A coleslut, according to Webster’s Third International Dictsonary. s a
method or process of reasomng by compuianon of symbaols  In sccton
22 we presented 8 calewha, for by performing some sy mbol manipulaion
sccording 1o rules of Substitution and Tramsilivily we can reason wilh

propostions.  For obvious reasons, the svalem presested here o called a
propositional calr wie

We are careful 10 say @ propositional calculus, and not the propos-
tooal calculus  With shght changes m the rules we can have & diflerent
calkulus,. O we can mvend a completely different se1 of rules and a com-
pletely differest caloulus, which s betier sunted Tor other parposes

We want to emphasive the nature of tha calculus as & formal system
for mamipulating propovihions To do the, kt v pul ande momentanly
the notions of state and cvalustion and ser whether equivalences, whach
we will call theoreon, can be discusied without them. Fiw, deline the
propositions that arwe directly from laws 1-12 to be theoremn. They are
alo called awwoms (and the laws 1212 arc aviem schemar), because thovr
theorerm hood is taken st Tace value, withouwt prool

(201 Axloms Any proposition that ariscs by substituting propoutions
for El. EY and EJ m one of the Lawx 1-1] s called &
theorem. O

Nent, deflime the propositions that arise by using the rules of Substimwiion
and Transuivily and an already-dermved rheorem to be a theorem. (o ths
comtext, ihe rubey are oficn called imference rules, for they can be wsed 1o
infer that a proposition is 3 theorem An inference rule is ofion writien in
the form

£, - '-L E;.E;." K
E e E.E,
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where ﬁlﬂlﬂﬂl’uﬂﬂﬂf)pﬂfﬂim The mlevence rule
has the following meaning If propositioms K, -+ K are theorems
thes so o mmllﬂﬁuthmﬂmk Wntice n ths
form, the rules of Substdtation and Transitivity are
2312) Rule of Substitution AT
- Eiel) = Eted), Eted)= Etel)

el mgd el =eld
(213 Ruleof T o

A theorem of ihe formal system, then, s ether an axiom (according Lo
(2.31) or a propoation that s derived from ome of the inference rules
(232 and (2.1.3)

Note carefully that this = a tomallty dfferemt system for dealing with
propontions, which has beem defined wnhowt regard (o the notioms of
states and cvaluation The syslax of propositioms s the same, but what
we do with propositions is entitely different OF course, theie is & relation
between the formal sysiem and the sysiem of evaluation given i ihe pre-
vious chapter. Exercmes 9 and 10 call for prood of the following relation-
shap: for any tutology ¢ m the wense of chapier 1. ¢ =T 8 theorem,
and vioe viTee

Exercises for Chapter 2

1. Verily that aws 112 are cquneiencos by buddmg treth tablos for ihom,

3. Prove the law of ldeniaty, ¢ = ¢, wiing 1he rubes of Sobuautos and Trasw-
vy mnd the baws 1-11.

L Prove than « T = F 0 an cqueaience. using the reies of Subsitation and Tran-
sitivity g the baws 1-132

4 Prove that + F = T n a» sgqumalence, vsng the rebey of Subdstiiunon end Tran-
suivily and the aws 1217

5. back covlumn bedow commiy of 3 wguence of propowiems. sk ol whch
fencepl the ) o eguivalent 1o s prodesewsor.  The eguivalense can b shiown

by ons applwaiwn ol the rule ol Sebsiduiion and one of ihe lows 1-17 or i
revnits of cagremey b4 ldombily 1he w (8% o dong for the lws 1w cases ),

(a) (xApIY(zAap) (a) sisbA{+bh=z)jV2
b (xApIYF Contradictionn (bl (b ALA ®2))*2)
{cd rAy erwmphicsion ich (wbA{ahVE))®:
(d) (xAapvF W) (sbhALaab Yoz P2
fe) (xhAayWWiFAaz) ig) IasbAsisbAagli ™y
i (xap)viFaz) i (sDAslebAyz)) s

i) (xAp)VilxAqyx)Arz) (g} ~(B¥isbAayz))®;
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(h) (xAp)¥inAalax Ap)) (ks oY Bb)ALA Y 42)) ™y
1 XA VixAz)) B AT ADY s2)) ™2

(Ol xAlpVaxpalyve) G (b Vaz)=z

(k] ¥AlsxVylalzVy) TR ARETILF

(I xsfaxVasp)alzvy) i (bvsg)vr)

(mil EAslsAap)rizvy) iml BViag¥s)

§. Fach propossion holow can be vmplidiod 10 one of the wx proposnem F. T,
Xy XAy end x ¥y Simphiv them, swng the rubes of Substauiwon and Tran:
stirwriy and the laws 1412

a) A¥(yVa)¥ap (g} +x B{x Ay)
b (¥ p)ralxV ar) (b T *lsx =x)
e x ¥y ¥ 4w i ¥ ™y Tlaay)h

) lxVylAla Vap)ri+aVdrlaxVar)l () +»2 =i(sax ®(axAy))
) ARV AariVian A )VisaAar) (k) ap By
i lsxAap)vy (h ay =ay

7. Shaowm that any progmsen ¢ can b iramdormed intn an ogevalint progeslios
= don trer noemad form 0 one thet ke the form

fg¥ - Vg, where cach @, has the lorm g, &~ ° AR,

Each g, i an identdier . & unary operstor wid, T or F. Funbermaore, the
sdmnifaery on ol £, ade dilingt

B Shaw that ey propeilion ¢ can bt iremslormed iilo en eguivalens oo i
o corgams tive normal form — o one that has 1he Toam

fgh " Ag, wherecach e, Pasthe lormge ¥V " "~ ¥ gy

Each g, w an wdemiier ad. & wnary opersier b, T or F Fenbhermore. 1he
sdemiifarry on emih ¢, are dinino

® Prowe vhat any rhevsrem gencrad wsing laws 107 and the rules of Swabeaiiutions
and Tramsninity s a tawologs. by proving that laws 1-17 are utolngies (see eart-
v 1) and showing thai the 1wa rules can preeraie oaly | setalagics

I8 Prove ihet i ¢ s 3 mutolagy. then ¢ = T can be proved 1o be an equivalenge
waing only the laws 112 and the rules of Sabstitwisn and Transtivien Hem ww
ourvcine K



Chapter 3
A Natural Deduction System

Tha chapter imtroduces another Tormal ssstem of axioms and inference
rules lor deducing proofs that propositsons are tautologics. It i called a
“natural deduction system” because it 5 meant lo mimic the patierns of
ressoning thal we “naturally” use wn maluing arguments in Enginh

The matcrial s mot wsed in later parts of the book, and can be
shipped. The equivalence tramformation sysiem discussed i chapicr 2
wrves more than adequately in developing cofrect programs later on
Omne could go further and say that the equivalence transformation system
w more suited 1o our noeds, although, ths may be o matier of Lase,

Nevertheless, sudy of this chapier s wonhwehile for seversl reasons
The formal sysiem presented here  minimak there are ne axioms and a
mumimal oumber of inference rules. Thus, one can see what ot takes to
stari wilh & barc-bones sysiem and budd up eacugh theorem (o the pouni
where furither theorems are aot cumbersame 1o prove  The equivalence
iramaformation svitem, on the other hand, provided as axioms all the use-
more in mechanical venflication systems. and the computer sience student
should be lamaliar with them. (A natural deduction system o alio used in
the popular game WEF™N PROOF ) Finally. it » useful to see and com-
parc two totally differemt formal systems Tor dealng with proposstions
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3.1 Introduction to Deductive Proofls

Comsider the problem of proviag that a concluson follows from ceriam
premmes. For example, we might wamt 1o prove that p Afr v g) follows
from prg 18 pPAIrYg) & Lrue wn every slale in which pAg &8 Tha
problcm can be mritten i the Tollowmg form:

(211} premse: phrg
conclumion p ~irvg)

In English, we might arguc as follows

1.2 Proofof (11,1 Smec pAg o true (m stale 5 ), 30 » p, and 30 1»
¢ Onc propeny of o w that, for any ¢, r¥g s true il @ s, so
rvg wtrue Finally, since p and r vg are both true, the proper-
ties of snd sllow us 1o conclude that p Alr @) is troe i 4 also.

