
CHAPTER 11

Security

11.1 INTRODUOION

Computer systems store large amounts of information, some of which is highly
sensitive and valuable to their users. Users can trust the system and rely on it only if
the various resources and information of a computer system are protected against
destruction and unauthorized access. Obviously, the security requirements are different
for different computer systems depending on the environment in which they are
supposed to operate. For example, security requirements for systems meant to operate
in a military environment are different from those for systems that are meant to
operate in an educational environment. The security goals of a computer system are
decided by its security policies, and the methods used to achieve these goals are called
security mechanisms. While designing the security of a system, it is often useful to
distinguish between security policies and security mechanisms because security
policies can be decided independent of the available technology but security mecha­
nisms are influenced by the available technology. It may be difficult to implement the
desired security policies with a selected set of security mechanisms. But new security
mechanisms can be later added to the set to implement the desired security
policies .

565

S66 Chap. 11 • Security

Irrespective of the operation environment, some of the common goals of computer
security are as follows [Mullender 1985]:

1. Secrecy. Information within the system must be accessible only to authorized
users.

2. Privacy. Misuse of information must be prevented. That is, a piece of information
given to a user should be used only for the purpose for which it was given.

3. Authenticity. When a user receives some data, the user must be able to verify its
authenticity. That is, the data arrived indeed from its expected sender and not from
any other source.

4. Integrity. Information within the system must be protected against accidental
destruction or intentional corruption by an unauthorized user.

A total approach to computer security involves both external and internal
security. External security deals with securing the computer system against external
factors such as fires, floods, earthquakes, stolen disks/tapes, leaking out of stored
information by a person who has access to the information, and so on. For external
security, the commonly used methods include maintaining adequate backup copies of
stored information at places far away from the original information, using security guards
to allow the entry of only authorized persons into the computer center, allowing the access
to sensitive information to only trusted employees/users, and so on.

Internal security, on the other hand, mainly deals with the following two aspects:

1. User authentication. Once a user is allowed physical access to the computer
facility, the user's identification must be checked by the system before the user can
actually use the facility.

2. Access control. A computer system contains many resources and several types of
information. Obviously, not all resources and information are meant for all users.
Therefore, even when a user passes the authentication phase and is allowed to use the
computer facility, a way is needed to prohibit the user from accessing those resources/
information that he or she is not authorized to access. In fact, a secure system requires that
at any time a subject (person or program) should beallowed to access only those resources
that it currently needs to complete its task. This requirement is commonly referred to as
the need-to-know principle or the principle of least privilege.

We saw that the security needs of a computer system are intricately linked with that
system's environment, use, and implementation. Therefore, in addition to the two aspects
mentioned above, internal security in distributed systems has a third aspect called
communication security.

3. Communication security. In a distributed system, the communication channels
that are used to connect the computers are normally exposed to attackers who may try to
breach the security of the system by observing, modifying, or disrupting the
communications. Wireless networks are even more vulnerable to monitoring by intruders

Sec. 11.2 • Potential Attacks to Computer Systems 567

because anyone with a scanner can pluck the radio signals out of the air without being
detected. Communication security safeguards against unauthorized tampering of informa­
tion while it is being transmitted from one computer to another through the
communication channels. Two other aspects of communication security are authenticity of
communicating entities and integrity of messages. That is, the sender of a message wants
to know that the message was received by the intended receiver, and the receiver wants
to know that the message was sent by the genuine sender. Obviously, both the sender and
the receiver also want to be guaranteed that the contents of the message were not changed
while it was in transfer.

Providing both external and internal security is more difficult in distributed systems
than in centralized systems because of the lack of a single point of control and the use of
insecure networks for data communication. Although external security is as important as
internal security, the policies and mechanisms used at the operating system level for
computer security deal only with the internal security aspects. Therefore, this chapter
deals mainly with the commonly used mechanisms for providing different types of
internal security in distributed systems.

11.2 POTENTIAL ATTACKS TO COMPUTER SYSTEMS

The first step in the provision of appropriate computer security is to identify the
potential threats/attacks to computer systems. The term intruder or attacker is
commonly used to refer to a person or program trying to obtain unauthorized access
to data or a resource of a computer system. An intruder may be a threat to computer
security in many ways that are broadly classified into two categories-passive attacks
and active attacks. A passive attack does not cause any harm to the system being
threatened, whereas an active attack does. Therefore, passive attacks are inherently
undetectable by the system and can only be dealt with by using preventive measures.
On the other hand, active attacks are combated by a combination of prevention,
detection, and recovery techniques. A description of these attacks and some other
related problems are presented below.

11.2.1 Passive Attacks

In passive attacks, an intruder somehow tries to steal unauthorized information from the
computer system without interfering with the normal functioning of the system. Some
commonly used methods of passive attack are described below:

1. Browsing. In this method, intruders attempt to read stored files, message packets
passing by on the network, other processes' memory, and so on, without modifying any
data. Access control mechanisms are used to prevent unauthorized reading of stored files
and other processes' memory contents, and message encryption is used to prevent
eavesdropping of messages transmitted over network links.

568 Chap. 11 • Security

2. Leaking. In this method, an intruder uses an accomplice (a legitimate user having
authority to access the information to be stolen) who leaks the information to him or her.
Prevention of leaking is a difficult problem to solve and requires preventing all types of
communication between the accomplice and the intruder. The problem of ensuring that it
is impossible for a potential accomplice to leak any information to the outside world is
called the confinement problem [Lampson 1973]. As described later, leaking of
information between processes that in theory cannot communicate at all is relatively
straightforward. Therefore, the confinement problem is in general unsolvable.

3. Inferencing, In this method, an intruder tries to draw some inference by closely
observing and analyzing the system's data or the activities carried out by the system. For
example, if information is encrypted to protect unauthorized access, an intruder may try
to derive the encryption key by analyzing several pieces of encrypted data. Since the
derived key can be used for stealing information from the system, it is valuable and may
be sold to other intruders. Another example of inferencing is traffic analysis in distributed
systems. In this case, an intruder observes when and where interprocess messages flow in
the system, and by analyzing the frequency of message exchanges between various
communicating partners, the intruder tries to draw some inference. For example, in a
business environment, traffic analysis may provide useful clues to negotiations taking
place between different organizations.

4. Masquerading. In this method, an intruder masquerades as an authorized user
or program in order to gain access to unauthorized data or resources. For instance,
many systems have mechanisms for alJowing programs written by users to be used by
other users. These programs can improperly use the access rights of an executing user
and leak information. For example, an intruder may write an editor program that works
perfectly as an editor but also creates a copy of the edited file to a special area
accessible to the intruder. This editor program is then compiled and read into the bin
directory of a user, whose files the intruder is interested in. From then on, the intruder
gets a copy of all the files edited by the user. The user is ignorant of the theft being
made because the editor program performs all his or her editing jobs in a perfectly
normal fashion.

Penetrating computer security in this manner is known as the Trojan horse attack.
That is, a Trojan horse program is a program that consists of clandestine code to do
nasty things in addition to its usual function but appears to be benign. It is often offered
as a gift or sometimes for a nominal price to prevent suspicion. A user normally accepts
it into his or her system because of the useful function performed by it. However, once
inside the user's computer, code hidden in the program becomes active and either
executes malicious acts or creates a way of subverting system security so that
unauthorized personnel can gain access to the system resources. Note that a Trojan
horse attack may either be passive or active depending on the activities performed by
the clandestine code. For example, if the clandestine code simply steals information,
then it is of the passive type. But if it does something more harmful like destroying/
corrupting files, then it is of the active type.

An intruder can also masquerade as a trusted server to a client requesting a service
from the system. This action is known as spoofing.

Sec. 11.2 • Potential Attacks to Computer Systems

11.1.1 Actlv. Attacks

569

Active intruders are more malicious than passive intruders. Unlike passive attacks, active
attacks interfere with the normal functioning of the system and often have damaging
effects. The most common types of damage that active attacks cause are corrupting files,
destroying data, imitating hardware errors, slowing down the system, filling up memory
or disk space with garbage, causing the system to crash, confounding a receiver into
accepting fabricated messages, and denial/delay of message delivery. Some commonly
used forms of active attacks are described below. In the following, the description of
viruses, worms, and logic bombs is based on the material presented in [Bowles and Pelaez
1992].

Viruses

A computer virus is a piece of code attached to a legitimate program that, when executed,
infects other programs in the system by replicating and attaching itself to them. In addition
to this replicating effect, a virus normally does some other damage to the system, such as
corrupting/erasing files. Therefore, due to its spreading nature, a virus can cause severe
damage to a system. Notice that virus attacks are active-type Trojan horse attacks.

A typical virus works as follows. The intruder writes a new program that performs
some interesting or useful function (such as some game or utility) and attaches the virus to it
in such a way that when the program is executed the viral code also gets executed. The
intruder now uploads this infected program to a public bulletin board system or sends it by
mail to other users of the system or offers it for free or for a nominal charge on floppy disks.
Now if anyone uses the infected program, its viral code gets executed. When the viral code
of the infected program executes, it randomly selects an executable file on the hard disk and
checks to see if it is already infected. Most viruses include a string of characters that acts as
a marker showing that the program has been infected. If the selected file is already infected,
the virus selects another executable file. When an uninfected program is found, the virus
infects it by attaching a copy of itself to the end of that program and replacing the first
instruction of the program with a jump to the viral code. When the viral code is finished
executing, it executes the instruction that had previously been first and then jumps to the
second instruction so that the program now performs its intended function. Notice that a
virus spreads because every time an infected program is executed, it tries to infect more
programs. Also notice that a virus does not infect an already infected file in order to prevent
an object file from growing ever longer. This allows the virus to infect many programs
without noticeably increasing disk space usage.

Recovery from a virus infection is a difficult task that often requires partial or
complete shutdown for long periods of time of the computer system under attack.
Therefore, it is always better to take necessary precautions to prevent virus problems.
Some precautionary steps include (a) buying software only from respectable stores, (b)
refusing to accept software in unsealed packages or from untrusted sources, (c) avoiding
borrowing programs from someone whose security standards are less rigorous than one's
own, and (d) avoiding uploading of free software from public domain, bulletin boards, and
programs sent by electronic mail.

570 Chap. 11 • Security

When a computer system suffers from virus infection, it has to be cured. The simplest
way to cure a computer from virus infection is to shut it down, purge its memory and all
its disks, and rebuild its files from scratch using the original manufacturer's copy.
Disinfection utilities may also be used to cure a computer from virus infection. These
utilities first identify the virus type with which the computer is infected by matching its
marker against the markers of well-known viruses. Once the type is known, the original
programs are restored from their infected versions by applying a detailed knowledge of the
infection method used by the virus. For example, in viruses that modify jump instructions
at the beginning of the host program, recovering can be done simply by restoring the
original jump to the start of the host program code. However, notice that these disinfection
utilities can only cure specific known viruses. They cannot cure a newly encountered type
of virus. A good disinfection utility can normally cure several hundred types of viruses
and its power can be regularly improved by frequently updating it as new viruses are
discovered.

Notice that the longer a virus remains in a system, the more time it has to spread and
the tougher recovery from it becomes. Therefore, it is important to detect a virus as soon
as possible. An effective method to detect viruses is to use a snapshot program and a check
routine. The snapshot program is used to log all critical system information at the time of
the initial installation and the check routine is periodically executed to compare the
system's current state with the original snapshot. If signs of infection are detected, the
affected area of the computer is identified and the user is notified.

Curing a distributed system from virus infection is much more difficult because if the
infection is not removed from every workstation at the same time, reinfection will occur.
This is because an infected file on the network server can infect every workstation on the
network.

Worms

Worms are programs that spread from one computer to another in a network of computers.
They spread by taking advantage of the way in which resources are shared on a computer
network and, in some cases, by exploiting flaws in the standard software installed on
network systems. A worm program may perform destructive activities after arrival at a
network node. Even when not directly destructive, worms often cripple a network by
subverting the operation of computers on the network to their own purposes,
monopolizing their resources, and saturating the communications links in a network.
Often, it is necessary to shut down the entire system (all computers of the network) to
recover from a worm problem.

To illustrate how a worm propagates in a network, the famous Internet Worm attack
by a Cornell graduate student, Robert Tappan Morris, on November 2, 1988, that infected
thousands of UNIX machines all over the Internet is described here. This worm program
had two types of code, the bootstrap code and the code forming the main body of the
worm. The bootstrap code was compiled and executed on the system under attack. When
executed, the bootstrap code established a communications link between its new host and
the machine from which it came, copied the main body of the worm to the new host, and
executed it. Once installed on a new host, the worm's first few actions were to hide its

Sec. 11.2 • Potential Attacks to Computer Systems 571

existence. For this, it unlinked the binary version of itself, killed its parent process, read
its files into memory and encrypted them, and deleted the files created during its entry into
the system. After finishing its hiding operations, the worm's next job was to look into its
host's routing tables to collect information about other hosts to which its current host was
connected. Using this information, it then attempted to spread its bootstrap code to those
machines by trying the following three methods one by one:

1. The first method was to try to spawn a remote shell on the target machine using
the rsh command of UNIX. This method sometimes works because some machines trust
other machines and willingly run rsh without authenticating the remote machine. If
successful, the remote shell uploaded the worm program on the target machine and
continued spreading to new machines from there.