In order 10 gt a1 the emsence of such proods, in order 1o determine just
what o wmvolved i such argurments, we arc poang 1o stnip away the verbs-
age from the prool and present simply the bhare dewails  Admitiedly, the
proofs will look (sl firs) complated and detailed Bul once we have
worked wath the prool method for a while, we will be abic to retura to
miormal prools i Engimh with much beiicr fackty. We will abo be able
1o give some guidelines for developing proofs (section 1 5)

The bare details of proof (3.1.2) are, m order: a statermnent of ihe
theorem. Lthe scguence of propostions mitially assumed to be true. and the
wguence of propowtions that are true based on proviews proposstions and
vaiwous rules of ilerence

These barc details are presented im (3.1.5). The firt line sintes the
theorem to be proved: “Frem pAg infler pA(rvg)™ The scond lne
pves the premise (M there were more premises, they would be given on
sucorsane hinen ). Each of the sucoceding lines gives @ proposition thal one
can infer, hased on Lhe truth of the propositions ia (he previous lines and
an nfcrence rube  The last line contains the conclusion,

¥ L) Alrvg)

1 | prg PIE s

Yle property of and, |
4  rvyg property of or. 3

$ | patr¥g) property of and, 1. 4

To the nght of cach proposition sppears an cxplanation of how the
proposition’s “iruth™ is devived. For example, hine 4 of the prool indwcates
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that » Vg s true bocause of & property of er —that r Vg s true if § -
and because g appean on the preceding lime 3 Note 1that parenibeses are
miroduced freely in order to maintsin pnority of operators. We shall
continue 10 do the wihowt {ormal description

In ths formal system. a theorem 10 be proved has the form
From«,. . 7, imler ¢

In wrms of evaluation of propostions, such a theorem s imterpreted as of
®i. o Py ArE Lrue in o8 siste, then ¢ s tree i that staie aba Hn = 0,
meaning that there are no premeses, then o can be inderpreied as ¢ s true
in all states, Le. ¢ w2 tantology. In ths case we write it as

Finally, a proposition on & line of a prool can be interpreted 10 mean 1hat
ol i3 true in any state i which the proposiions on previous hines are true.

Ay mentwmned carleer, ouwr natural deduction wystem hay a0 akoma
The properties of operaton used above are captured in the inference rubes,
which we begin Lo imroduce and explain in the next section. (Inference
rules wore first introduced e sechon 1), review that materal o necey-
sary. ) The inderence rules for the nalural deduction sysiem are oollecied
in Figure 131 st the end of section 13

1.2 Inference Rules

There are ten inference rules ia the satural deductron system. Ten s a
rather large number, and we can work with that many only o they are
organited so that ihey are sasy 1o remember  In this sysiem, there are
two inference rules for each of the five operstors motl. and, or, imp and
egualh. One of the rules allows the mtroduction of the operalor in & new
propostion, (he olher allows iis chmmation  Heaor 1here are Live rules of
imtroduction and five rules of elimination  The rules for imroducing and
climinating and are calied ~ | and A E. respectively, and uimularly lor the
other opcrators

Inference rules 7], 7. E and v.]
Let us begin by giving vhree rules A<l A-F and v-1

' -Ep - -.l:.
0L At SE—13
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A e 'ﬂﬁq
E,

£
E,v - v E,

E
(3.22) ~E —

32% wi:

Rule A<l indicates that f £, and E; oocur on previous lnes of & prool
(e are assumed 1o be wrue or have beem proved 1o be true), then thor
conjunction may be writien on & lnc. I we assert =it & raining”™, and we
asserl “ihe sum i shiming”, then we can conclude “il is raiming and the sun
w shwning”™. The rule u called “~-Introductron™. or “A4" for short. because
it shows how 8 conjuncion can be introdueced

Rule A-F shows how amd can be climinated 10 yield one of s con-
juncts. If £, A E, apprars on a previous line of a proef (i.¢ & sssumed (o
be true or has born proved 1o be truc), then either £, or E; may be wrin-
ten on the ncxt bne  Based on the asvsumption =i s ressnsng and the sum i
shinmg”™, we can conclude "t u raining”, and we can conclude “the sun s
shinmg"

Remark Theve are places mhere it lroguenth raims while the sun s dhis-
mg.  Ithaca, the home of Cormell Usiversity, » one of them. In fact, »
sometimes e when perfectly blue shy seems 10 be overhead The
weather can also change from a furious blirrard 1o bright, calm sunshine
and then beck again. within minutes. When ihe weather acts so sirangely,
as i ofien does, one says that it s fohacaring O

Rule v-| ndicaies that f £, i on a previous hine, then we may wrile
EvEs; oma hne. If we assert "t is reiming™, then we can conclude “it i
rasming of the wum o whining™

Remember, thest rules hold for ali propositions £, and £,. They are
really “schemas”™, and we grt an instance of the rule by replacing £, and
E; by partikulai propositions. For example, vince pvg and r are propo-
wtions. the following » an mstance of A

pYg.nr
pYgIhar
Let ws redo prool (3.1.3) in (32.4) below and indicate the cuact infer-
ence rule used ol euch dep The 1op line stales whal is 1o be proved. The

line mumbered | comtaims the irsl (and only) premase (pr 1) Each other
lime has the following property  Let the line have the form

hnec ¥| £ “name of rule™, hine ¥, linc &
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Then one can form an imstance of the named inference rule by writing the
propostions on lines line #, _ line 8 above a line and proposstion £
below. That is. the truth of £ i inferred by one inference rule froem the
truth ol previous propostions. For example, from lme 4 of the prool we
see that g /r vg is an imstance of rule v-1 (r V@) = boing inlerred from g

From p » g infer p ~A(rvg)

I | pre pel
| P ~E, |
024 § . ol §

4 | rvg vl 3
Slprirvg) ML LA

Note how rube A-F s wsed 10 Break & propositon islo s CoORsLItBEN
parts. while A<l and v-l are used 10 build new ones. This s typical of the
use of imtroduction and chrmnation rules.

Proofs (3.2.%) and (1 26) below dlestrate that snd s & commutative
operation; il pAg u irue then so i g Ap, and viee versa.  This is obvious
afver our previous study of propositions, but it must be proved in this for.
mal syslem belore d can be used. Notc that both prools are mcorwsary.
one cannol derive the second as an instance of the it by replacing p
and @ im e Tamt by ¢ and p. respectively. In this formal system, & proof
holds omly for the particular propositions involved It s not & schema,
the way an inforemce rule is

prl
329 2 | » AE. |

llg ~E. 1
4 | gqrp M1LD2

To ilustrate the relation beiween the prool system and English, we give
an argument ' Englsh for lemma (3 2.5k Suppose pAg o true [line 1)
Them so s p. and so is g [limes 2 and 3] Therefare, by the definmion of
and, g Ap s wrue [line 4)

pr
326) 2 | ¢ AE. )
Y |p A-E. |
d |l prg Al )2

Proof (1 2 6) can be abbreviared by omung lines contaming premises and
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using “pr (" 10 refer 10 the (** premise laier on, as shown n (1.2.7). This
abbreviation will occur often. But note that this is only an abbreviation,
and we will continue 10 use the phrase “occurs on a previows lme™ Lo
mctude Lhe premises, cven though the abbreviaton b used

Inference rule v.E
The inderence rule for elimination of of s
(11m v-E oI5 SRR b

E

Rule ¥-F indicaten that o a disjunction appeans a previous line, and if
E, = E appears on 4 previous line lor cach disjunct £, then £ may be
widien on a line of the prool. Il we sscrt "0 will ram lomorros or i
will spow tomorron”, and f we asert “rain implies no sun”, and i we
also awser! “snow implies Bo sun”™, then we can conclude “there will be no
wun lomorrow”. From

(rain ¥ gnow ), (rain a0 sun ), (Anow a0 e )

we conclede no sum
Here s a imphk example
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Rule =t o called modus ponens. [t allows us 1o wine the comequent
of an implication on a lime of the proofl if its amecedem appean on » pre-
vious line. If we sssert that x >0 implies that v is even. and i we deter-
minc that x >0, then we can conclude that ¥ » oven

We show an caamplc of #s use in prool (3 110} To show the iclation
between the formal proof and an English one, we give the prool in
Eaghsh Suppose p Ag and p =r arc both tree. From p A g we conclude
that p s truc. Because p “*r, the truth of p simplses the truth of 7. and r
s trwe. But of r i troe, so e Tored™ with anything. hence r Vig *r)
truc

Frompag. p e inforrvig>r)