2. If the first method failed, the second method was tried. This method took
advantage of a bug in the finger program that runs as a daemon process at every BSD site.
A user anywhere on the Internet can type

to obtain general information about a person at a particular site, such as the person's real
name, home address, office address, telephone number, and so on. The finger utility uses
the C library function gets to read input data. A problem with gets is that it reads the entire
input string without checking for buffer overflows. The worm exploited this flaw and
called finger with a specially constructed 536-byte string as a parameter. The overflow
caused an area of the system stack to be overwritten, allowing the worm to put its own
suitable instructions (a procedure to execute Ibinlsh) on the stack. Now when the finger
daemon returned from the procedure it was in at the time it got the request, it returned to
and executed the procedure inside the 536-byte string on the stack instead of returning to
main. If this method succeeded, the worm had a shell running on the target machine.

3. If the first two methods failed, the worm tried a third method that takes advantage
of a loophole in the UNIX electronic mail utility sendmail. The sendmail program has a
DEBUG option, which allows program testers to verify that mail has arrived at a site
without having to invoke the mailer's address resolution routines. Many vendors and site
administrators leave the debug option compiled into the sendmail code to facilitate
configuring the mailer for local conditions. What the worm did was to execute the
sendmail program with the DEBUG option and then enact a sequence of commands to
mail the bootstrap code to the target machine.

Once established on a new machine, the worm tried to break into user accounts by
exploiting the accessibility of the UNIX password file and the tendency of users to choose
common words as their passwords. Each broken password allowed the worm to
masquerade as the user corresponding to that password and gain access to any remote
machine where that user had an account.

The worm was designed to act intelligently to prevent being spotted. It periodically
forked itself and killed its parent, so that its process ID was constantly changing. This

572 Chap. II • Security

prevented anyone process from accumulating a large amount of CPU time that might
create suspicion or cause its scheduling priority to be degraded. Furthermore, after every
12 hours, the worm erased its record of the machines it had infected, so that already
infected hosts were put back on the list of potential targets. Whenever the worm gained
access to a new machine, it first checked to see if the machine already had a copy of the
worm. If so, the new copy exited, except one time in seven. The use of one in seven
possibly was to allow the worm to spread even on a machine on which the system
administrator might have started its own version of the worm to fool the real worm.

Although viruses and worms both replicate and spread themselves, the two differ in
the following aspects:

1. A virus is a program fragment whereas a worm is a complete program in itself.

2. Since a virus is a program fragment, it does not exist independently. It resides in
a host program, runs only when the host program runs, and depends on the host
program for its existence. On the other hand, a worm can exist and execute
independently.

3. A virus spreads from one program to another whereas a worm spreads from one
computer to another in a network.

Logic Bombs

A logic bomb is a program that lies dormant until some trigger condition causes it to
explode. On explosion, it destroys data and spoils system software of the host computer.
A trigger condition may be an event such as accessing a particular data file, a program
being run a certain number of times, the passage of a given amount of time, or the system
clock reaching some specific date (for instance, Friday the 13th or April Fool's Day). The
trigger condition is normally selected so that the logic bomb explodes at the moment when
it can do maximum damage to the system. Logic bombs can be embedded in a Trojan
horse or carried about by a virus.

Active Attacks Associated with Message
Communications

In a distributed system, communication channels are used to carry information from one
node to another in the system in the form of messages. These communication channels
may be exposed to attackers who may try to breach the security of the system by
observing, modifying, deleting, inserting, delaying, redirecting, or replaying the messages
that travel through the communication channels. The commonly known active attacks
associated with message communications are of the following types:

1. Integrity attack. For secure communication, the integrity requirement specifies
that every message is received exactly as it was sent or a discrepancy is detected.
However, an intruder may change the contents of a message while it is traveling through
a communication channel and the receiver may not be aware of this and accept it as the
original message.

Sec. 11.2 • Potential Attacks to ComputerSystems 573

2. Authenticity attack. An intruder may illegally connect his or her own computer
system to a communication channel and impersonate a legal network site. The intruder can
then synthesize and insert bogus messages with valid addresses into the system so that
they are delivered as genuine messages. If an integrity attack is possible, an intruder may
also cause an authenticity attack by changing the protocol control information (addresses)
of the messages so that they are delivered to wrong destinations.

3. Denial attack. In this case, the intruder either completely blocks the communica­
tion path between two processes so that the two processes cannot communicate at all or
observes all messages exchanged between the two processes and prevents only selected
messages from delivery. That is, the intruder causes complete or partial denial of message
delivery.

4. Delay attack. Several messages have time value. Therefore, instead of using a
denial attack, an intruder may simply delay the delivery of message passing in an
association between two communicating processes to fulfill his or her motive.

5. Replay attack. In this case, an intruder retransmits old messages that are accepted
as new messages by their recipients.

Cryptography deals with the encryption of sensitive data to prevent its comprehen­
sion and is the only practical means for protecting information sent over an insecure
channel, be it telephone line, microwave, satellite, or any other transmission media. This
is because an encrypted message provides no information regarding the original message,
hence guaranteeing secrecy; and an encrypted message, if tampered with, would not
decrypt into a legal message, hence guaranteeing integrity. Cryptography can also be used
for secure identification of communicating entities, hence guaranteeing authenticity.
Furthermore, encryption, in conjunction with protocols, can also be used to prevent denial,
delay, and replay of messages. For instance, replay of old messages can be countered by
using nonces or timestamps. A nonce is an information that is guaranteed to be fresh; that
is, it has not been used or appeared before. Therefore, a reply that contains some function
of a recently sent nonce should be considered timely because the reply could have been
generated only after the nonce was sent. Perfect random numbers are suitable for use as
nonces. In summary, the only way to prevent attacks associated with message
communications is by the application of cryptographic techniques.

In a client-server model, a single server program may be shared by multiple clients. In
situations where programs are shared, a security problem is considerably more complex
than if only data objects are shared. One reason that we have already seen is a Trojan
horse. A Trojan horse is just one way in which a shared program could leak classified
information to other unclassified subjects. There may be several other ways in which a
shared program could leak confidential information to unauthorized subjects.

A program that cannot retain or leak confidential information is said to be
memoryless or confined, and the prevention of such leakage is called the confinement

574 Chap. II • Security

problem [Lampson 1973]. That is, the confinement problem deals with the problem of
eliminating every means by which an authorized subject can release any information
contained in the object to which it has access to some subjects that are not authorized to
access that information. According to Lampson, as long as a program does not have to
retain or output any information, confinement can be implemented by restricting the
access rights of the program. But if a program must retain or output information, access
control alone is not sufficient to ensure security.

Lampson identified the following kinds of channels that can be used by a program to
leak information:

1. Legitimate channels. Legitimate channels are those that the program uses to
convey the results of its computation, such as messages or printed output. The program
may hide additional information in these channels along with the actual result. Some form
of encoding that is meaningful to the person or process receiving the result is used to
convey the additional information. For example, in a printed output, two different space
lengths that are not discernible to normal persons but visible if observed minutely may be
used between words to mean 0 and 1 bits. This type of printed output can be used to
convey additional information to a person who knows about the hidden bits between two
words.

2. Storage channels. Storage channels are those that utilize system storage such as
shared variables or files to leak information to other processes. Notice that when a
process (A) wants to leak information to another process (B) by using a storage
channel, it is not necessary that both processes must have access rights to the shared
object. For example, if the system provides a way of locking files, process A can lock
some file to indicate a 1 and unlock it to indicate a O. It may be possible for process
B to detect the status of a lock even on a file that B cannot access. Similarly, in UNIX,
process A could create a file to indicate a 1 and remove it to indicate a O. Even though
process B has no permission to access the file created by A, it can use the access system
call to see if the file exists.

3. Covert channels. Covert channels are paths that are not normally intended for
information transfer at all but could be used to send some information. For example, a
process may use one of the following methods to leak information to some other process
that is carefully monitoring its activities [Tanenbaum 1992]:

• By modulating paging rate. For example, during a fixed time period, many page
faults caused by the process may be used to convey a l, and no page faults for a O.

• By modulating CPU usage. For example, usage of CPU for a fixed time period by
the process may be used to convey a l, and sleeping of the process for the same
period may be used to convey a O.

• By acquiring and releasing dedicated resources. For example, the process may
acquire the resource to convey a 1 and release it to convey a O.

To solve the confinement problem, it is important to block all channels that a
program may use to communicate with other processes. However, finding all such

Sec. 11.3 • Cryptography S7S

channels and trying to block them is extremely difficult. In practice, there is little that can
be done. Therefore, the confinement problem is in general unsolvable.

11.3 CRYPTOGRAPHY

Cryptography is a means of protecting private information against unauthorized access in
those situations where it is difficult to provide physical security. The basic idea behind this
security technique is that if it is not.possible to prevent copying of information, it is better
to prevent comprehension.

11.3.1 8aslc Concepts and Terminologies

Two primitive operations employed by cryptography are encryption and decryption.
Encryption (also called enciphering) is the process of transforming an intelligible
information (called plaintext or cleartext) into an unintelligible form (called ciphertext).
Decryption (also called deciphering) is the process of transforming the information back
from ciphertext to plaintext. When cryptography is employed for protecting information
transmitted through communication channels, plaintext is also called a message.

Encryption is basically a mathematical function (encryption algorithm) having the
following form:

where P is the plaintext to be encrypted, K, is an encryption key, and C is the resulting
ciphertext. Decryption of C is performed by a matching function (decryption algorithm)
that has the following form:

P = D (C, Kd)

where Kd is the decryption key. Note that the decryption function D is the inverse of the
encryption function E. Therefore we have

To prevent the plaintext from being easily revealed, it must be possible to transform
a given plaintext into a large variety of possible ciphertexts selected by a specific
parameter. The keys K, and Kd serve as this parameter. That is, the function parts remain
the same but the keys are changed as often as necessary.

The above described general structure of a cryptosystem is illustrated with an
example in Figure 11.1, where a message is encrypted for secure transmission over an
insecure channel from a sender node to a receiver node.

11.3.2 Sasie Requirements

To be practically useful, a cryptosystem must fulfill the following basic requirements:

I. It must be easy to use and its encryption and decryption algorithms should be
efficient for computer application.

576 Chap. 11 • Security

Sendernode

Ciphertext•
Insecure
channel

Receiver node

Fig. 11.1 General structure of a cryptosystem.

2. There are two methods to achieve security. In the first method, the encryption
algorithm is kept secret and is rather complex to make it difficult to guess. In the second
method, the encryption algorithm is made public but the keys are kept secret and they are
long enough to make it practically impossible to guess a key. The second method is
preferred for practically useful systems. That is, the security of the system should depend
only on the secrecy of the keys and not on the secrecy of the algorithms.

3. The system must be computationally (practically) secure. That is, the determina­
tion of Kd must be computationally infeasible for an attacker (also called a cryptanalyst).
Note that the strength of a cryptosystem is measured by the level of difficulty (usually
measured either by the time or number of elementary operations) of determining Kd .

Depending on the amount of information available to an intruder, in a cryptosystem,
attacks are mainly of three types-ciphertext only, known plaintext, and chosen plaintext
[Bright 1977].

In ciphertext-only attack, an intruder is able to intercept ciphertext and tries to derive
Kd from the ciphertext. A system whose security is not resistant to a ciphertext-only attack
is considered to be totally insecure and is useless.

In known-plaintext attack, ail intruder has considerable amount of both ciphertext and
corresponding plaintext and tries to derive Kd from them. A system that can resist a
known-plaintext attack is considered to be secure.

In chosen-plaintext attack, an intruder has access to ciphertext for any plaintext of his
or her choice. The intruder tries to derive Kd by examining several ciphertexts for the
carefully thought plaintexts of his or her choice. It is most appropriate nowadays to
evaluate cryptosystems by their ability to withstand chosen-plaintext attacks.

Another important way by which a cryptosystem is demonstrated to be secure is the
test of time. If no known successful attacks have been reported since a system is published
and in use for a significant amount of time (measured in years), the cryptosystem is
considered to probably provide pretty good security.

11.3.3 Symmetric and Asymmetric Cryptosyst.ms

There are two broad classes of cryptosystems, symmetric and asymmetric. In a symmetric
cryptosystem, either both the encryption key (Ke) and decryption key (Kd) are the same or
one is easily derivable from the other. Usually, a common key (K) is used for both

Sec. 11.3 • Cryptography 577

enciphering and deciphering. For security, it is important that the key of a symmetric
cryptosystembe easily alterable and must always be kept secret. This implies that the key
is known only to authorizedusers. Symmetriccryptosystemsarealso known as shared-key
or private-key cryptosystems.

Symmetric cryptosystems are useful in those situations where both encryption and
decryption of information are performed by a trusted subsystem. For example, a
password-baseduser authentication system may use this scheme for saving passwords in
encrypted form. When a user declares a password, the operating system uses the
encryption key for encrypting the password before storing it internally. At the time of
authentication, the operating system again uses the same key to decrypt the stored
password to compare it to the password supplied by the user.

In an asymmetric cryptosystem, on the other hand, the decryption key (Kd) is not
equal to the encryption key (Ke) . Furthermore, it is computationally impractical to
derive Kd from Ke . Because of this property, only Kd needs to be kept secret and K,
is made publicly known. Asymmetric cryptosystems are also known as public-key
cryptosystems.

Public-key cryptosystems arc computationally expensive and hence are not suitable
for bulk data encryption.A typical use of a public..key cryptosystemin distributedsystems
is for establishing connection between two communicating entities (A and B) for the
exchangeof messages using a symmetriccryptosystem. Let us suppose that A and B want
to establish a connection between themselves for initiating message transfers using a.
symmetric cryptosystem whose key is K. Note that it is insecure to send the key Kover
a normal communication channel for the purpose of sharing it with A and B. Therefore,
a public-key cryptosystem is first used to establish a connection betweenA and B in the
following manner:

• Entity A posts the encryption key (Ke) of a public-key cryptosystem on, say, an
electronic bulletin board, so that it is obtainable by B.

• Entity B uses A's public key to encrypt the key K and transmits it to A.

• Entity A decrypts B's message using the decryption key (Kd) of the public-key
cryptosystem. Only A can decrypt this message because Kd is available only
with A.

• Now that A also has the key K, both A and B can safely communicate with each
other using the symmetric cryptosystem scheme. Any eavesdropper would only
have the public key (Ke) , the encrypted form of key K, and the encrypted form of
the messages being communicated between A and B.

One pitfall here is that someone else could masquerade as A or B. This can be
overcome by using digital signatures (described later in this chapter).

The relative advantages and disadvantages of symmetric and asymmetric cryptosys­
terns are as follows:

1. Symmetric cryptosystems require that both encryption and decryption of
information be performed by a trusted subsystem, whereas this is not necessary with
asymmetric cryptosystems. Therefore, general security policies need asymmetric
cryptosystems.

578 Chap. 11 • Security

2. When employed for the security of messages in a communication system, a
symmetric cryptosystem requires a secure channel by which the sender can inform the
receiver of the key used to encipher the messages. The encrypted messages may, however,
be transmitted through an insecure channel. On the other hand, in an asymmetric
cryptosystem, both the public-key and the messages can be transmitted through an
insecure channel. Therefore, there is no need for a special secure channel for key
transmission. Due to this reason, asymmetric cryptosystems are considered to be more
secure than symmetric cryptosystems.

3. In general, asymmetric cryptosystems are computationally much more expensive
than symmetric cryptosystems and are inefficient for bulk data encryption. Hence, in
practice, for data communications, asymmetric cryptosystems are often used only for
initialization/control functions, while symmetric cryptosystems are used for actual data
transfer.

The Data Encryption Standard (DES) cryptosystem [NBS 1977, Seberry and
Pieprzyk 1989] is the best known and most widely used symmetric cryptosystem today.
On the other hand, the Rivest-Shamir-Adleman (RSA) cryptosystem [Rivest et al. 1978,
Seberry and Pieprzyk 1989] is the first published and practically the most satisfactory
asymmetric cryptosystem today.

11.3.4 Key Distribution Problem

When cryptography is employed for secure communications in distributed systems, a need
for key distribution arises because two communicating entities can securely communicate
only when they obtain matching keys for encryption and decryption of the transmitted
messages. A matching pair of keys held by two communicating entities forms an
independent, private logical channel between them. The key distribution problem deals
with how to securely supply the keys necessary to create these logical channels. The key
distribution problem in symmetric and asymmetric cryptosystems are described below.

Key Distribution in Symmetric Cryptosystems

When two users (persons or programs) of two different nodes want to communicate
securely by using a symmetric cryptosystem, they must first share the encryption!
decryption key. For this, the key must be transmitted from one of the two users to the other
user. However, there is no special transmission medium for the key transfer and the key
must be transmitted using the same insecure physical medium by which all exchanged
messages are transmitted. This requires that the key must itself be encrypted before
transmission because if the key is compromised by an intruder while being transmitted
over the insecure medium, the intruder can decrypt all encrypted messages exchanged
between the two users. Therefore, a circularity exists in symmetric cryptosystems. This
circularity can only be broken through prior distribution of a small number of keys by
some secure means. The usual approach is to use a server process that performs the job
of a key distribution center (KDC). Each user in the system shares with the KDC a
prearranged pair of unique keys.

Sec. 11.3 • Cryptography 579

The KDC is a generally trusted entity and is shared by all communicating users of the
system. On request by a user, it generates a new secret key to be used by the user to
communicate with another user. In actual implementation, there may be several KDCs in
the system. The three commonly used implementation approaches are as follows:

• Centralized approach

• Fully distributed approach

• Partially distributed approach

Below we describe how key distribution takes place in each approach between two
users who want to communicate securely with each other.

Centralized Approach. In this approach, a single centralized KDC is used that
maintains a table of secret keys for each user (see Fig. 11.2). A user's secret key is known
only to the user and KDe. Suppose that the secret keys of users A and Bare Ka and Kb ,

respectively, and that a secure logical communication channel is to be established for
exchanging encrypted messages between them. The following protocol was proposed in
[Needham and Schroeder 1978] for performing this task (see Fig. 11.2):

m1 m3

ec= ~ m4 ===xv
m2 msIDa Ka

lOb Kb

Table of secret keys
for each user

m1 = (Ra,IDa, lOb)
where Ra ;:.;: code for the request made by user A

IDa = identifier of user A
IDb = identifier of user B

m2= E ((Ra,IDa,Kab, C1), Ka}
where Kab =secret key generated by the KDC.for secure

communications between users A and B
C1= E ((Kab, IDa),Kb)

where Kb=private key of user B
Ka :: private key of user A

m3=C1

m4 = C2= E ifJr' Kab)
where N, == a random number generated by user B

m5 == C3= E ifJt, Kab)
where N, == f(Nr) and tis a previously defined function

Fig. 11.2 The method of key distribution in the centralized approach.

580 Chap. 11 • Security

1. User A sends a request message (ml) to the KDC indicating that it wants to
establish a secure logical communication channel with user B. The message contains a
code for the request (Ra), the user identifier ofA (IDa), and the user identifier of B (IDb) .

This message is transmitted from user A to KDC in plaintext form.

2. On receiving ml' the KDC extracts from its table the keys Ka and Kb , which
correspond respectively to the user identifiers IDa and IDb in the message. It then creates
a secret. key Kab for secure communications between users A and B. By using key Kb , the
KDC encrypts the pair (Kabt IDa) to generate a ciphertext C1= E «Kab, IDa), Kb). Finally,
it sends a message (m2) to user A that contains Ra , IDa' Kabt and C1• The message m2 is
encrypted with the key Ka so that only user A can decrypt it.

3. On receiving m2' user A decrypts it with its private key Ka and checks whether Ra

and IDa of the message match with the originals to get confirmed that m2 is the reply for
mI. If so, user A keeps the key Kab with it for future use and sends a message m3 to user
B. This message contains the ciphertext C1• Note that only user B can decrypt C1 because
it was generated using key Kb •

4. On receiving m3' user B decrypts C1 with its private key Kb and retrieves both Kab
and IDa. At this stage, both users A and B have the same key Kab that can be used for
secure communications between them because no other user has this key. At this point,
user B needs to verify if user A is also in possession of the key Kab . Therefore, user B
initiates an authentication procedure that involves sending a nonce to user A and receiving
a reply that contains some function of the recently sent nonce. For this, user B generates
a random number Nr , encrypts N; by using the key Kab to generate a ciphertext C2 = E (Nn

Kab), and sends C2 to user A in a message ms, The random number N, is used as a
nonce.

5. On receiving ms, user A decrypts C2 with the key Kab and retrieves N; It then
transforms N, to a new value N, by a previously defined function (f). User A encrypts N,
by using the key Kab to generate a ciphertext C3 = E (NI , Kab), and sends C3 to user B in
a message m«.

6. On receiving ms, user B decrypts C3 , retrieves Nt, and applies the inverse of
function f to NI to check if the value obtained is N; If so, user B gets confirmed that a
secure channel can be created between users A and B by using the key Kab . This is
sufficient to achieve mutual confidence, and from now on, the exchange of actual
messages encrypted with key Kab can take place between users A and B.

That there is a problem in the protocol was pointed out by Denning and Sacco
[1981]. They observed that during the transfer of message m3' if an intruder copies C1

and by unspecified means came to know Kab, that intruder can in future always
pretend to B that it was A. The basic problem here is that B never had the chance to
offer a nonce to the KDC and, therefore, has no means of deducing the freshness of
the quantity (Kab) that came from the KDC. Note that only the KDC and A know that
Kab is fresh. One method to correct this problem is to add a timestamp (T) to the
ciphertext C1, so that it becomes E«Kab , IDa' T), Kb) . User B decrypts this message

Sec. 11.3 • Cryptography 581

and checks that T is recent. This solution is adopted in the Kerberos system (described
later in this chapter).

Notice that in the centralized KDC approach, if there are n users in the system, n
prearranged key pairs are needed to provide secure communications. The approach is
simple and easy to implement. However, it suffers from the drawbacks of poor reliability
and performance bottleneck of the single KDC. That is, fresh key distributions cannot take
place if the node on which the KDC resides crashes, and the KDC may get overloaded in
a large system with too many users. Two other approaches described below may be used
to overcome these drawbacks of the centralized approach.

Fully Distributed Approach. In this approach, there is a KDC at each node of
the distributed system. The prior distribution of secret keys allows each KDC to
communicate securely with all other KDCs. That is, each KDC has a table of secret keys
having private keys of all other KDCs. Therefore, in a system having n nodes, each KDC
keeps n-l keys, resulting in a total of n(n-l)/2 key pairs in the system.

Suppose that a secure logical communication channel is to be established between
user A of node N1 and user B of node N2 . Also suppose that K1 and K2 are the private keys
of the KDCs of nodes N1 and N2 , respectively. The desired connection can be established
in the following manner (see Fig. 1I .3):

m, = (Ral 10a, lOb)
where Ra=code for the request made by user A

IDa=identifier of user A
lOb= identifier of user B

m2= (~, IDa, Kab)
where Kab =secret key generated by the KDC of node N1 for

secure communications between users A and B

m3 = ~ = E ((~bl IDa, lOb), K2)
where K2 = private key of KDC of node N2

m4 =(Kabl IDa)

ms= C2=E(N" Kab)
where N,= a random number generated by user B

m6= C3= E VVt, Kab)

where N t=t(N,) and tis a previously defined function

Fig. It.3 The method of key distribution in the fully distributed approach.

582 Chap. 11 • Security

1. User A sends a request message (ml) to its local KDC. The message contains a
code for the request (Ra), the user identifier of A (IDa)' and the user identifier of B (IDb) .

It is assumed that all local communications are secure and hence local messages can be
securely transmitted in plaintext form.

2. On receiving rn), the KDC of node N) consults the name server to get the location
(N2) of the user having identifier IDb' It then extracts the private key (K2) of the KDC of
node N2 from its table. Next, it creates a secret key Kab for secure communications
between users A and B. By using key K2 , it encrypts the triplet (Kabt IDa' IDb) to generate
a ciphertext C. = E «Kab , IDa' IDb) , K2) . Finally, it sends a message (m2) to user A that
contains Ra , IDa' Kab and a message (m3) to the KDC of node Nz that contains C].

3. On receiving m2' user A checks whether Ra and IDa of the message match with
the originals to get confirmed that m2 is the reply for mi. If so, user A keeps the key Kab

with it for future use.

4. On the other hand, on receiving message m3' the KDC of node N2decrypts it with
its private key K2 and forwards the pair (Kab t IDa) to the user with identifier JDb in the
form of message ms.

5. On receiving m4' user B initiates an authentication procedure and authenticates
user A exactly in the same way as done in the centralized approach.

Notice that in this approach the number of prearranged key pairs needed to provide
secure communications is independent of the number of users and depends only on the
number of nodes in the system. Another major advantage of this approach is that for
successful distribution of a key for secure communications between two users, only the
nodes of the two users must be properly functioning. Therefore, the approach is highly
reliable.

Partially Distributed Approach. In this approach, the nodes of the system are
partitioned into regions and, instead of having a KDC for each node, there is a KDC only
for each region that resides on one of the nodes of that region-.The prior distribution of
secret keys allows each KDC to communicate securely with each user of its own region
and with the KDCs of all other regions. That is, each KDC has a table of secret keys that
contains private keys of all users of its own region and of all other KDCs.

In this approach, the distribution of a key for the establishment of a secure logical
communication channel between two users A and B depends on the locations of the two
users. If both the users A and B reside on nodes that belong to the same region, the key
is distributed exactly in the same manner as is done in the centralized approach. In this
case, the KDC of that region plays the role of the centralized KDC. On the other hand, if
the users A and B reside on nodes belonging to different regions, the key distribution is
performed in a manner similar to that in the case of the fully distributed approach. The
only difference is that, in this case, messages m2 and m4 are also encrypted because they
are transmitted from one node to another. That is, m2 is encrypted with the private key of
user A, and m« is encrypted with the private key of user B. The complete process of key
distribution in this approach is shown in Figure 11.4. Notice that, in this approach, the

Sec. 11.3 • Cryptography

Region R1

Let there be 10 nodes in the system that are partitioned into two regions
R1 and R2 as shown above. The KDCs of regions R1 and R2are located
on nodes N1 and N61 respectively.

m1 :: (Ra, IDa, lOb)
where Ra =code for the request made by user A

IDa = identifier of user A
10b =identifier of user B

m2:: C1 = E ((Ra, IDa, Kab), Ka)
where Kab=secret key generated by the KDC of region R1 for

secure communications between users A and B
Ka = private key for user A

m3 =C2 :: E ((Kab, IDa, lOb), K2)
where K2 :: private key of KDC of region R2

m«=C3=E q< et» IDa), Kb)
where Kb =private key of user B

ms = C4 = E tN" Kab)
where N r =a random number generated by user B

m6 =Cs =E f/Vt, Kab)

where N, = f (Nr) and f is a previously defined function.