I | prg pr
2| posr pr
B4 51, A-E (rule (3.3.2)), |
4| =E 1)
S| evig®r) vl (rule (X2 4

To emphasize the use of ihe abbreviation 1o refer 1o premuses, we show
(32100 ia it abbreviated form im (3.2 11}

Fromparg.p =r lmlerrvig =r)

1| p Ak, pr |
321N 215 oE pr2 |

31 r¥ig®r) v 2

Inference rules =} and ~-E
El» B E+k]

021 =k —F—0
£l =£2
Q21 =& e

Rules =1 and =-F rogether define equality i terma of imphcation
The premises of one rule are the comclusions of the other, and vier vena
This is gquite wimiler 1o how equality 1 defined in 1he system of chapler 2
Rule =-1 » wsed, then. 1o imtroduce an equality ¢/ =¢) based om the pre-
viows prool of ¢/ ¢ and ¢2 ® o]

Here is an example of the use of theve rules.
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=ig*r)r*yg inlerr =g
P =ilg =r) =E. pr

2| g *r =k . L.
Y|lr=g =l pr3 2
Frercives for Section 3.2

I Each of the lollowwng theoryms can he proves wsing esaaly one hao inderencr
rulr [uvmg 10w ahhrrvslion the! premeses need not be wrnillen on lmes; e e sl
preaedeng (12 T Name that inlerence rule

(a) From a, b inlee a A b

(b)) Frama Abrigvr)o imlegvr

() From +& infer vava

(d) Framv =d, d¥¢ wler o =y

(eh Fram b ¢ b iwder b ¥ b

(N From «@, o . ¢ inlee «a V¢

ig) Fram(a ®=b)rb a miera * b

w) FramaVvh ®¢ ¢ %gvh mlwavh =¢

(i) Framaab g vr inleriarb)rigvr)

) Fremp (g ®r). p . qVr imlew g &r

() Frame & d d ®p d >0 mlerc =d

(i Fremavh ave [@avh) o miew ¢

(m) Frama ®(dve ) (dve) g mbera ={d ve)
(s) Fram(avh)®¢ (avd) e lavb)via vd) inbe ¢
jo) Frama (bve) b ®(bve)javh inle b Ve

1. Hoix n o prowol that p lellows liom p. Wirie ancther proof thet ws anby
one reference (o the premise

From r infer
I‘p pe
21 p pi

A Prove the (nlbpuing theorers simg (e snferemx reko

(a) Fromp Ag, p =r miex r i From b S¢cad, b inder o
is) Fromp © q. q iwler p g} From p Ag. p =r inbe r

ich Fromp. @ =r.p %rimle pir b Fremp. . ghlp 1) nler g M5
{a) From b A 5¢ inder s ¢ iy Fromp ~ g infer g = p

leh From b imler bV i From b =(c ad). & infer o

4 For cach of youwr prools of exercse ), give an Enginh version. (The Eaglsh
o aood 0! mumic the formal prools casctiy )
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1.3 Proofs and Subproofs
Inference rule |

A theorem ol the form “From ¢, - - . ¢, infer ¢ ™ n inlerpecied ax il
€y, .., #, Are true in & sate, then so bk ¢, e, . o, appear on lines of

a prool, which s interpreted 1o mean that they are assumed or proves
truc, then we should be able 1o write ¢ on a linc also. Rule -1, (1.1.1),

gives us permmsion te do so iy premise scod ol appear on & peovious
line of the proof, U can appesr clscwhere as 8 separsie prool, which we
refer to in substantiating the use of the rule Unigue names should be

prven o proofs 1o avosd ambiguous referemces

Froam E,, -~ E, infer [
(Eyn - A )= E

(3.31) =41

Proof (3.3.2) uwses S| twice in order 1o prove that pAg and g Ap are
equivalent, using lemmas proved ia the previows wection

hl.!-‘-‘l - I‘_i'-fi

a1 | | (prag)™igap) | (125
2 |igrp)*=lprg) 1028
Il (prg)=igap) =01, 2

Rule =-1 allows us 1o conclude p g f we have a prool of g pven
premise p. On the other hand, il we ke p =g as & premise, then rule
*E allows us to conclude that ¢ holds when p s pven. We see that the
following relat:onship holds:

Deduction Theorem. “Infer p =g " » & theorem of the natural
deduction system, which can be msterpreted 1o mean that p + g »
a wautology, i “From p lnfer ¢~ s a theorem. O

Ancthgr cxample of the use of 2] shows that p implees el

Indes p =p
I | p=p =, exercise 2 of section 3.2

(332

Subproafs

A proof can be incledod within a proof, much the way a procedure can
be included within & program. This allows the premise of =1 10 appesr
a & line of & prool. To Miustrate this, (3.0.2) s rewrit'en = (114} to
imclude proof (1.2.5) as a subprool. The subprood happens 10 be on line |
here, bat it could be on any line. Il the subtheorem appears on liae |
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(say) af the main proof, then s prool appears indented underncath, with
s limes numbered 1. § 2. ese We could have replaced the reference 1o
(22 4) by a subprool in 3 vimular manner.

fwiprgi=igrp)

I | Fromp Ag imfer g ~p
(N AE, pr |
1.2 | ¢ Ak, pr )
(114 1. | gap ad, L2, 010
2| prg)=lgrp) =11
YligAp)®ipArgq) =L (316
4 | iprg)=igap) =] 21

Another exampic of a proofl with a sabproof = piven in (1.3.9).
may be msirective (o compare the proof 1o an Faglnh vervon

Suppose (gVs)®ip ag) To prove equivalence. we must show
albo that (prgi>(gvas) [Note how this uses rule =1, that
@%b and b g means @ » b These semiences cormespond to
hingi 1, 3 and 4 of the lormal prool.] To prove (pAg) =ig¥s)
argue as follows. Awsume pAig is true. Then so n g By the
definition of or, vo s g v, [Note the comespondence 1o lines

Again, 1t

21:22) ©
Fﬂighl*ﬂiﬁllﬂlglhgtg q)
(@Vs)=(p rgq) pri
I From p ag imfer g v
31% 21 Ak, pr
22 | gqva v, 2.1
Y| prql=igvs) 12
41 lqVsi=iprg) -l 1.3

As mentiontd carher, ithe relationship between proofs and sub-proofs
m logic in wmilar 10 the relationship beiween procedures and sub-
procedurey (modubes end sub-modules) in programs A thoorem and ity
prood can be used im two ways find. use the theorem 1o prove somcthing
ehe, secondly, wudy the prool of the theorem. A procedure snd i
docmiption can be vsed in two ways fint. understand the description so
that calls of the procedure can be wrtien: secondly, study the procedure
body to undersiand how the procedure works. Ths similarity should
make the idea of subprools easy 10 undersiand
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Scope rules

A subprool can contain references nol only 1o previous hines i s
prool, but alo 10 previcus lines that occur i surrounding proofs. We
call ibese gplobal hme reflerencen. However, “recurvion”™ i nol allowed, a
hime § (say) may mol contain a reforence Lo 8 theorem whose prool n ol
finshed by line |

The reader shilled in the use of block sirecture in languages hke PL L
ALGOL 60 and Pascal will have no ddfculty m understand mg this soope
rule, lor essentially the same wope mechasism w employed here [eacep!
for the restiiction agaimd recurvon)  Let us stale Lhe rule more preoncly

(1346) Scoperule Line i of a proof, where | s an inleger, may contain
referemons 10 lines I, .., i =1, Line pi, where / & an inieger, may
contam references 1o limes 45 0. .. 7 (i = 1) and 1o any hines refer-
enccable [rom line j (this excludes references 1o hime § mell) O

Example (3.1.7) ilustrates the use of ths scope rube. bine 2.2 refers to
line |, which b ounide I1he prool of hne 7.