Fig. 11.4 The method of key distribution in the partially distributed approach.

583

failure of the KDC of a particular region will only disrupt key distribution activities that
involve a user of that region. Key distribution involving users of other regions can still be
carried out successfully. Therefore, the reliability of this approach lies in between the
reliabilities of the centralized and the fully distributed approaches.

Key Distribution in Asymmetric Cryptosystems

In an asymmetric cryptosystem only public keys are distributed. Since public keys need
not be kept secret, there is no problem of key transmission through an insecure physical
medium. Therefore, one might conclude that the key distribution problem does not exist
in asymmetric cryptosystems. However, this is not correct since the safety of an

584 Chap. II • Security

asymmetric cryptosystem depends critically on the correct public key being selected by a
user. A user who receives a public key wants to be sure that the received key is genuine.
Thus, in asymmetric cryptosystems, the key distribution process involves an authentica­
tion procedure to prevent an intruder from generating a pair of keys and sending a public
key to another user for establishing a logical communication channel with that user. The
authentication procedure allows the two users of a logical communication channel to
identify themselves before starting the actual exchange of data.

The commonly used key distribution approach in asymmetric cryptosystems is to use
a public-key manager (PKM) process that maintains a directory of public keys of all users
in the system. There is a key pair (Pk, Sk) for the PKM also. The public key Pk is known
to all users and the secret key Sk is known exclusively to the PKM. The protocol based on
this approach for establishing a logical communication channel between two users is
described below.

Let us assume that a logical communication channel is to be established between
users A and B. Also assume that (Pa, Sa) is the key pair of user A and (Ph' Sb) is the key
pair of user B. The public keys Pa and Pb are stored with the PKM and the secret keys Sa
and Sb are known exclusively to users A and B, respectively. The desired connection can
be established in the following manner (see Fig. 11.5):

1. User A sends a request message (m J) to the PKM indicating that it wants to
establish a secure logical communication channel with user B. The message contains a
code for the request (Ra) , a timestamp (T.), the user identifier of A (IDa)' and the user
identifier of B (IDb) . This message is encrypted by using Pk • That is, m, contains the
ciphertext C} =E «Ra, T}, IDa, JDb) , Pk) .

2. On receiving mit the PKM decrypts C. by using Sk' It then extracts the public
keys Pa and Pb from its table that correspond respectively to the user identifiers IDa and
IDb of the message. By using key Pa , the PKM encrypts the triplet (Ra , T., Ph) to generate
a ciphertext C2 =E «Ra , Tit Ph), Pa) . Finally, it sends C2 to user A in the form of a
message (m2)'

3. On receiving m2' user A decrypts C2 by using Sa and retrieves its contents. The
retrieved values of Ra and T1are compared with the originals to get confirmed that m2 is
the reply for m. and that it is not a replay of an old message. User A then generates a
random number Na, encrypts the pair (IDa' Na) by using user B's public key Ph to generate
a ciphertext C3 =E «IDa' Na) , Pb), and sends C3 to user B in a message (m3)'

4. On receiving m3' user B decrypts C3 by using Sb and retrieves its contents. By
seeing IDa in the message, user B knows that user A wants to establish a logical
communication channel with it. In order to get the authentic public key of user A, user B
contacts the PKM. For this, it sends a message (m4) to the PKM requesting for user A's
public key. The message contains a code for the request (Rb) , a timestamp (T2), the user
identifier of A (IDa)' and the user identifier of B (IDb) . This message is encrypted by using
r; That is, m4 contains the ciphertext C4 =E «Rb , T2 , IDa' IDb) , Pk) .

5. On receiving ms, the PKM decrypts C4 by using Sk. It then extracts the public
keys Pa and Ph that correspond respectively to the user identifiers IDa and IDb of the

Sec. 11.3 • Cryptography

Directoryof
public keys

IDa Pa
IDb Pb

S8S

P« = public key of PKM
Sk= secret key of PKM
Pa = public key of user A
Sa=secret key of user A

Pb= public key of user B
Sb = secret key of user B
IDa=user identifier of A
lOb=user identifier of B

m1 = C1= E ((Ra, 7;, IDa, lOb), Pk)
where Ra = code for the request made by user A

T1 =a timestamp

m2= C2=E ((Ra, T1, Pb), Pal

m3= C3= E ((IDa, Na),Pb)

where Na -= a random number generated by user A

tru -= C4 -= E ((~, T2,IDa. lOb), Pk)
where Rb= code for the request made by user B

T2 =a timestamp

m5= Cs =E ((Rb, T2,Pa), Pb)

m6 =C6 =E ((Na, Nb), Pa)

where Nb = a random number generated by user B

m7-= C7=E rJb, Pb)

Fig. 11.5 The method of key distribution in an asymmetric cryptosystem.

message. By using key Pb' the PKM encrypts the triple (Rb , Tz, Pa) to generate a
ciphertext Cs = E «Rb, Tz, Pa) , Pb)' Finally it sends C; to user B in the form of a
message (ms).

6. On receiving ms, user B decrypts Cs by using S/J, retrieves its contents, and
compares Rb and Tz with the originals to get confirmed that ms is really the reply of
m«. User B then generates a random number Nb , encrypts the pair (Na , Nb) by using
the key Pa to generate a ciphertext C6 = E «Na , Nb) , Pa) , and sends C6 to user A in
a message (m6)'

7. On receiving m6' user A decrypts C6 by using Sa' retrieves its contents, and
compares the received Na with the original. If they match, user A becomes sure that user

S86 Chap. II • Security

B is authentic. User A then encrypts Nb by using the key Pb to generate a ciphertext C7 =
E (Nb, Pb) and sends C7 to user B in a message (m7).

8. On receiving m-; user B decrypts C7 by using Sb and compares the received Nb

with the original. If they match, user B also gets confirmed that user A is authentic. This
is sufficient to achieve mutual confidence and allows regular communication to start.

Note that the protocol paradigms described above for key distribution in symmetric
and asymmetric cryptosystems illustrate basic design principles only. A realistic protocol
is necessarily a refinement of these basic paradigms.

11.4 AUTHENTICATION

Authentication deals with the problem of verifying the identity of a user (person or
program) before permitting access to the requested resource. That is, an authentication
mechanism prohibits the use of the system (or some resource of the system) by
unauthorized users by verifying the identity of a user making a request.

Authentication basically involves identification and verification. Identification is the
process of claiming a certain identity by a user, while verification is the process of
verifying the user's claimed identity. Thus, the correctness of an authentication process
relies heavily on the verification procedure employed.

The main types of authentication normally needed in a distributed system are as
follows:

1. User logins authentication. It deals with verifying the identity of a user by the
system at the time of login.

2. One-way authentication of communicating entities. It deals with verifying the
identity of one of the two communicating entities by the other entity.

3. Two-way authentication of communicating entities. It deals with mutual
authentication, whereby both communicating entities verify each other's
identity.

A description of the authentication mechanisms that are commonly used to perform
these types of authentication is presented below. Note that the authentication protocol
paradigms described below illustrate basic design principles only. A realistic protocol is
necessarily a refinement of these basic paradigms and addresses weaker environment
assumptions, stronger postconditions, or both.

11.4.1 Approaches to Authentication

The basic approaches to authentication are as follows [Shankar 1977, Woo and
Lam 1992]:

1. Proof by knowledge. In this approach, authentication involves verifying
something that can only be known by an authorized principal. Authentication of a user

Sec. 11.4 • Authentication 587

based on the password supplied by him or her is an example of proof by knowledge.
Authentication methods based on the concept of proof by knowledge are again of two
types-direct demonstration method and challenge-response method. In the direct
demonstration method, a user claims his or her identity by supplying information (like
typing in a password) that the verifier checks against prestored information. On the other
hand, in the challenge-response method, a user proves his or her identity by responding
correctly to the challenge questions asked by the verifier. For instance, when signing up
as a user, the user picks a function, for example, x + 18. When the user logs in, the system
randomly selects and displays a number, say 105, in which case the user must type 123
for authentication to be successful. For further security improvement, several functions
may be used by the same user. At the time of login, the function to be used will depend
on when the login is made. For example, a user may use seven different functions, one for
each day of the week. In another variation of this method, a list of questions such as what
is the name of your father, what is the name of your mother, what is the name of your
street on which your house is located, is maintained by the system. When signing up as
a user, the user has to reply to all these questions and the system stores the answers. At
login, the system asks one of these questions at random and verifies the answer supplied
by the user.

2. Proof by possession. In this approach, a user proves his or her identity by
producing some item that can only be possessed by an authorized principal. The system
is designed to verify the produced item to confirm the claimed identity. For example, a
plastic card with a magnetic strip on it that has a user identifier number written on it in
invisible, electronic form may be used as the item to be produced by the user. The user
inserts the card in a slot meant for this purpose in the system's terminal, which then
extracts the user identifier number from the card and checks to see if the card produced
belongs to an authorized user. Obviously, security can be ensured only if the item to be
produced is unforgeable and safely guarded.

3. Proof by property. In this approach, the system is designed to verify the identity
of a user by measuring SOIne physical characteristics of the user that are hard to forge. The
measured property must be distinguishing, that is, unique among all possible users. For
example, a special device (known as a biometric device) may be attached to each terminal
of the system that verifies some physical characteristic of the user, such as the person's
appearance, fingerprints, hand geometry, voice, signature. In deciding the physical
characteristic to be measured, an important factor to be considered is that the scheme must
be phycologically acceptable to the user community. Biometric systems offer the greatest
degree of confidence that a user actually is who he or she claims to be, but they are also
generally the most expensive to implement. Moreover, they often have user acceptance
problems because users see biometric devices as unduly intrusive.

Of the three authentication approaches described above, proof by knowledge and
possession can be applied to all types of authentication needs in a secure distributed
system, while proof by property is generally limited to the authentication of human users
by a system equipped with specialized measuring instruments. Moreover, in practice, a
system may use a combination of two or more of these authentication methods. For

588 Chap. 11 • Security

example, the authentication mechanism used by automated cash-dispensing machines
usually employ a combination of the first two approaches. That is, a user is allowed to
withdraw money only if he or she produces a valid identification card and specifies the
correct password corresponding to the identification number on the card.

11.4.2 Us.r login AutMfttlcQtlon

As in centralized systems, a user gains access to a distributed system by logging in a host
in the system. User identity is established at login; and all subsequent user activities are
attributed to this identity. Correct user identification at the time of login is crucial to the
functioning of a secure system because all access-control decisions and accounting
functions are based on this identity. Although any of the three basic approaches to
authentication can be employed for user login authentication, the proof by knowledge is
the most widely used method. In particular, most systems employ the direct demonstration
method based on passwords.

In the authentication scheme based on passwords, the system maintains a table of
authorized users' login names and their corresponding passwords. When a user wants to
log in, the system asks the user to type his or her name and password. If the password
supplied by the user matches the password stored in the system against his or her name,
it is assumed that the user is legitimate and login is permitted; otherwise it is refused.

To provide good security and be practically useful, a password-based authentication
system must have mechanisms for the following:

1. Keeping passwords secret

2. Making passwords difficult to guess

3. Limiting damages done by a compromised password

4. Identifying and discouraging unauthorized user logins

5. Single sign-on for using all resources in the system

The commonly used mechanisms for dealing with these issues are described
below.

Keeping Passwords Secret

A user is responsible for keeping his or her password secret outside the computer system
(external world). How to keep passwords secret in the external world is not of concern to
operating system designers except for the fact that while a password is being typed in, it
should not be displayed on the terminal, to prevent it from being seen by prying eyes near
the terminal. The main concern, however. is to prevent an intruder from obtaining
somebody's password by having access to the system's password table. The password
table is of course protected and is accessible only to the authentication program. However,
there is a great chance that the password table is exposed by accident or that the system
administrator has access to the table. Therefore, instead of storing the names and
passwords in plaintext form, they are encrypted and stored in ciphertext form in the table.
In this case, instead of directly using a user-specified name and password for table lookup,

Sec. 11.4 • Authentication 589

they are first encrypted and then the results are used for table lookup. Notice that for
implementing this scheme, the main requirement is that even if both the encryption
function and the password table are known, it is impossible to find the original password.
That is, a noninvertible function is needed for encryption because in the scheme we never
need to decrypt a ciphertext. This is an example- of the use of one-way cipher. In
cryptography we use the function

C = E (P, K)

where K is a key, P is a plaintext, and C is the resulting ciphertext. A one-way cipher can
be implemented by letting the plaintext P serve as the key to E such that

C = E (P, P)

In a one-way cipher, it is very difficult to invert the encryption function (E) even if
the intruder knows the key. Furthermore, if the key is not known (as in the case of
password security scheme in which a password itself is used as the key), the inversion
becomes much more difficult because the intruder cannot know which functions (and how
many times of them) are used.

To keep passwords secret in a distributed environment, it is important that passwords
should never be sent across the network in plain text form. Moreover, they should not be
stored on normal servers but should only be stored on trusted servers that are well
protected. Notice that due to these requirements, authentication of a user by simply
sending his or her password to an authentication server for approval does not work in a
distributed environment. The Kerberos authentication system (described later in this
chapter) provides an interesting solution to this problem.

Making Passwords Difficult to Guess

Use of mechanisms to keep passwords secret does not guarantee that the system's security
cannot be broken. It only says that it is difficult to obtain passwords. The intruder can
always use a trial-and-error method. Virtually, in case of passwords, break-ins usually
consist of guessing a user name and password combination. How successful an intruder
can be in guessing passwords is obvious from the study made by Morris and Thompson
[1979] of passwords on UNIX systems. They compiled a list of likely passwords that
contained first and last names of persons, names of cities and streets, words from a small
dictionary spelled correctly and backward, short strings of random characters, and license
plate numbers. These passwords were then encrypted using the known password
encryption algorithm to obtain a list of encrypted guessed passwords. Then another list of
encrypted passwords was prepared by using entries in password tables of various UNIX
systems. The entries in the two lists were then compared to find matching entries.
Surprisingly, it was found that over 86% of actual passwords had a match in the list of
guessed passwords.

A test of only a limited set of potential strings tends to reveal most passwords
because there is a strong tendency for people to choose relatively short and simple
passwords that they can remember. Some techniques that may be used to make the task
of guessing a password difficult are as follows:

S90 Chap. 11 • Security

1. Longer passwords. The length of a password determines the ease with which a
password can be found by exhaustion. For example, a three-digit password provides 1000
variations whereas a four digit password provides 10,000 variations. Longer passwords
are less susceptible to enumeration because the work involved in enumerating all possible
passwords increases by increasing the length of the password. Use of longer passwords
can be enforced or encouraged by providing a password entry program that asks a user to
enter a longer password if he or she enters a short one.

2. Salting the password table. Another technique to make the task of guessing
passwords difficult is to artificially lengthen passwords by associating an n-bit random
number with each password when it is first entered. The random number is changed
whenever the password is changed. Instead of just storing the encrypted password in the
password table, the password and the random number are first concatenated and then
encrypted together. This encrypted result is stored in the password table. In this scheme,
the password table has an additional field that contains the random number in its
unencrypted form. At the time of login, this random number is concatenated with the
entered password, encrypted, and then compared with the stored encrypted value.
Guessing of a password becomes difficult because if an intruder suspects that Tokyo might
be the password of a user, it is no longer enough to just encrypt Tokyo and compare the
encrypted result with the value stored in the password table. Rather, for each guess made,
the intruder has to tryout 2n strings, such as TokyoOOOO, TokyoOOOJ, Tokyo0002, and so
forth, for n =4. This increases the encryption and comparison time for each guess made.
UNIX uses this method with n = 12.

3. System assistance in password selection. A password can be either system
generated or user selected. User-selected passwords are often easy to guess. A system can be
designed to assist users in using passwords that are difficult to guess. This can be done in two
ways. One way is to store a list of easy-to-guess passwords within the system and to first
compare a user-selected password with the entries in the list. If a match is found, the system
refuses to accept the selected password and asks the user to select another password
informing him or her that the selected password is easy to guess. Another way of providing
system assistance is to have a password generator program that generates random, easy-to­
remember, meaningless words, such as mounce, bulbul, halchal, that can be used as
passwords. The user selects a password suggested by the system and uses it with his or her
own choice of a mixture of upper- and lowercase letters of that word, such as hAICHal.

Identifying and Discouraging Unauthorized User
Logins

Some management techniques should be used to improve the security of a system against
unauthorized user logins. Three such techniques are as follows:

1. Threat monitoring. This technique detects security violations by checking for
suspicious patterns of activity. For example, the system may count the number of incorrect
passwords given when a user is trying to log in, and after, say, three failed login attempts,
the system notifies security personnel by setting an alarm.

Sec. 11.4 • Authentication 591

2. Audit logs. In this technique, the system maintains a record of all logins. That is,
the time at which login was done, the duration of login, the accessed objects and the types
of accesses made, etc., are recorded for each login. When a user logs in successfully, the
system reports to the user some of the recorded information (such as time and duration)
of the previous login. This may be helpful for the user to detect possible break-ins. After
a security violation has been detected, the audit log can be used to detect which objects
were accessed by the intruder and the amount of damage done. This information can be
useful for recovery from the damages done by the intruder.

3. Baited traps. Intruders ITIay also be caught by laying baited traps. For example, the
system may maintain some special login names with easy passwords, such as login name:
user, password: user. Whenever anyone logs in using any of these names, the system
security personnel are immediately notified.

Single Sign-on

In a distributed client-server environment, a user might have several client programs
running on his or her host node that access different server programs on remote nodes. In
such an environment, the servers must authenticate that the clients run on behalf of a
legitimate user. If a simple password-based authentication scheme is used, the user's
password must be presented each time a server wants to authenticate a client program
running on behalf of the user. This is curnbersome and inconvenient because a user will
certainly not want to enter a password each time he or she accesses a new service. This
is also not desirable from the point of view of transparency, which aims to provide a
virtual single system image. A simple way to solve this problem is to cache the user's
password on his or her host computer and use it from the cache every time a new service
is accessed. However, this solution does not work because it is dangerous to keep
passwords in cache from the point of view of keeping passwords secret. Once again, the
Kcrberos authentication system (described later in this chapter) provides an interesting
solution to this problem.

Limiting Damages Done bya Compromised Password

It is suggested that a user should change his or her password frequently so that an intruder
who has been successful in guessing the current password will have to guess a new one
after the current password is changed by the user. In this way, the damage done by the
intruder can be reduced. The extreme form of this approach is the use of one-time
passwords. There are three different methods to implement the idea of one-time
passwords. In the first method, the user gets a book containing a list of passwords. For
each login, the user must use the next password in the list. Obviously, the user must keep
the password book in a secure place. In the second method, every time a user logs out, the
system asks to select a new password for the next login and replaces the old password with
the new one. The user either remembers the new password or notes it down somewhere
for use at the time of next login. The third method relies on the use of a special equipment
such as smart cards or synchronized password generators. For example, a synchronized

592 Chap. 11 • Security

password generator device generates a pseudorandom alphanumeric word or number that
changes every minute or so and is time synchronized to a database stored in the computer.
To log in, a user types in the word or number displayed on the card at the time of login.
This results in a one-time password that is good only at that particular point in time and
for only one login. One such device is the SecureID from Security Dynamics (Cambridge,
Massachusetts). This method has not been very successful thus far, primarily due to the
inconvenience and cost of the additional hardware required. It requires that all users
purchase the hardware device. However, it has the advantage that once set up, it is fairly
easy to administer (as opposed to a manual password list that requires frequent updating
for all users).

11.4.3 On••Way Auth.ntkatlon of Communicating Entltl.s

When an entity A wants to communicate with another entity B, B may like to verify the
identity of A before allowing A to communicate with it. For example, a server may be
designed to first verify the identity of any client that wants to communicate with it. The
commonly used authentication protocols for one-way authentication of communicating
entities are described below.

The following description is based on the material presented in [Woo and Lam 1992].
Since the authentication protocol paradigms directly use cryptosystems, their basic design
principles also follow closely the type of cryptosystem used. Therefore, the protocols can
be broadly classified into two categories-those based on symmetric cryptosystems and
those based on asymmetric cryptosystems. Authentication protocols of both categories are
based on the proof-by-knowledge principle.

Protocols Based on Symmetric Cryptosystems

In a symmetric cryptosystem, the knowledge of the shared key allows an entity to encrypt
or decrypt arbitrary messages. Without such knowledge, it is not possible for the entity to
encrypt a message or to decrypt an encrypted message. Hence, in authentication protocols
based upon symmetric cryptosystems, the verifier verifies the identity of a claimant by
checking if the claimant can correctly encrypt a message by using a key that the verifier
believes is known only to an entity with the claimed identity (outside the entities used in
the verification process).

Let us assume that user A wants to communicate with user B but B wants to
authenticate A before starting the communication. Also assume that K is the key of a
symmetric cryptosystem that is shared between users A and B. The authentication protocol
for this consists of the following steps:

1. User A encrypts its identifier (IDa) by using key K to obtain a ciphertext C t = E
(IDa' K). It then sends a message m, to user B, which contains IDa and C,.

2. On receiving ml' user B decrypts C) by using key K and compares the obtained
result with IDa of the message. If they match, user A is accepted; otherwise it is
rejected.

Sec. 11.4 • Authentication 593

One major weakness of this protocol is its vulnerability to replays. That is, an
intruder could masquerade as A by recording the message ml and later replay it to B.
Replay attacks can be countered by using nonces or timestamps. A nonce-based challenge­
response protocol that overcomes the problem of replay of messages works as follows (see
Fig. 11.6):

1. User A sends its identifier (IDa) to user B in plaintext form in a message m.,

2. On receiving nu , user B generates a random number N, and sends N, to user A in
plaintext form in a message m2'

3. On receiving m2' user A encrypts N, by using key K to obtain a ciphertext C1 =
E (Nn K). It then sends C1 to B in a message m-;

4. On receiving ms, user B decrypts C1 by using key K and compares the obtained
result with the original value of Nr If they are equal, user A is accepted; otherwise
it is rejected.

m1= IDa = identifier of user A

m2= Nr= a random number grenerated by user B

m3= C1 =E Wr, K)
where K is the symmetric key shared between users A and B

Bdecrypts C1 using K and compares the result with original N,.
If they are equal, A isaccepted, otherwise rejected.

I'-'ig. 11.6 One-way authentication protocol based on symmetric cryptosystem.

In this protocol, the freshness of N, (whose value is different for each conversation)
guarantees that an intruder cannot masquerade as A by replaying a recording of an old
authentication conversation between A and B.

Although the above-described protocol functions correctly, it is impractical for a
general large-scale system due to the following reasons:

1. Notice that the scheme requires that each user must store the secret key for every
other user it would ever want to authenticate. This may not be practically feasible
in a large system having too many users and in which the number of users keeps
changing frequently.

2. The compromise of one user can potentially compromise the entire system.

594 Chap.)) • Security

To overcome these problems, the use of a centralized authentication server (AS) was
proposed in [Needham and Schroeder 1978]. Each user in the system shares with the AS
a prearranged secret key. The AS is a generally trusted entity and is shared by all
communicating users of the system. When the AS is used, the authentication protocol
takes the form shown in Fig. 11.7 (it has been assumed that Ka and Kb are the secret keys
of users A and B, respectively, that are shared with the AS).

1114 m,

~ ==a== m2

~
ms m3IDa Ka

lOb Kb

Table of secretkeys
for each user

AS=authentication server
IDa =identifierof user A
IDb= identifierof user B
Ka= secret keyof user A
Kb= secret keyof user B

m, =IDa

m2= N,=a random number generated by user 8

m3= C1= E IN" Ka)

m4= C2= E «IDa, C1) , Kb)
The AS retrieves N, by first decrypting C2 with Kband then decrypting
C, with «;
ms= C3= E 'N" Kb)

Bdecrypts C3with Kband compares the result with original N,.
If they are equal, then A isaccepted, otherwise rejected.

Fig. 11.7 One-way authentication protocol based on symmetric cryptosystem and the
use of a centralized authentication server.

1. User A sends its identifier (IDa) to user B in plaintext form in a message nu,
2. On receiving mJ, user B generates a random number N, and sends N, to user A in

plaintext form in a message m2'

3. On receiving m2' user A encrypts N, by using its secret key Ka to obtain a
ciphertext C1 = E (Nn Ka) . It then sends C1 to B in a message m«.

4. On receiving m3' user B encrypts the pair (IDa' C1) by using its secret key Kb to
generate a ciphertext C2 = E «IDa' C1) , Kb) . It then sends C2 to the AS in a
message m4.

5. On receiving m4' the AS decrypts C2 with key Kb and retrieves the pair (IDa' C)).
It then extracts from its database the key (Ka) that corresponds to IDa and decrypts

Sec. 11.4 • Authentication S9S

C1 with key Ka and retrieves N; Next, it encrypts N, by using key Kb to generate
a ciphertext C3 = E (Nr , Kb) . Finally, it sends C3 to B in a message ms.

6. On receiving m«, user B decrypts it by using its secret key Kb , retrieves Nn and
compares it with the original value of Ny- If they are equal, user A is accepted;
otherwise it is rejected.

As compared to the previous protocol, the key distribution and storage problems are
greatly alleviated because now each user needs to keep only one key. Moreover, the
system's security can be greatly improved simply by tightening security for the AS
because the risk of compromise is mostly shifted to the AS. The centralized AS, however,
suffers from the same drawbacks as the centralized KDC. These drawbacks can also be
solved by using fully/partially distributed ASs in a similar manner as described for the key
distribution problem in Section 11.3.4.

Protocols Based on Asymmetric Cryptosystems

In an asymmetric cryptosystem, the public key of each user is published while the secret
key of each user is known only to the user and no one else. Hence, in authentication
protocols based upon asymmetric cryptosystems; the verifier verifies the identity of a
claimant by checking if the claimant can correctly encrypt a message by using the secret
key of the user whose identity is being claimed.