Fromp = (g =) infer (p Ag)*>r
| | P =g =r) pr
|

From p Ag infer ¢
(337 2 | p AE, prl
22 | @ *r aE 1. .21
23 9 AE, |
24 | » g 22. 1)

I lipag)i™r -l 2

Below we illustrate an invalid use of Ihe wope rule

Eramp tnferp > p (Proot INVALID)
1 | p prl
2 | Frem p infer <p

21 | p pri
22 | p = «p = 1{iovalid refcrence 1o hne )
2l p=>wp =ed, 2 (valid reference Lo line 2)

We ilustrave another common mstake beiow; the uwse of a hec that o mot
in a surrounding prool. Below, on line 6.1 an attempt is made 1o refer-
ence 5 on line 4 | Singe bine 4.1 1 not in 3 merroending prool, this s 8ol
allowed

A subproof using global references w baing proved v o partcular com
fexi. Takem owt of context, the subprool may sot be true because it relies
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Frompvg.p %, 3 %r lnfer r (proof INVALID)

' | pV¥y pr
2| pos pr 2
3| awr pri
4 | From p infer »
dl | 2 =E 2 prlivaisd reference 1o J)
42 1 r =E )4 (valid reference 1o )
S| por >l 4
& | From g infer r
61 | r  *E ) 41 (invalid reference 1o 4.1)
T | q®r =, &
L vwE I.5.7

on asumpiions sbout the context. This agan poinis up the wmilanty
between ALGOL-hike procedures and subproofs. Facts ssumed outssde a
subproof can be wsed within the proof, just as variables declared outsde a
procedure can be used within a procedure. using the same scope mechan-
.

To end this discussion of scope, we give & prool with e levels of sub-

It can be understood most casily as follows. First read lines |, 2

and 3 {donaY read the the proofl of the lemma on line 1) and satnfly your-

scll that # the prool of the lemma on line 2 s correct. them the whole

prool » corveet.  Neat, siudy the prool of ihe lemma on line 2 (only lines

20,22 and 2.3). Finally, study the proof of the lemmas on kne I 2, which
refers 1o a line two levels out in Lhe prool.

FramipAg)®r g *r
1 | prg)*r pr |
2 | From p infer g + ¢
(L1m 20 |\ p pr
22 | From g infes s
220 | prg AL2L pr)
222 | » >E, 1,221
L‘ll.*r 22
1 p¥ig+r) >4, 2

Proof by contradicimon
A proof by contradiction typically proceeds as follows. One makes an

sssumption. From this sssumption one procecds 1o prove a contradiction,
say, by showng that something » bolh true and false Simoc such a
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contradiction cannotl posuibly happes. and wace the prool from sssump-
von 1o contradiction n valid, the assumprion must be fake

Proof by contradiction i embodied i the proofl rubes +<1 and «-E

From £ infer £/» + El

0319) & =
I A I
Gt i e ":"' e

Rule »-l indicates that of “From £ infer E/4 +El™ has been proved for
some proposition /. then one can write < F on 3 line of the proof.

Rule «-1 similarly aflows us to conclude that £ holds i & proof of
“From +£ lmfer £/~ « EI" exisis, for some proposiion £/

We show wn (3.3.11) an cxampic of the wse of rulc «-1, that from p we
can conclude « +p

Rule «-1 s used 10 prove that + +p follows from p. umilarly. mule «-E »
used i (3 3.12) to prove that p follows from « +p

From < «p infer p

I W p pr |
A3 I. From = _‘1_’“11,
2.1 F LT LERY l—l,FLI
3 P wE, 2

Theorems (3.311) and (3.3.17) look guite similar, and yot both prools sre
needed, one cannol simply get one from the other more easily than they
are proven here. More imporiantly, both of the rules +-l and +-E are
nccded, d one s omaticd from the prool system. we will be unabic 1o
deduce some propositions that are lawiologies in the senwe dowernibed n
section 1.3 This may sweem sirange, sinoe the rules ook so sbrilar

Let us pve two more proofe.  The first one indicates that from p and
W onc can prove amy proposstion §. even onc thal i equivalest 1o fale
This m because boih p and +p cannet both be true at the same time, and

hence the premises form an absurdiy
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From p. < p infer ¢

N pr |

2| w pr 2
(313 3 | From g mferp 2 op

W pasp w112
41 4q +E, 3

{31 14)

3 Wp = aq) !-i.l'

For comparson, we give an Faglah vermion of prood (3114} Let p A g
be true. Them both p and ¢ are true. Assume that p 49 & true
Because p i true ths imphcation allows us to conclude that +¢ » lroe.
but thn » almurd because ¢ » true.  Hence the assumption that p ® g
s rue s wiong and S(p = 5 g) holds

Swrrmary

The reader may have noticed a difference between the natural dedue-
ton system and the previcus syslems of evaluation and eguivalence
transformation: the natural deduction system dom not allow the use of
consdants T and F' The connection between the syslcms can be sisted as
follows. i “Infer ¢~ & a theorem of the natural deduction system. then »
s 8 lsviclogy and ¢ = T s an equivalence On the other hand, e =T »
& tautology and ¢ does aol contain I and F, then “Iafer ¢~ i & theorem
of the natural deduction sysiem.  The omission of T and F s no problem
because, by the rule of Substitution, in any proposition T can be replaced
by a wutclogy (e.g &Y «b ) and F by the complement of a tautology (e g
b A sh)io weld an equivalent proposiion

We summarice what a prool s as follows. A prool of a theorem
“From ¢;, " " ¢, lnder ¢" or of a theorem “lafer ¢ comsists ol a
sequence of lines. The hirst hine contams the theorem. [ the first line o
umnumbered, the rest are indonted and aumbered 1, 2, otc 17 the first bne
has the mumber §, the rest are indented and numbered (1, (2, ete. The
last line must comtaln proposition ¢. Each hne | must have one of the
following lour forma:
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Farm 1 Gile, prJ
where | </ <n  The line contams premise §

Form2 G)p Neme ref . ..ref,

Fach ref, cither (1) is a boe number (which s valid according 10
scope rale (3.1.8)) or (2) bas the form “pr /", in which casc it
refers Lo preemise ¢, of the thoorem. or (3) » the mame of a prove
omby proven theorem ety denote the propostion of thoorem
referred to by ref;  Then ibwe following must be an instance of
inference rule Namie

Form X (i) p  Theoeem name, ref ., .., ref,
I'heorerm mamie s the name of a previously proved theorem, ref,
s asm Farm 2. Let ny denote the proposition referred 1o be
pefy. Then “From v, - - .r, ifer p~ mui be Ihe named
theorem.

Form & (/) [Proof of ancther theorem)

That is, the lim¢ conlains a complete subprood, whose format ol
lows these rulbes

Figure 3 3. | coniams a Int of the inference Tules.

Hisrorical Noves

The style of the logical sysiem defined in this chapter was comcoived
primcipally 1o caplure our “nateral™ patterns of ressommg. Gerbard
Gentren, a German mathomaiican who dwed o an Allicd prooncr of war
camp just after Waorld War 11, developed such @ system (or mathematical
arguments in has 1933 paper U'nisriuchungen weber das loguche Sohillewsen
[20). whach o included m [41)

Several icatbooks on logx arc based on aatwal deduciion, for cxample
WV O Quines book Methods of Logic [41)

The partscular block strectured sysiem given here was developed using
two sourcex: WEF'N PROOF: The Game of Modern Logic. by Layman
E Allen [1] and the monograph 4 Programming Logic, by Robert Con-
sable and Miuchael ODonnell [T]  The Tormer intraduces the deduction
witem through a senes of games. it utes prefin aotation. parthy 10 avend
problcma with parentheses. which we have sidesicpped through indormal
ny. A Progreamming Logic describes 3 mechanical program verifier lor
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PL/CS (a subset of PL,C, which s a subset of PL, 1), developed st Cor-
nell University  1is inferemor rubes were developed with vase of presents-
ton snd mechanical venflication v mind  Actually, the verificr can be
wsed 10 venfy proods of programs. and imcludes mot only the propostional
calculus but alvo & preducate calculus, including & theory of imtegers and a
theory of uriags.

Es. ... & : Ein. AE,
- Eyr.rE, e K,
1 E Ev. . vE . E\,*E.... § *E
vl V. VE v F 3
From £ mier £/~ ~F1 From +F imfer £/~ El
» -l s -E:
™ 4 r
El*E E2*E| El= E}
= =
El=8 El =K. E2=El
 From ). FE, infes £ - El*= R El
- (Eya  AEV*E -8 [ v
Figure 1.3.1 The Set of Basic Inference Rules
Exercises for Section 1.3

b.Use lomma (J210) sond dorence rule =0 0 grve a8 Idme prool that
prgalp =e)=irv¥ig =r)

L Prowe that (pAg ) ®ipVg) weng rebe ™|

A Prowe that @ TigAg) Prow thet (g 2@) T g. U the liri 1w resehs 10
prove 1hai @ (@2 @) Then rewrin the lasl proel o thal o So0es nal reler 10
wulsds prowds,

A Prove thm p =(pvp)

S Prose that p ={ir V) =p)

& Prove that @ =(r =(gAr))

Y. Prove that fram p =(r 4 ) follows ¢ =(p 4



a4 Part | Propositsns and Predasies

B Wha! = wroag wedh the lollonmg prool™
Infer @ = b (Proof INVALID)

t|a pe i
2 | From ob infer b~ b

20 | ab prl

22 R TR . 2

2y 1 hAah f 2221
21 b vk 2

9. Prove that from +p ssd (+p D@ IVip Alr T g)) follows r ¢

8. Prove that g =(p Ar) follows from ¢ =9 and g =r.

1L Prove that frem g follows § =p

1L Prove thas from g follows § ™ ap

1. Prove that from «+g follows g =(p A +p )

14 Prove thar irom p Vg, +g follows p.

15 Prowe p Alp =q)™g

18 Prow ([p 2 @)A(q Tr))=(p =r)

1. Prove(p @)= prg)=gq)

I Prove ([P A«@)=@)1¥p gL [Tha ogether with enerone 17, allows w
o prone (p Tg1=ip A qg)*q)]

19 Prove (p @) S((p A g) > ap)

W Prove ((p A @)= ap)=(p Sq) [Tha rogoher wih exercise 19, allows
w lo prove (p FQ)=(p A +4)= wp))

0. Prove that (p = @) =(ap = 4)

11 Prowe that [+ = @) =P = @) [T, toguber with everciee 11, sllows =
o prone (p =g )=(+p = +q))

I Frove +(p =41 ¥ (wp =9q)

4 Prove (+p S @) oip =gl [This, topether with exercise 11, sllows us @
prove the law of Inequalay, «(p =@)=ip =g)|

8 Proww(p =q)=iqg=p)

38 Use a rule of Contradiction io prove From p inder p

27, For each of 1he proals of exerome 127, .29, pve & venan in English. (1 seed
aod (odlaw 1t formal prool cwaaly )
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f a radio L ansmission
he message can De cmnprehended

S a1

; is lost. ‘Thu

by the 111tercepmr5 then ;hLd bi?;i? makes the 1message
ten use ded

encoding process is off r this encode

g unintelligible to an unintended recerver. dﬂ?}f order for the

] message is received it must be decoded 1 ,

tion.
-ecmplent to understarid the transmitted informa

N‘) The study of encoding and decoding 1o ensufe
secrecy is ti’["Ed CRYPTOGRA PHY.

10
interception.(ex. . the mtercr‘sp“ﬂl

by a radio receiver). Ift

2) Hnﬂther important aspect of mfm_____z_qggg
transm:ssion is concerned ' with recﬁ:ptmn and decoding. 1n
the Pfesence ofunreliable transmission. This unrehabﬂlty
of transmission may be due to noise in the channel or to |

very weak mgnals) QAL

e

2 LCRYPTOGRAPHY

~* Deciphering:- It is the process of discovering the decoding
procedure when only the transmitted message is available. .
An original message 1s known as the laintext while the
coded message is called the CLiphertext. The process of

converting . from plaintext to ciphertext is known as

-enmﬂ] ering or w-)

q.

Definition:- An Encoding @ of a set A into the set X 1S a
nn_e—fn -one function ¢ from A into X. -

D:A-X
If aj, a; € A then tD(a.) <D(ap_)
al — O(a))
‘a2 — (I)(ﬂg)
Therefore encoding @ is extended tn the set of all

sequences a,a;...a, where a; is contained in A and is given
by a1aa;....2, — @(a;) D(az)... D(a,)

Definition:-. The Decoding of @ s def‘ ned to be rhe
function @ frnm O(A) to A,

27



Therefore decoding @
sequences X, x,. .
X and is given b

1S | e'}_itended to the set of all
-Xn Where x. is 11} O(A } which is a sy bser of
Y XiX2ii Xy B (x)) O (xy)... @(x, ;-

Mnuﬂalphabetic:u .
| WE senerally take A to be one 6f the sets:
® .t the set of the English alphabet }
® 1 n-tuples of letters of English alphabet
- With ‘n’ a-small positive integer }
_ ° Z/(k)with.k=26, 29 or 2
- If A is a set of letters of a standard alphabet or Z /
(k) then the encoding is called Monoalphabetic.

Caesar Cypher Method:- |
‘ Approximately 2000 years ago, Julius Caesar used
monoalphabetic ericoding to conceal the information

- contained in some of his written communications. This

encoding .is called a Caesar Cypher and O(letter) is' the

letter three letters after a given letter.’

The correspondence between the alphabet and Z/(26)

A B C D E & @G H
1 ] K. L

1 2 3 4 5= 6 7 8
9 10 " 11 | 12

M .N O P Q R S 0
u v W X T

1314 15 16 17 18 19 9
21 22, 23 24

Y LZ

25 26

‘Example:-

- Plaintext: Is is not our leve] of prosperity that
makes for happiness. '

28



Encoding:

9 - 20 9 19 4 15 20
15 I 1§ R 5 2 J5
‘12 18 6. 16 18 15 -19
- 16 5 18 - 9- 26 25 20
8 120 13 1 11 5
190 6 15 18 B 1. 16
{g 16 9 14 5 9. 19.

Then: -

12 " 23+ 120, <17 18 23
18 24 21 15 g 2 8
‘15 18 9. 19 21 18 22
19 g§ - 21 12 23, 2 23
11 4 23 16 . 4 14 8
22 9 18 .21 11 4 19
19 | .17 8 - 22 22
Therefore

LWLYQRW RXUOHYHO =  RISURVSH

ULWBWKDW PDNHV IRUKDSS LQHVV
| Which- is the encﬂded message. This Caesar

encoding can be given by
| @([x]) = [x] + [3] where addition takes

place in Z/(26) -

Mathematical fnrmulatmn. -
If a and b are integers with gcd{a, 26} 1, then

deﬁnﬂ a Modular Encoding

O([x]) = [a] [x]+{b]

The Caesar Cypher is defined to be a n‘lbﬁula'r;encdding
with a=1. - The gcd{a, 26} must be equal to I, since
otherwise the modular encoding would not be nne-tn-ﬂne -
D(0)=b and ©(26 / gcd{a,26}) = [b]
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If geda, 26}.='1, then a™* exists’and there is a decoding @’
'(y)=la]'y-[a] ' [b]

The element [a]' can be determined by the EllClldE:l[’l
Algorithm. The encoding ® and the decoding @' give all

the information ne:eded to encode a message and decode an
encoded message.

Prucedure for decndmg a0

If it is suspected that the cﬂde 1S a Caesar Cypher,

then simply ‘take the intercepted encuded wnrd and
construct a table as follows:

Example:-

X T W T  E- L C- ]
encoded message ' |
b U X .U F M D K
L V b § \Y% G N E L
A W .Z W H O F M
B X A X 1 _ P .G ‘N
C Y B Y '3 Q& H- O
D Z, € L K R | P
E ‘A D.. A L -8 ..J Q
F B E ‘B M T K .R
@G ve "F © N TUuUTE™“ S
H D G .D O \' M. T
I E°- _H E P W "N .0
J- F Lo ¥ Q "X O \Y
- K O 3 G R ¥ 'uP W
L H.K “H*.8 Z Q X
M I L. 1" T A - W2 X
ecoded word
N J M ] U B S Z
0 " K-'UN K, ¥ O It
P L O ~L W D u B
Q M P M X E -V C
R N: © N ¥ PRl
S 9) R~ O Z G X E

30




. s B Y Z
T P S P B I Z
U. Q j Q C ] A :-I
-V B4 U . R D K B
o s ¥ " | 8
- ' nterceple
The first ToW of this table consis!S {?ru:jt:l':i encodc
encoded word and underneath cm:: ﬂ}lznfllphﬂbﬂl from that
word ‘is a column whicli cﬂll’l_tll‘lllﬁ g scﬂnllﬂd o see if any

letter on. The r

word 1S recognized.
we suppuse that XTWTELCJ tis

d that this encoding 1
the dlSplacament

[n the E:xample

decoded as “military” an

ofa Caesar Cypher in which is 11 letters

Hence the decoding is (I‘:' ([y]) = [}r'] + 15

there are some means 10 determine fI)"'([y]) for

However
t values of y, then the system of equations

several d:fﬁzren

iz1+ 2= @ (3’:)
YEZI + Zg = (I) (Yz)

can possibly be snlved for zjand z, m Z;"(’?b)
where o= [a]” andz;=-[a]"'b
(yi- y2) z= 0 (y1) - D7 (v2)
T]‘HS has a Sﬂllltln'n if and nnly if gid {(y1- y2), 2b)} divides

O (y1) - ' (y2)
Thercfore in this case there are gid {(y; 'y2), 2b)}

possibilities for z; one of Wthh will yield th
decoding equation. : ! e

Detérmining ®'[y] for some ;valjues of [y.]