Let us assume that user A wants to communicate with user B but B wants to
authenticate A before starting the communication. Also assume that Pa and Sa are the
public and secret keys of user A, and Ph and Sb are the public and secret keys of user B.
The authentication protocol for this consists of the following steps (see Fig. 11.8):

1. User A sends its identifier (II)ll) to user B in plaintext form in a message mi .

2. On receiving m, user B generates a random number N, and sends N, to user A in
plaintext form in a message m-:

m3
m1= IDa == identifier of user A

m2 == N r == a random number generated by user B

m3== C1 == E tN" Sa)
where Sa= secret key of user A

B decrypts C 1 by using the public key of user A and compares the result with
original N; If they are equal, A isaccepted, otherwise rejected.

Fig. 11.8 One-way authentication protocol based on asymmetric cryptosystem.

S96 Chap. 11 • Security

3. On receiving m2' user A encrypts N, by using its secret key Sa to obtain a
ciphertext C) = E(Nn Sa)' It then sends C1 to B in a message m-,

4. On receiving m«, user B decrypts C1 by using the public key of user A (Pa) and
compares the obtained result with the original value of N r: If they are equal, user
A is accepted; otherwise it is rejected.

As in the case of protocols based upon symmetric cryptosystems, in this case also a
centralized AS may be used to greatly alleviate the key distribution and storage problems.
In this case, the AS maintains a database of all published public keys and each user in the
system keeps a copy of the public key. (Ps) of the AS. When the AS is used, the
authentication protocol takes the following form (see Fig. 11.9):

1. User A sends its identifier (IDa) to user B in plaintext form in a message mi .

2. On receiving m), user B generates a random number N, and sends N, to user A in
plaintext form in a message m2'

Database of
public keys

Pa= public key of A
Sa= secret key of A
Pb= public key of B
Sb = secret key of B
Ps = public key of AS
Ss = secret key of AS

IDa =identifier of A
1Db= identifier of B

m, = IDa

m2= Nr: a random number generated by B

m3= C1 = E ttJr, Sa)

m4=(Rb, IDa)
where Rb =code for requesting the public key of a user

m5= C2 =E ((IDa, Pa), 5 s)

B retrieves NlibYfirst decrypting C2with Psand then decrypting
C1with Pa. T e value of Nr obtained in this way is compared with
the original value of N; If they are equal, then A isaccepted, other­
wise rejected.

Fig. 11.9 One-way authentication protocol based on asymmetric cryptosystem and the
use of a centralized authentication server.

Sec. 11.4 • Authentication 597

3. On receiving m2' user A encrypts N, by using its secret key Sa to obtain a
ciphertext C 1 = E (N" Sa)' It then sends C1 to B in a message m-;

4. On receiving m-, user B sends the pair (Rb , IDa) to the AS in plaintext form in a
message ms, where Rb is a request code for requesting the public key of the user whose
identifier is specified in the second element of the message.

5. On receiving m«, the AS extracts from its database the public key (Pa) of the
user whose identifier is IDa. It then encrypts the pair (IDa' Pa) by using its own secret
key S, to generate a ciphertext C2 = E «IDa' Pa), Ss)' Finally, it sends C2 to B in a
message m«.

6. On receiving m«, user B decrypts C2 by using the public key of the AS (Ps) and
retrieves the pair (IDa' Pa). Now by using the key Pa, it decrypts C1 and compares the
obtained result with the original value of N,. If they are equal, user A is accepted;
otherwise it is rejected.

Notice that in this case each user needs to keep only one public key, the public key
of the AS. Also notice that in the above protocol it has been assumed that the asymmetric
cryptosystem is commutative. That is, the public and secret keys function in either order.
Therefore, if the public key is used for encryption, then the secret key can be used for
decryption, whereas if the secret key is used for encryption, then the public key can be
used for decryption.

11.4.4 Two-Way Authentication of Communicating Entities

In a distributed system, tasks are often distributed over multiple hosts to achieve a higher
throughput or more balanced utilization of resources than centralized systems. Correctness
of such a distributed task depends on whether peer processes participating in the task can
correctly identify each other. Two-way authentication protocols allow both communicat­
ing entities to verify each other's identity before establishing a secure logical
communication channel between them.

Obviously, mutual authentication can be achieved by performing one-way authenti­
cation twice. That is, if two communicating users A and B want to authenticate each
other, A can first authenticate B by performing one-way authentication, and then Bean
authenticate A by repeating the same process, but with the roles of A and B reversed.
However, this may turn out to be costlier than a protocol designed specially for two­
way authentication. For example, if the protocol of Figure 11.9 is repeated twice for
performing two-way authentication, a total of 10 messages will be required. However,
a protocol for mutual authentication of communicating entries that requires only seven
messages and that is also based upon an asymmetric cryptosystem and uses a
centralized AS is described below. In the description, it has been assumed that two users
A and B want to authenticate each other. Here, Pa and Sa are the public and secret keys
of user A, and Pb and Sb are the public and secret keys of user B. Moreover, P, and
Ss are the public and secret keys of the AS. The authentication protocol consists of the
following steps (see Fig. 11.10):

598 Chap. 11 • Security

Database of
public keys

IDa Pa
lOb Pb

Ps = public key of AS
5 s = secret key of AS
Pa=public key of user A
5a= secret key of user 8

Pb = public key of user 8
Sb = secret key of user 8
IDa=user identifier of A
lOb=user identifier of 8

m, =(Ra, IDa, lOb)
where Ra= code for the request made by user A

m2= C1 = E ((/OJ, ,Pb), Ss)

m3 = C2 =E ((IDa, Na),Pb)

where Na is a random number generated by user A

m«=C3=E ((Rb, IDa, lOb, Na), Ps)
mS=(C 4, C6)

where C4= E «IDa, Pa), 5s) and
C6 =E (Cs, Pb)
where Cs= (lOb, K, Na), 5s)

where Kis a session key generated
by the AS for users A and B.

m6= C7=E ((Cs, Nb), Pa)

where N» is a random number generated by user 8

m7= Ca= E (Vb, K)

Bdecrypts Ca with the session key K and compares the result with the
oriQinal value of Nb. If thet are equal, this is sufficient to prove that the
10(;Jlcal communication channel established between Aand B with key
Kls a newly established channel and is secure.

Fig. 11.10 Two-way authentication protocol based on asymmetric cryptosystem and
the use of a centralized authentication server.

Sec. 11.4 • Authentication 599

1. UserA sends a requestmessage(m}) to the AS indicatingthat it wants to establish
a secure logical communication channel with user B. The messagecontains a code for the
request (Ra) , the identifierof userA (IDa)' and the identifierof user B (IDb) . This message
is sent in plaintext form.

2. On receiving ml, the AS extracts from its database the public key Ph that
corresponds to the user identifier IDb of the message. By using its secret key Ss' the AS
encrypts the pair (IDb, Pb) to generate a ciphertext C. =E «IDb, Pb), Ss)' It then sends
C1 to A in a message m2'

3. On receiving m-; user A decrypts C1 by using the public key of the AS (Ps) and
retrieves its contents. It then generates a random number Na , encrypts the pair (IDa' Na)

by using the public key of user B (Pb) to generate a ciphertext C2 =E «IDa' Na), Ph), and
sends C2 to B in a message m«.

4. On receiving m«, user B decrypts C2 by using its secret key Sb and retrieves its
contents. It then sends a message m4 to the AS requesting for the public key of user A and
a session key for the secure logical communication channel between A and B. The
message contains the request code (Rb) , IDa' IDb , and Na. Before being sent, the message
is encrypted with the public key of the AS (Ps) ' That is, the message contains the
ciphertext C3 = E «Rb , to; IDb , Na), Ps)'

5. On receiving ms, the AS decrypts C3 with its secret key (Ss) and retrieves its
contents. It generates a new session key K for A and B. Next it generates three ciphertexts:
C4 = E «ID,l' Pa), Ss), c, =E «ID b , K, Na), Ss), and C6 =E (Cs , Pb)' Finally, it sends
C4 and C6 to B in a message m«.

6. On receiving m«, user B decrypts C4 and C6 with P, and Sb' respectively, and
retrieves their contents. It then generates a random number Nb and creates a ciphertext
C7=E «Cs, Nb) , Pa) . Finally, it sends C7 toA in a message In6' Notice that Cs is obtained
by decrypting C6 .

7. On receiving m6' user A first decrypts C7 by using its secret key Sa and then
decrypts C« by using the public key of the AS (P s) ' Now both users A and B have the
session key K. User A next generates a ciphertext ("'18 = E (N b , K) and sends Cg to B in a
message m7'

8. On receiving m-; user B decrypts Cg by using the session key K and compares the
result with the original value of Nb . If they are equal, this is sufficient to prove that the
logical communication channel established between A and B with key K is a newly
established channel and is secure. Both users A and B are now sure of each other's
identity.

Notice that although the authentication protocol is based upon an asymmetric
cryptosystem, the actual communications between users A and B, after the secure logical
communication channel is established between them, take place by a symmetric
cryptosystem.

600 Chap. 11 • Security

11.4.5 (ase Study: H.rberos Auth.ntkQtlon System

The need for secure authentication in distributed computing systems has led to the design
of authentication standards and systems for this purpose. For example, X.509 identifies
the CCITI X.500 directory authentication framework standard [Smart 1994], Kerberos is
a network authentication system developed at MIT [Neuman and Theodore 1994,
Stallings 1994], and SPX is an experimental authentication system developed by the
Digital Equipment Corporation [Khanna 1994]. Of several authentication systems
developed to date, the Kerberos system is the most popular one and is continuing to
evolve. It has been declared the Internet standard and has become the de facto standard for
remote authentication in networked client-server environments. Therefore, a description
of this system is presented here.

Kerberos was developed at MIT as part of its project Athena [Champine et al.
1990]. It is named after the three-headed dog of Greek mythology that guards the
entrance to Hades. Its design is based on the ideas of Needham and Schroeder [1978]
for key distribution and authentication that we have already seen in Sections 11.3.4 and
11.4.3, respectively. It is now available in both commercial and public-domain
implementations and is widely used at MIT and elsewhere to provide secure access to
resources in distributed environments. It is used by Transarc' s AFS file system and is
the underlying component of the OSP's DCE Security Server (described later in this
chapter). Several vendors, including DEC, Hewlett-Packard, and IBM, now offer
Kerberos implementations as part of their standard middleware offerings on commercial
UNIX and midrange server platforms. Version 5, the most recent version of Kerberos,
is described here.

Kerberos System Architecture

The system architecture of Kerberos is shown in Figure 11.11. It consists of the following
basic components:

1. Kerberos server. The key component of a Kerberos system is a Kerberos server
that acts as a key distribution center. Each Kerberos server has an authentication database,
an authentication server, and a ticket-granting server. The authentication database has the
user ID and password of all users of the system. Moreover, the Kerberos server shares a
unique secret key with each server in the system. Therefore, the authentication database
also has the server ID and secret key for all servers in the system. The passwords and
secret keys are distributed physically or in some other secure manner as part of the
Kerberos installation. Kerberos uses the DES algorithm to generate the keys and encrypt
messages, but this is implemented as a separate module that can beeasily replaced by any
other suitable algorithm.

The authentication server performs the task of verifying user's identity at the time
of login without requiring the password to travel over the network. Kerberos has
single sign-on facility. Therefore, a user has to enter his or her password only once at
the time of login no matter how many different resources are accessed by the user
after that.

Sec. 11.4 • Authentication

Kerberos se rver node (Key Distribution Center)

601

Client node

109 = ticket-granting server's identifier
10c =clienfs identifier
IDs =applicationserver's identifier
N; =a nonce
Kc = clienfs sec ret key
Ks =application server's secret key

Appl ication
server node

Kg = ticket-granting server's secret key
K, =ticket-granting ticket session key
K2=service-granting ticket session key
Ts; = starting time of validity of ticket
Tei =ending time of validity of ticket
T; = a timestamp

m, = (l0c' N,)

m2 =C2 =E((N" K" G,l. Kc) ' where G, =E((f0c ' 109' Ts,' Te" K,), Kg)

m3 =(IDs' Nz C" C3), where C3 = E((f0c ' T,) , K,)

m4 = Cs=E((N2 , K2 , G4), K,) , where C4 = E ((IDc, IDs' TS2 ' Te2, K2), Ks)

ms =(C4 ' Ce) , where Ce=E ((Io; T2), K2)

me =C7 =E(T
3

, K2), where T
3
=T2 + 1

Fig. 11.11 Kcrberos authentication protocol.

The ticket-granting server performs the task of supplying tickets to clients for
permitting access to other servers in the system. These tickets are used to establish secure
logical communication channels between clients and servers by performing mutual
authentication.

Since the Kerberos server has valuable information in its authentication database
that must be kept secret, it is extremely important that it be installed on a carefully
protected and physically secure machine. Although there is no technical problem in
installing the Kerberos server on the same machine that has another application, it is
always better for security reasons to have a dedicated machine for the Kerberos server.
The number of users having access permission to this machine should be extremely
limited.