An extremely valuable ‘tool in this search is
standard ‘ﬁ'equency count of the occurrence of the lett : 1:-
the English alphabet. This count is made visually sl:i]l-(sil?;
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liy putting the letters of the alphabet in a row and beneatl

each letter; a horizonta)] stroke for each occurrence of tha |
letter in the message. o

*The most frequently occurring letter. of th ‘
" ~encoding text stands for the letter E. ' '

* ‘The next most frequently ﬂccurr_illg letter map
. stand for the letter T.

This gives 2 equations in 2 unknowns which can be
solved and a portion of the text-.can be df:mded to see if the
calculated values for a and b give a sensible decoding.

The standard frequency count of letters occurring in
newspaper text s given below:

7.4

A 73 . H 35 O U o« 27
B 09 I 74 P 23, ¥ 1.3
C 30 J 02 Q 03 W 1.6
D 44 K 03 R 77 X 0.5
E 130 L .:35 S 63 Y 1.9
F 28 * M -"28 -7 93 Z 0.1
G 2w

1.6 N 7.8

Example(*):- An intercepted coded Message

KMIUT RKJXM MWMMU
WXPQK XNWUK o
TWYIP  FJIWMD . WQPPA
CWXWJ =~ KPIXC

WRWQP =~ JIQDA . YWJZ]
AUKRD WIXKP -
WWXWJ CEMAS = JQWM

| The message is written in blocks of 5 letters.
The freguenc}r count for the code
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:"LHCDEFGHI.IHLMNGPQRST-U‘U"W{{}"Z--

HEE R

Let us assume that the most frequently uccurrmg
letter is W. Therefore @' (W)=E -
One pnsmble way is by trial and error method, assunnng
that @' (J)=T and solving thé set of equatmns and -then
*. attempting to decode the message, to see if we actually
have the proper solution. If not, we then try O (K)-—-T and
repeat the procedure. _ -

Digraphs:-

In English language, there are cr:rtam pairs of letters
that occur more frequently than other pairs- of letters.
Adjacent pairs of letters in the English language are called

dlgraphs
- Most frequent dlgraphs (nut of 80 000 characters {lf

text)

TH 2161 AN 1216 TI 865
HE 2053  EN 1029 OR 861
IN 1550 - AT 1019 ST = 823
ER 1436 'ES 917 AR 764
RE- ‘1280 ED 890 ' ND * 761
ON 1232 TE' 872 ' TO 756

A count of the digraphs in the code in Example(*) that

begin with the let
distribution. - ‘ter W gives the fullu“[mg frequem_:y

Digraph frequency for W- i Example( *')
' 33



J M Q R | ._‘U W A Y
Wl Il | I | I - |

Modular Decoding:- :

A Modular code has- the advantage that it is
relatively - simple to encode and decode. It has the
advantagﬂ that knowledge of how two letters are decoded is
sufficient to determine how all letters are decoded. Thus to
decode a message requires only that the ‘modular integers
ziand z be knﬂwn It is much more difficiilt to- devise a
decoding method for arbitrary encoding functions @. I[n.this
case the receiver of the encoded message must have'the
decmdmg function @' available in tabular form in a paper,
in the form of a specially constructed decoding machine or
in memorized form. Since written form or’ a -specially
constructed machine constitutes physical €vidence, often 1t
is desirable to have decndmg information in' as cunmse a
form as possible. This is one advantage nf modular

demdmg

Key-word encoding:-

Another type of monoalphabetic Encodmg requmng
minimal information on the part of the ‘decoder is key-
word encoding. List the alphabets on a line. Write the key
word below the alphabet with the first letter of the key
word cnrrespnndmg to A, the second to B and So on, with
repeated letters omitted. -After .the keyword, continue
-writing the alphabet but omit the letters occurring in the
key word. This gives the encadmg corresponderce, hence
~ the dacﬂdmg currespundﬂnne

Example. . AR,
Keywurd is “Quebec hberatlnn

+ Keyword encoding is

I

7
C‘-’E'
'—Q
mc
E:E




o ( Block encndm:,,) - | _
wd msented by the integers modulo

he vector ‘space of m-
Thus A can

Mﬂtl ix Encoding
The alphabel IS Tep

26. The Base set of this enc

elements in the in

tuples with
be considered as block of ‘m: 1ette:r5 y L
x m Matrix with entries m-

Let M be an invertible m
kes a block of M letters ,

7/ (26).- The encoding thus 1a
mulnphes this vectur by

realizes this as a vector in [Z/26]"
M and then pruduces the corresponding blnck of letters

Example Let M [ then ﬂ‘lﬂ wnrcl tn becmnes
13 12 .

[2015] |
13 ] [7,18] =GR

Example:- Let M = [l 1} then the word “do” becn.mes
13 12

[4,15] rl 17 |
] = [17,2]=QB

L13 12

If the matrix M is calculatﬂd then the encodi
Ing 1s
Ml=v for each vector v. - (v ol

Exﬂmple M= (14
13 2

[QB] [17 2] i 1) +=[4 15] =[D O]

13 25

'f the encoding and decoding matrices are unknown, but

;amples of encoded messages are available, then the

ollowing procedure can bf: used:- '
| 35
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Z

=

-

e

=
e g
v o0 or -
>
BN -
=

-

<

N

A matrix encoding has a more even frequency, distribution _

of the letters. - + |
2)..Once it has been decided that the.code is not

monoalphabetic, and that it is possibly a matrix encoding,
the next step is to determine the BLOCK SIZE(that is, the -
dimension of the vector space). If the complete message"
has been intercepted, then the total number of characters
can be countéd. This is an integer value(multiple) of a

certain number of blocks. Therefore the block size is a

“divisor 'g::rf the total number of charactérs.

Example:-
Message 1 :- | _,

" LMRSX "CCHDV SHBUS  NBTGU RDKDV
WLUQE MQKYK  YHWSA KYURG SPRYV-
WQPTT UyMm | i |
Message 2:- - . _

OXJRM FURYK ~ AGDVS. HBUPH OBKYH
WSAKY SBUVS  FKVQT ~ MEOTV M
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- The frequency-:uynt is given in Fig (A)

| " The frequency count' is much more evenly
distributed than the standard frequency count. Hence we

assume that the code is not monoalphabetic and that it 1s
possibly a matrix encoding.

The I message contains 58 characters. Hence the

block length is 2, 29 or 58. | o
The II message contains 46 characters. Hence the

block length 1s 2, 23, 46. |
* Hence, if the code is matrix encoding then the block

‘s1Ze 18 2.

of the diagraphs

Then the frequencies
and a

corresponding to vectors can be counted
correspondence between frequent diagraphs and frequent

digraphs in the English language can be attempted.

. IfF@(V) and @' (W) are known for vectors V and
W in [Z/26]° then the system of 4 equations and 4
unknowns given by -
vM!'= o(V) . 5,
| WM ™'="®"'(W) can be solved. However,
the code breaker may have other information available
which may be helpful in cracking the code. .

| For example, he may know the general nature of the
message hence he may except the occurrence of certain
phrases or certain words. Thus if strings of characters are

repeated, this may. indicate a possible decoding. i

| In this above example,. the code breaker may
suspect the word “Indochina’ occurs in the text. This words
-begins with IN and 6 characters later repeats the same word
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IN. Alsn in the | message the sequence I\YHWSAK_Y”

accurs and a 5:.111131' sequence occurs iy the 1 message.
Hence uEELIITH‘.

" O7(KY)

= IN and
- ®'(HW) = DO.
ThusE! 1], [25] :.;,' X7 | _'9]_ (14
_' | X3 X = [
_ - __J .
[([8]. {23]] | x1 -x .
X3 Xa [=[[4], [15]]
e o . .
where |x;. X | is.the inverse of the encoding matrix. .
X3 X4 | ‘
_

11X +25%x3=9 ----(1)
8§x1 +23x3=4 ——--(’3')
[1x2 +25%4 =9 ----(3) .
8 X, +23x4=4 --7-(4)

On solving the above equatmns we. get X,=3, X, = 25, X3=
'-"'-4 X4 = 1 .

(1-€)

—

ﬂ

9

24

-

25
1

;

which 1s the inverse of the encoding matnx Cunmder the
_first 8 letters of the I message.
LMRSXCCH

o' (LMy= 01

2,13]1=11213]

38
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' 19 r 1 :_—;}: LH} 1 B PA
& (RS) =S 191 =[13 ] | 31 |
S
- '
' 3 _ 1145]=NE
! =m't243]= 24 q] 3 25 [
. »
o' (CH)=0"[3 8] =[3 8] 3 25|="T1951=SE
| 4 L9k 7
S— D -

Therefore &' (LMRSXCCH) = JAPANESE
Similarly, consider the rE:rﬁair_ﬁlng words.

DV SH BU SN BT GU RD KD VW LU QE
MQ KY KYHW SA KY UR GS PR YV WQPT -
TU YM. '

o'(DV) =074 22] =[4 22] |3 25| = [20 18] = TR
| 2w 1| |

o'(SH) = ®'[19 8] =[15 15]
Decoded the remainder of the encoded text gives the
(ollowing messages. : y -
«Japanese troops currently stationed in Indochina
will be withdrawn” . o '
«Withdrawal of troops from Indochina 1s a
smokescreen”. | : -

Deciphering an encoded message “encoded Dby
matrix multiplication of .vectors of large block size is
extremely difficult. However for block: size 2 or 3- the
nroblem is traceable. One. drawback is. if a single error

L
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occurs | ¢ duri -
S I a block during the handling of an encoded

2;;5;1%&,- Fh_E:n that error will affect the decoding of every
racter in that block. For block size 2 or 3 , this is not a
Serious problem,.since much of the message can still be
constructed from the context. But for large block size a

S];llnglke error results in a decoding that is unreadable in that
block. | |

Scrambled codes

Permutations are the basis for a Lype of
cryptographic code called a scrambled code. If Il is a
permutation_on {1, 2, 3, ......n"}, then we define the
encoding function IT to be the map from (ai, az, -.--- a,) to
(A11(1ys---- @ 1i(n))- This is a very special type of matrix
encoding, since the mapping is linear.

| Example:- II1=(13254)andwe wish to use
the encoding induced by their perm utafion to encode the
message, “THE TRIAL BEGINS TOMORROW”

The message is divided into blocks of five and to .
encode a block the II (1) letter is placed in the first position,
the 11(2) letter in the second position, the II(3) letter in the
third position, the II (4) letter in the 4™ position, and the II
(5) letter in the fifth position. A |

The blocked message 1s -
THETR IALBE ~ GINST - OMORR  OWzzz

Which is encoded-as

ERHTT- LEAIB = NTIQS ORMOR  ZZWOZ

Decﬁding a Scrambled code:- _ -
 First make sure that the encoding is a permutation
encoding. The frequency count of the occurrences of letters
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in a- permutation encoding yields a-frequency dlﬁll'll}ull?
very similar (0 a standard distribution. Thus one c:.a-
assume  that the letters in the original message ai

. perm uted.

" Secondly, determine the block size. [f a sequence 0
" letters is repeated, then it can be assumed that the sam
word or phrase was repeated in the original message. Henc
the block size is a divisor of the number of letter

separating the successive occurrences of the repeate
- sequence. |

" Third factor-is determine the pennu.tatiun, Once the
block size is determined, construct a table whose ith row i
the ith block. Permute the columns of the table to obtain ¢
reasonable fit of pairs and continue until the message car
beread from the table. |

Examp]e:- . | |
SAIAL GEINR - EELOA MHDSE
YNAAA © - SSYSA - [RLFE - IREOC
‘WLSIP LLUBC . -~  LATMK OTAIL
ASPSZ | ' '

i} ‘A frequent count performed on this message and i

1s.compared to the standard frequency count. Since the

frequency of occurrence of letters in the message so closely
matches the standard_ count, we assume that the code is g

permutation code. | -

Standard frequency count

ABCDEFGHIJKLMNOFPQ

i ]
N

L

RSTUVWXYZ.

1 2 e
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The scquence SAIRL is repeated with an interval of
28 letters from the start of the first occurrence to the start of
the second occurrence. Thus the block size of the encc:rdmu
is a divisor of 28. Hence it must be 2, 4, 7, or 28.

| A quick check shows that the block length is not 2.
Suppose that the block length is 4. Write the message in a
table with 4 columns, ‘where row. i is simply block 1 of the
message. Then permute the columns, we will eventually
obtain the message

Then permuting the columns

(1) 2) . 3 4).  (3) (1) (3) (2)
S A I R I S R A
L G E 1 E i N ©
N R E = E N E "R
L o . A M A L M 0
H D S E S H E D
Y N A A A Y . A N
A S "8 Y S A Y S
S A. I R I 'S+ R A
- F _E I E L I F.
R E 0 C O R C E
W L S I S W I L
P 3 L U L P U L
B C L ° A L . B A C
T M K @) K T . 0 M
A S P S I . L. A
Z. P A S S

which can be read as: .
“Israeli general Moshe Dayan says Israeli forces will

pull back to Mitla Pass.”

This method works only if the block length is’
relatively short compared to the length of the total message.

1I'type (completely filled Rectangle Code)
42




idth k and plac
ofa table, in 8 r

1

£ k letters undermneat! - written O
. oW wrl 5 :

coded message 15 7 fuﬂﬂwEd by th_f': |

rectangle’wW
the top row

writing the column lﬂbemd_ L until the final €

written ‘horizontally-
Chilean junta wishes t
following table:

meaTgzzZro0=MN
MO M= == mI T,
%gmm}Cmew

§

The messagethen becomes
HHEJTIEOE

TCLNNWHTE
EIAUASSMT,

which is written :
HHEIT IEOET ~CLNNW  WHIE, AUASS MT.

To decode a message ‘encoded By a nnmpleteiy’-

filled rectangle, the dimension .of the rectangle must be
determined. If the rectangle 1s completely filled, then the
!engthkmultip]ied by the width will be the number of letters
in the message. Hence the length and width of the rectangle
L are fa'cturs of the number of letters n the message. Once
the dimensions of the rectangle are decided, fill in the

- 43




As-an example, suﬁpnse 'the'.n_lps'sﬁgé |

S - NUDO TSERR ~ ~ YAPN HUVMF
© . OCZLT - ROT. "EREEF .. TAEL PSRIF -

© 'ELNUR ) EHGE MATTE olas  —

Is. intercepted. A frequency count indicates that the message . -

is a scrambled code, and ‘we'can see if it is a completely

filled reétﬁﬁglé“'encndiﬁg. Since there dre 70 letters in the

“'message, the rectangle could be 35 by 2, 14 by'S or 10 by

7. It is easily checked that the encoding is not a 35 by 2

completely filled rectangle encoding, so the size 14 by 5 is
next tried. The decoding rectangle-is given in below.

m}mbmmﬁqbngmm

NOOmZicmZur<Zm
oOmCZrmmM~m®uYrm»

AMUL-HoQOczZ=aA~voamn
HZmMOmEOHON> O

The columns-of thé table should now be permutted until a-

message is formed. If we examine the .third row, a
permutation gives the suffix OLOGY an , if we try this
ordering on the columns‘we obtain, « g o

S ‘H ;FL. .'E 'R ; ST y |. |




T R-0‘ A N. O RT A N
NI T T H r-1 KT R
UF E T U E F UT U,
"D E R E. V R E DE V
OL E P M EE L-OPM
T N E O .F-. E N'T O-P
S UTF I O F U S 1O
'"E R N A C N R E.AO
R OT S 2Z- T ORSZ

The message now reads:

L

~ Laser: technnlngy appears : lmpurtant in
develnpment of fusion: reactorsz.

the - future

As an example 'sﬁppnse the following message IS
intercepted and is suspected to contain the phrase “heavy

- water”.

HWALA :AAETY LEDLT - CVPRE GNAHT -
TCDFPD AARAT UILEE SAOOG . YEANO

TSNB.

Thus the prucedure is to block the suspected word
into appropriate widths and examine the resulting columns
to see if these combinations of letters occur. This yields the
width  of the rectangle and, in our exarnple located
snmewhere in the 'message are letter” sequences
cnrrcspnndmg to the cnlumns in one of the fullumng,.