602 Chap. II • Security

2. Client. The second component of a Kerberos system is comprised of client
processes that usually run on workstations located in effectively public places where
their consoles are available to whatever user happens to be physically in front of
them. Therefore, they are completely untrusted. Users (on whose behalf client
processes run) must first get their identification verified by the Kerberos server before
attempting to access any other server in the system. Once a user's identity has been
verified, each client process running on his or her behalf must obtain a ticket from the
ticket-granting server for communicating with a server that it wants to access.

3. Application server. The third component of a Kerberos system is the applica­
tion server, also known simply as the server. A server provides a specific type of
service to a client upon request only after verifying the authenticity of the client. A
server usually runs on a machine that is located in a moderately secure room.
Therefore, Kerberos ensures that a compromise of one server does not compromise
another server.

Kerberos Authentication Protocol

With the idea of the basic components and their functions, we will now see the Kerberos
protocol that explains how these components interact with each other to perform user
login authentication and mutual authentication of client and server processes. The protocol
is described below and is summarized in Figure 11.11. In the description, A, G, C, and S
stand respectively for the authentication server, the ticket-granting server, the client, and
the application server. Moreover, let Ka , Kg, and K, be the secret keys of A, G, and S,
respectively, and K, be the secret key of C (this key is generated from the user's password
by using a one-way function).

1. When a user logs on to a workstation by typing his or her login name, the login
program sends a request to the authentication server for what is known as a ticket-granting
ticket in a message mi . Message m, contains the user's ID (login name) (JDe) and a nonce
N} that is used to check the validity of the reply. This message is sent in plaintext
form.

2. On receiving mit the authentication server extracts the password of this user
from the authentication database. It then generates a random number for use as a
session key (K.). After this, it creates a ticket-granting ticket that contains the user's
ID (ID c)' the ticket-granting server's ID (IDg) , the starting time for validity of the ticket
(~I)' the ending time for validity of the ticket (TeJ) (typically on the order of 8 hours),
and a copy of the session key (K}). Making the ticket-granting ticket time sensitive
prevents an unauthorized user from capturing it and using it at a later time. Now it
encrypts this ticket by using the ticket-granting server's secret key (Kg) to generate a
ciphertext C. =E«IDc ' IDg, TsJ' Tel' K)), Kg). This encryption ensures that no one (not
even the client) can tamper with the ticket-granting ticket and only the Kerberos server
can decode it. Next it uses the client's secret key (Kc) (generated from the user's
password) to generate another ciphertext C2 =E«Nb KJ , C1) , Kc) . It then returns C2

to the login program in a message m2.

Sec. 11.4 • Authentication 603

3. On receiving m-, the login program prompts the user for his or her password. The
entered password is run through a one-way function that generates the client's secret key
(Ke) from the password. Immediately after obtaining Kc ' the password is removed from
the computer's memory to minimize the chance of password disclosure in the event of a
client crash. The login program then attempts to decrypt C2 by using Kc • If the user
supplied the correct password, C2 is successfully decrypted and the login program obtains
the nonce, the session key, and the encrypted ticket from the message. It checks the nonce
for validity of the reply and stores the session key and the encrypted ticket for subsequent
use when communicating with the ticket-granting server. When this has been done, the
client's secret key can also be erased from memory, since the ticket now serves to
authenticate the user. A login session is then started for the user on the user's
workstation.

Notice that user authentication is done without requiring the password to travel over
the network. Moreover, if an intruder intercepts the reply message, it will be unable to
decrypt it and thus be unable to obtain the session key and the ticket inside it.

4. Now when a client process running on the client workstation on behalf of the
authenticated user wants to access the application server, it requests the ticket-granting
server for a service-granting ticket that can be used to communicate with the application
server. For this, the client creates an authenticator that contains the client's ID (IDe) and
a timestamp (T}). It encrypts this authenticator by using the session key (K 1) to obtain a
ciphertext C3 =E«IDc ' T1) , K1) . Unlike the ticket-granting ticket, which is reusable, this
authenticator is intended for one-time use and has a very short life span (typically on the
order of a few minutes). The client next sends the encrypted authenticator (C3) , the
encrypted ticket-granting ticket «(',), the ID of the application server (IDs), and a nonce
(N2) to the ticket-granting server in a message m«.

5. On receiving m«, the ticket-granting server decrypts C. by using its secret key
(Kg) and makes sure that it has not expired by comparing Tel with the current time. It
extracts the session key (K I) from it and uses it to decrypt C3 to obtain IDe and T}. The
obtained IDc is compared with the value of IDe in the ticket-granting ticket to authenticate
the source of the request. On the other hand, T1 is used to ascertain the freshness of the
request. If all verifications pass successfully, the ticket-granting server gets assured that
the sender of the ticket is indeed the ticket's real owner.

Notice here that it is the authenticator and not the ticket-granting ticket that proves
the client's identity. Therefore, the use of a ticket-granting ticket is merely a way to
distribute keys securely. Moreover, since the authenticator can be used only once and has
a very short life span, it is nearly impossible for an intruder to steal both the ticket­
granting ticket and an authenticator for later use. Each time a client applies to the ticket­
granting server for a new service-granting ticket, it sends its reusable ticket-granting ticket
plus a fresh authenticator. Also notice that the reusability of the ticket-granting ticket
allows support of a single sign-on facility in which a user need not enter his or her
password every time it needs to access a new server.

After successful authentication of the client, the ticket-granting server generates a
new random session key (K2) and then creates a reusable service-granting ticket for access
to the requested server. This ticket contains the client's ID (IDe)' the application server's

604 Chap. II • Security

ID (IDs)' the starting time for validity of the ticket (1's2), the ending time for validity of
the ticket (4.2), and a copy of the new session key (K2) . It then encrypts the service­
granting ticket with the secret key of the application server (Ks) to obtain a ciphertext C4

=E«JDe, IDs, Ts2' 'Te2 , K2) , Ks)' This encryption ensures that no one (not even the client)
can tamper with the service-granting ticket and only the application server or the Kerberos
server can decode it. Next it uses the old session key (KI) to generate another ciphertext
Cs = E«N2,K2 , C4) , K t). It then returns Cs to the client in a message ms.

6. On receiving m4' the client decrypts Cs by using the old session key (K1) and
obtains the nonce, the new session key, and the encrypted service-granting ticket. It checks
the nonce for validity of the reply and stores the new session key and the encrypted ticket
for subsequent use when communicating with the application server. The client is now
ready to issue request messages to the application server. However, if mutual
authentication is desired, before proceeding with its transaction or request for service, the
client creates an authenticator that contains the client's ID (IDe) and a timestamp (T2) . It
encrypts this authenticator by using the session key (K2) to obtain a ciphertext C6 =
E«JDc ' T2) , K2) . The client next sends to the application server, in a message ms, the
encrypted authenticator (C6) , the encrypted service-granting ticket (C4) , and a request that
the server reply with the value of the timestamp from the authenticator, incremented by 1,
and encrypted in the session key.

7. On receiving ms, the application server decrypts C4 by using its secret key (K...)
and extracts the copy of the session key (K2) . It then uses it to decrypt C6 to obtain
IDe and T2 . Next, it increments T2 by 1 and encrypts the obtained value (T3) with the
session key K2 to obtain a ciphertext C7 =E(T3 , K2) . It returns C7 to the client in a
message m6'

8. On receiving m6' the client decrypts C7 by using the session key K2 to obtain T3 .

If T3 =T2 + 1, the client gets assured that the server is genuine. This mutual authentication
procedure prevents any possibility of an intruder impersonating a server in attempt to gain
access information from a client.

At the conclusion of this process, the client and server are assured of the
establishment of a secure communication channel in between them. They also now share
a session key (K2) , which they can use (if required) to encrypt future messages.

Interrealm Authentication in Kerberos

In a system that crosses organizational boundaries, it is not appropriate for all users and
servers to be registered with a single Kerberos server. Therefore, in such an environment,
multiple Kerberos servers exist, each responsible for a subset of the users and servers in
the system. A subset of users and servers along with the Kerberos server with which they
are registered is called a realm in Kerberos. In a typical implementation, networks of
clients and servers belonging to different organizations usually constitute different realms.
In such an environment, interrealm authentication facility is needed to allow a client to
securely interact with a server belonging to a different realm. For this, a Kerberos server

Sec. 11.4 • Authentication 60S

of one realm is registered (shares a secret key) with the Kerberos servers of all other
realms. The interrealm authentication protocol is shown in Figure 11.12 and is described
below:

1. A client that wants to access a server in a different realm first makes a request for
a service-granting ticket from its own ticket-granting server to access the ticket­
granting server of the other realm.

2. With the obtained service-granting ticket, the client then makes a request for
another service-granting ticket from the ticket-granting server of the other realm
to access the application server of that realm.

Realm B
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I- - -- - - - -- ---- -- -- - - - -- -- -- -- -- - -- - - -- --- ---- -- - - -- - -- - - ---

Realm A- -- - - --- - -- - - --- -- - - - --- - - - - -- -- - - --- - - --- - - - -- - - -- -- - - -- -I
I
I
I
I
I
I
I

ml = request forticket-granting ticket

m2= reply for m1

m3= request for service-granting ticket to access the remote ticket-granting server

m4=reply for m3

ms =request for service-granting ticket to access the remote application server

me = reply for ms

m- =access request

Fig. 1l.12 lnterrealm authentication protocol of Kerberos.

Chap. 11 • Security

3. With the newly obtained service-granting ticket, the client now sends its request
to the desired application server of the other realm. The remote server then
chooses whether to honor the client's request.

In the above approach for interrealm authentication, if it is desired that each Kerberos
realm be able to operate with all other Kerberos realms, in a system having n realms, there
must be n(n-l)/2 secure key exchanges. Therefore, this approach does not scale well. It
creates a lot of overhead on the network and the Kerberos servers themselves. Thus, it is
suggested that Kerberos implementations should use a few relatively large realms rather
than too many small realms. The latest version of Kerberos (Version 5) also supports
muJtihop interrealm authentication, allowing keys to be shared hierarchically [Neuman
and Theodore 1994].

Within a single realm, the Kerberos server is a critical component for smooth
functioning. Therefore, to ensure reliability of the Kerberos server, Kerberos supports
replication of the Kerberos server. When replicated, a simple master-slave technique is
used to keep the authentication databases of all the replicas of a Kerberos server
consistent. That is, all changes are only applied to the master copy by a single Kerberos
database management server (KDBMS) that runs only on the master Kerberos server's
machine. Administrative operations such as adding or deleting users or requests for
password change from users are handled by the KDBMS. Changes made to the master
Kerberos server's authentication database are periodically propagated to the authentica­
tion databases of slave Kerberos servers.

Some Limitations of Kerberos

For all its popularity, however, Kerberos is not a complete security solution because of the
following limitations [Bellovin and Merritt 1990, Neumann and Theodore 1994]:

1. Kerberos is not effective against password-guessing attacks. If a user chooses a
password that is easy to guess, an intruder guessing that password can impersonate the
user. Another way by which an intruder can get to know a user's password is by modifying
the login program (a Trojan horse) that resides on the user's workstation. In this case, also,
the intruder may obtain sufficient information to impersonate the user. To address these
limitations, it is suggested that Kerberos should be combined with a one-time password
technique. Commercial products that combine a one-time password technique with
Kerberos are available.

2. The Kerberos protocol depends upon loose synchronization of clocks of the nodes
present in a system. It may not be very difficult to meet this requirement, but the problem
is that the synchronization protocol used for this purpose must itself be secure against
security attacks. A Kerberos protocol that does not rely on synchronized clocks has been
presented in [Kehne et al. 1992].

3. Another problem with Kerberos is that it is difficult to decide the appropriate
lifetime of the tickets, which is generally limited to a few hours. For better security, it is
desirable that this lifetime should be short so that users who have been unregistered or

Sec. 11.5 • Access Control 607

downgraded will not be able to continue to use the resources for a long time. However,
for user transparency, the lifetime should be as long as the longest possible login session,
since the use of an expired ticket will result in the rejection of service requests. Once
rejected, the user must reauthenticate the login session and then request new server tickets
for all the services in use. Interrupting an application at an arbitrary point for
reauthentication might not be acceptable in commercial environments.

4. Finally, client-server applications must be modified to take advantage of Kerberos
authentication. This process is called Kerberization. Kerberizing an application is the most
difficult part of installing Kerberos. Many large organizations may find it almost
impossible to Kerberize their applications and turn to other solutions. Fortunately, the
availability of Kerberized applications has improved with time and is expected to improve
further. More and more vendors are now producing new Kerberized versions of their
popular products.

11.5 ACCESS CONTROL

Once a user or a process has been authenticated, the next step in security is to devise ways
to prohibit the user or the process from accessing those resources/information that he or
she or it is not authorized to access. This issue is called authorization and is dealt with by
using access control mechanisms. Access control mechanisms (also known as protection
mechanisms) used in distributed systems are basically the same as those used in
centralized systems. The main difference is that since all resources are centrally located in
a centralized system, access control can be performed by a central authority. However, in
a distributed client-server environment, each server is responsible for controlling access to
its own resources.

When talking about access control in computer systems, it is customary to use the
following terms:

1. Objects. An object is an entity to which access must be controlled. An object may
be an abstract entity, such as a process, a file, a database, a semaphore, a tree data
structure, or a physical entity, such as a CPl], a memory segment, a printer, a card reader,
a tape drive, a site of a network.