HEAVYWATE
s N ; Ta |
HEAVYWAT HEAVYWA HEAVYW HEAVY  HEAV ’ HEA HE
ER - TER ATER ~ WATER YWAT VYW~ AV
' " ER 'ATE YW
e ‘R AT
e x W

Corresponding to rectangle WIdths 9.8.7,6, 5, 4 3, and 2
respectivelv. : -
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Thus the final incompletely filled rectangle 15

2 1 5. 4 & .9
3 i i
- & ¢ H E H E A
1“’1" . "
Y W A T E R
i .
L A N T S A
R - - |
" E L 0 Le A T
D A T D O ‘U
G |
L A S P 0 I
N | e
T A N D G L :
-3 : . ,‘
cC ‘E B A Y. |

Which yields the message:

The heavy-water plants are located at Douglas Point
and Glace Bay. S - _

In general, the deciphering -of an incompletely filled
rectangular encoding is difficult, but an analysis of the
diagraphs that can possibly occur often helps in starting the
decipherment. For exampls, if the letter Q occurs in the
encoded message, then in the decoding rectangle .it will
most likely be followed by U, which"may indicate a
possible start in the decipherment.
J r ¥4 | ‘

' /| THEH MMINQMETRIC

M L 7\ A aria © e ;

=77/ 7 (in the last three sections dealing with cryptography,

@e encoding function ¢ mapped the base set.A in a one-to-
ne fashion onto the base’set A. However, for the emmor -

_— 3 )




L S|
L = Pug

~into blocks, so the base se

. ».theory, the.
- : correctic aspects of md{ﬂ: el &
ion and error to the ImMage

detecl __ st properiy 1

Cunction @ must map the Das* bﬂ.. T ‘zr;in:;n*.iﬁﬁiun OCCUIS.:

oL X I O(A) = and ﬂp'ﬁrm r:"ll:émem in ®(A). hence
the -ved word is still @b TS .

then the’ recel However: if M(A) is a propet

will be decoded improperiy-

subset of X. then quite possibly iihgu)

and received as X, an element not 1M

receiving the ransmission would know there was
HJ.;\, I: :;’

in the transmissiﬂ?) ' w
| et A _
Usually data, whether occurring as deep-ﬂpace
communication . Or communication between- :aﬂhbﬂund
Thus the messages arc

computers, is coded in binary.
sequences of 0’s and 1’s. These sequences code naI}lrally
tis A = [Z/(2)]"- Since the 1Mage

could be rransmitted

O(A). Thus someone
' ‘an error

_g__ej:_qmu_si bé properly larger than the base set, we take the
“here n>m. A _one-to-one map Q

image set to be [ 5
from [Z/(2)]"-is called an (m,n) encoding. An (m,n)

encadingﬁcm_& | detect erTors 1n ransmission 1f it takes many -
errors to change one encoded block mto another_encoded
block. Thus two encoded words should be far apart in terms

_— i 5 b
of numbers of errors required to transform one encoded
word into another. o g =

~ The weight of a vector x in [Z/(2)]" is defined to be
the number of nonzero compenents of ‘the vector and is
denoted by w(x). If x and y are two vectors in [Z/(2)]", then
the Hamming distance between x and y is defined to be the
number of nonzero components in X—Y and is denoted by
d(x.y). Since addition mn Z/(2) is the same as subtraction, -
and 1+1 =0, the distance from X to y 1s simﬁl*}‘the number
of components where the entry in X is different from the
corresponding entry in y. It is easy:to check . that the -

Hamming distance is actually a metric, since d(x,y)=0 for

R i
all vectors x and y,

da, 7o ¥ :
A Qg2 o ATV =



d(X.¥) = 0.ifa
Ll -1I'and only if x = _
tor all vectors x, y, and 7 in [Zf}t?;t:d d%Y) + d(y,z)2d(x,2)

dEtectinII hl: ' n}?'ti'ﬂu of distance- determines - the error.
is said tg 2pability of an encoding. An (m,n) encoding @
> Sa1c to detect k or fewer errors if there is a procedure that
indicates thdt a

e : l‘eCﬁ:.ived_hluck is incorrect whenever there - |
-are j errors, 1<Kk, in that recetved block.

ThEEEEm 17,:-: 'Ar_l' (m,n) encoding -(I)'détects K orfewer
encoded words- is

erfors“if the minimal- distance bétween
atleast K+1

Proof:- | Ir-Assume that E - ,
* @ detects all sets of K of fewer errors.

‘ Suppose 'x_ 1S ﬂﬂ eﬂcoded word of disfhnce j f[‘{:)m
another encoded wordy. - = -~ .
Cdxy)=j;. 1=k

If the encoded word x is transmitted and errors
occur in exactly- the components of x that diffe:r from the
corresponding components of v, t‘pﬂr} the received message
‘will appear to be aN ormal transmission of'y.

“fhus no érror is noticed and yet j errors occurred in
the - transmission. This is a conradicticn. Hence the
minimum-distance between encoded-words must bt; ailpaia

‘K+1.

Assume that the: minimum distance between
cnc;:}dead words is atleast K+1. Thus, if j errors occur during
the transmission of an-encoded word x, then the received
word will not be an encoded word. Hence there must had
been errors in the transmission. Since the list of encoded
words is finite, t’l}é received word can “bg compared with

R Y
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ist1m de:terminc whe:ther m; “‘F“ 1

.cach encoded word in the | |
. _represents \

an encoded vector.
If not, then errors have heen miade-

The above prﬂﬂﬂdﬂrﬂ. is Vﬂr};_ig_g_@ﬁma;“::‘;;azﬁ
received word must qssentially be compared

possible encoded words.

-

qaid to correc! K or fewer

An (m,n) emcoding P is-S | _
' ¢ will correct a received.

errors if there is @ procedure tha o
word to yield the original encoded word, whenever J errerss

I<i<k, occur in transmissi

_"f’; ‘ An (m,n) encoding .

errors if and only if the mimmum distance between

encoded words 1S atleast 2K+1 ; 3 |
|

cts K or fewer errors. x)

Suppose that ® corre
i< k from the encoded

Proof:-
of distance 15j

is an encoded word
word Y. . |
|

where the number of NON-Zero
1

S —

Thus X-y = Z »
components 1n Z ish.
&

- -

a+b where a has atmost K nonzero ciiiries

Write z =
entries . If the transmission of

and b has atmost K -nonzero
the encoded word X results in x+a being received, then

atmost K errors occurred during transmission. Likewise,; f
the transmission of the encoded word y results in y+b beung

v

=4

eceived, then atmost K ‘errors - were made dunpg.

transmission. However, x+a = y+b-so the correct decoding
is not possible which contradicts the ability of @ to corTegt
r . " . . F

¥ or fewer errors. Hence. the minimum distance betwgen
encoded words is atieast 2k—1 - '
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between encoded words
ded word X

)<k Then |

Assume minimum distance
is' atleast 2k+1.If the transmission of an enco
results in an encoded word x+e, where d(Xx, X+€)

- the encoded word x can be recovered, 'since X is the closest

encoded word to x+e. Suppqse y is atleast as close to x+e

asX; - .
" Then d(x.y) < d(x+te, y) + d(x, x+e) <k+k=2k -
Which contradicts the fact that minimum distance between
. encoded words is atleast 2k+1. Thus to correct k. or fewer
- errors. calculate the distance between . the received word
and each .encoded word. Then the received ‘word . is -

decoded as the closest encoded word.

A common and simple example of a _siﬁg‘lé'—errnr
detecting code is the: parity-check code. The block
(ay,...am) is encoded as (a1,...2m, 23;). This is an (m,m+1)
encoding and has-a minimum distance of 2 between
encoded -words. . This codé has the additional advantage
that a received word does not have to be compared with all
possible encoded words in order to detect an error. To see if
an error occurred during transmission simply sum the
components of the received vector modulo 2. If no errors
occurred during transmission, then the sum of the
componernts is Za; + Xa; =0 and if a single error occurred
during transmission, then the sum of the components is 1.

 Thus a vector in [Z/(2)]™can be encoded as that -

‘vector multiplied by a fixed m x.n matrix. The encoding is
one-to-one if and only if the rank of the matrix equals m

" which ‘automatically implies that m< n. Error detecﬁc:ri |

capabilities are possible only if the vector space is mapped

- 'properly into the image space, hence in this case m is

LS

) S ,

strictly less than n
| .