Each object has a unique name that differentiates it from all other objects in the system.
An object is referenced by its unique name. In addition, associated with each object is a
"type" that determines the set of operations that may be performed on it. For example, the set
of operations possible on objects belonging to the type "data file" may be Open, Close,
Create, Delete, Read, and Write, whereas for objects belonging to the type "program file,"
the set ofpossible operations may be Read, Write,and Execute. Similarly, for objects of type
"semaphore," the set of possible operations may be Up and Down, and for objects of type
"tape drive," the set of possible operations may be Read, Write,and Rewind.

2. Subjects. A subject is an active entity whose access to objects must be controlled.
That is, entities wishing to access and perform operations on objects and to which access
authorizations are granted are called subjects. Examples of subjects are processes and

608 Chap. 11 • Security

users. Note that subjects are also objects since they too must be protected. Therefore, each
subject also has a unique name.

3. Protection rules. Protection rules define the possible ways in which subjects and
objects are allowed to interact. That is, protection rules govern the subjects' access to
objects. Therefore, associated with each (subject, object) pair is an access right that
defines the subset of the set of possible operations for the object type that the subject may
perform on the object. The complete set of access rights of a system defines which
subjects can perform what operations on which objects. At any particular instance of time,
this set defines the protection state of the system at that time.

The exact manner in which the protection rules are imposed to control the subjects'
access to objects depends on the access control model used by the system. The following
access control models have been proposed in the literature:

1. The access matrix model [Lampson 1971, Graham and Denning 1972, Harrison et
al. 1976]

2. The information flow control model [Denning 1976, Bell and LaPadula 1973]

3. The security kernel model [Ames et al. 1983, Rushby and Randell 1983]

Of these, the access matrix model is the most popular one and is widely used in
existing centralized and distributed systems. The other two models are mainly of
theoretical interest. A description of the access control mechanisms based on the access
matrix model is presented below.

11.5.1 Prot.ctlon Domains

We saw that the principle of least privilege requires that at any time a subject should be
able to access only those objects that it currently requires to complete its task. Therefore,
from time to time, subjects may need to change the set of access rights they have to
objects, depending on the particular task that they have to do at any time. The concept of
a domain is commonly used to provide this type of flexibility of access control in a
security system.

A domain is an abstract definition of a set of access rights. It is defined as a set
of (object, rights) pairs. Each pair specifies an object and one or more operations that
can be performed on the object. Each one of the allowed operations is called a
right.

A security system based on the concept of domain defines a set of domains with each
domain having its own set of (object, rights) pairs. At any instance of time, each process
executes in one of the protection domains of the system. Therefore, at a particular instance
of time, the access rights of a process are equal to the access rights defined in the domain
in which it is at that time. A process can also switch from one domain to another during
execution.

Figure 11.13 shows an example of a system having three protection domains D), D2 ,

D3 • The following points may be observed from this example:

Sec. 11.5 • Access Control 609

1. Domains need not be disjoint. That is, the same access rights may simultaneously
exist in two or more domains. For instance, access right (Semaphore-l, {Up, Down}) is
in both domains D} and D2 . This implies that a subject in either of the two domains can
perform Up and Down operations on Semaphore-I,

2. The same object can exist in multiple domains with different rights in each
domain. For instance, rights for f"'i[e-J and File-2 are different in D} and D 2 , and rights
for Tapelsrive-I are different in D2 and D3 • Considering File-I, a subject in domain D}
can Read, Write, and Execute it, but a subject in domain D2 can only perform Read
and Write operations on it. Therefore, in order to execute File-I, a subject must be in
domain D 1•

3. If an object exists only in a single domain, it can be accessed only by the
subjects in that domain. For instance, File-S can only be accessed by the subjects in
domain D3 •

(File-1, {Read, Write, Execute})

(File-2, {Read})

(File-3J {Read, Write, Execute})

(TapeDrive-1, {Read, Write, Rewind})

(File-1, {Read, Write})

(File-2, {Read, Write, Execute})

(TapeDrive-1 , {Read})

."ig. 11.13 A system having three protection domains.

Since a domain is an abstract concept, its realization and the rules for
domain switching are highly system dependent. For instance, some ways of
realizing a domain may be the following:

1. Each user as a domain. In this case, processes are assigned to domains
according to the identity of the user on whose behalf they are executed.
A domain switching occurs when a user logs out and another user logs
in.

2. Each process as a domain. In this case, the access rights of a process are
limited to the access rights of its own domain. A domain switching
occurs when one process sends a message to another process and then
waits for a response.

3. Each procedure as a domain. In this case, each procedure has its own set
of access rights and a domain switching occurs when a procedure calls
another procedure during the course of its execution.

610 Chap. 11 • Security

In the protection scheme of UNIX, both the concepts of user-oriented domains
and procedure-oriented domains are employed. Let us first see the use of the concept
of user-oriented domains. In UNIX, a user-id (uid) and a group-id (gid) are associated
with each user. A (uid, gid) pair identifies the list of objects and the types of
operations that can be performed on these objects. The domain of a process depends
on the user on whose behalf it is executed. Therefore, the domain of a process is
defined by its (uid, gid) pair. That is, two processes with the same (uid, gid) pair will
have exactly the same access rights and two processes with different tuid, gid) pairs
will have different access rights. In the latter case, several of the access rights may be
the same for the two processes. A process switches domains by acquiring a new uid
or gid by executing the setuid or setgid commands. Furthermore, it is also worth
mentioning here that the superuser in a UNIX system is not a person but a name for
a special domain within which the most privileged processes, needing access to all of
the objects in the system, may run.

Now let us see the use of the concept of procedure-oriented domains in UNIX. In
UNIX, all the procedures are grouped into two classes-user procedures and kernel
procedures. These .two classes form two domains called the user mode and the kernel
mode. A process running in the kernel mode has a different set of access rights as
compared to a process running in the user mode. For example, in the kernel mode, a
process can access all pages in the physical memory, the entire disk area, and all other
protected resources. In this two-domain architecture, when a user process does a system
call, it switches from the user mode to the kernel mode. Therefore, at a particular instance
of time, the domain of a process and hence its access rights depend on whether the process
is executing a user procedure or a kernel procedure at that time.

Multics [Schroeder et al. 1977] used a more generalized form of the procedure­
oriented domains. Unlike UNIX, which uses two domains (user mode and kernel mode),
the Multics architecture had the flexibility to support up to 64 domains. Each domain of
Multics was called a ring. As shown in Figure 11.14, the rings were concentric and the
procedures in the innermost ring, the operating system kernel, were most powerful, having
maximum access rights. Moving outward from the innermost ring, the rings became
successively less powerful having fewer access rights. In fact, the access privileges of ring
i were a subset of those for ring j for all i > j when the ring numbers started from the
innermost ring and increased for each ring as we moved outward. That is,j < i implied that
the procedures in ring j had more access rights than the procedures in ring i. A process
could operate in multiple domains (rings) during its lifetime. A domain switching occurred
when a procedure in one domain (ring) made a call to a procedure in another domain
(ring). Obviously, domain switching was done in a controlled manner; otherwise, a
process could start executing in the innermost ring and no protection would be
provided.

11.5.2 Acca.s Matrix

In the domain-based protection approach, the system must keep track of which rights on
which objects belong to a particular domain. In the access matrix model, this information
is represented as a matrix, called an access matrix, that has the following form:

Sec. 11.5 • Access Control

Ring0 (mostpowerful)

Ring1

Ring n-1

Ring n (leastpowerful)

611

Fig. 11.14 The ring architecture of Multics protection domains.

1. The rows represent domains.

2. The columns represent objects.

3. Each entry in the access matrix consists of a set of access rights.

4. The (i, j)th entry of the access matrix defines the set of operations that a process,
executing in domain Di, can perform on object OJ<

At any instance of time, the protection state of the system is defined by the contents
of the access matrix. The access matrix of Figure 11.15 shows the protection state of the
system in Figure 11.13.

When an access matrix is used to represent the protection state of a system, the
following issues must be resolved:

1. How to decide the contents of the access matrix entries.

2. How to validate access to objects by subjects.

3. How to allow subjects to switch domains in a controlled manner.

4. How to allow changes to the protection state of the system in a controlled
manner.

The normally used methods to handle these issues are described below.

612 Chap. 11 • Security

~
F1 F2 F3 81 T1

Domain (File-1) (File-2) (File-3) (Semaphore-1) (Tapedrive-1)

01 Read Read Up
Write Down
Execute

D2 Read Read
Up Read

Write Write Down
Execute

Read Read
D3 Write Write

Execute Rewind

Fig. 11.15 The access matrix for the protection state of the system in Figure 11.13.

Deciding the Contents of the Access Matrix Entries

Policy decisions concerning which rights should be included in the (i, j)th entry are
system dependent. However, in general, the contents of the access matrix entries
corresponding to user-defined objects are decided by the users, whereas the contents
of the entries corresponding to system-defined objects are decided by the system. For
example, when a user creates a new object OJ' column j is added to the access matrix
with suitable entries as decided by the user's specification of access control for the
object.

Validating Access to Objects by Subjects

Given the access matrix, how can access to objects by subjects be allowed only in the
manner permitted by the protection state of the matrix? For this, an object monitor is
associated with each type of object, and every attempted access by a subject to an object
is validated in the following manner:

1. A subject S in domain D initiates r access to object 0, where r belongs to the set
of operations that may be performed on O.

2. The protection system forms the triple (D, r, 0) and passes it to the object monitor
ofO.

3. The object monitor of 0 looks for the operation r in the (D, O)th entry of the
access matrix. If present, the access is permitted; otherwise, a protection violation
occurs.

Sec. 11.5 • Access Control 613

Allowing Controlled Domain Switching

The principle of least privilege requires that a process should be allowed to switch from
one domain to another during its lifetime so that at any instance of time the process is
given only as many rights as are necessary for performing its task at that time. However,
domain switching by processes must be done in a controlled manner; otherwise, a process
may switch to a powerful domain and violate the protection policies of the system.

Domain switching can be controlled by treating domains as objects on which the only
possible operation is switch. Therefore, for allowing domain switching in a controlled
manner, the domains are also included among the objects of the access matrix.

Figure 11.16 shows the access matrix of Figure 11.15 with the three domains as
objects themselves. In the modified access matrix, domain switching from domain D; to
domain D, is permitted if and only if the right switch is present in the (Di~ Dj)th entry of
the access matrix. Thus in Figure 11.16, a process executing in domain D) can switch to
domain D2 or to domain D3 , a process executing in domain D2 can switch only to domain
D3 , and a process executing in domain D3 cannot switch to any other domain.

! F1 F2 F3 51 T1 01 02 03

Domain

Read Read Up Switch Switch01 Write Down
Execute

Read
Read Up Read Switch

02 Write
Write Down
Execute

Read Read
03 Write Write

Execute Rewind

14'ig. 11.16 The access matrix of Figure 11.15 with the domains included as objects.

Allowing Controlled Change to the Protection State

In a flexible design, the protection system should also allow the content of a domain to be
changed. However, this facility is not essential because if the content of a domain cannot
be changed, the same effect can be provided by creating a new domain with the changed
contents and switching to that new domain when we want to change the domain contents.
Although not essential, the facility of allowing controlled change to the protection state is
normally provided in a protection system for greater flexibility.

614 Chap. 11 • Security

In an access matrix model, this facility can be provided by treating the access matrix
itself as an object to be protected. In fact, since each entry in the access matrix may be
individually modified, each entry must be considered as an object to be protected. For
allowing controlled change, the possible rights defined for this new object are copy,
owner, and control. To simplify the description, we will categorize the changes to be
allowed to the content of the access matrix entries into two types-allowing changes to
the column entries and allowing changes to the row entries.

Allowing Changes to the Column Entries. The copy and owner rights allow
a process to change the entries in a column. The ability to copy an access right from one
domain (row) to another is denoted by appending an asterisk (*) to the access right. For
example, Figure 11.17 shows the access rights of only the first three objects (F l , F2 , and
F3) of the access matrix of Figure 11.15 with some copy rights. A process executing in
domain D, can copy the Read and Write operations on F, to any other domain (any other
entry in column F J) , whereas a process executing in domain D2 can copy the Read
operation on F) and Read and Execute operations on F2 to any other domain. None of the
operations on F3 can be copied to any other domain .

.:S: F1 ~ Fa

Domain

Read· Read
01 Write·

Execute

Read· Read*
02 Write Write

Execute·

Read

03 Write
Execute

Fig. 11.17 An access matrix with copy rights.

The copy right may have the following three variants:

1. Transfer. In this case, when a right is copied from the (i. j)th entry to the (k, j)th
entry of the access matrix, it is removed from the (i, j)th entry.

2. Copy with propagation not allowed. In this case, when the right R* is copied from
the (it j)th entry to the (k, j)th entry, only the right R (not R*) is created in the (k,
j)th entry. The implication of this is that a process executing in domain D, cannot
further copy the right R.

Sec.]1.5 • Access Control 61S

3. Copy with propagation allowed. In this case, when the right R* is copied from the
(i, })th entry to the (k,})th entry, the right R* is created in the (k, j)th entry, so that
a process executing in domain D, can further copy the right R* or R.

On the other hand, the owner right is used to allow the adding/deleting of rights to
column entries in a controlled manner. If the owner right is included in the (i, j)th entry
of the access matrix, a process executing in domain D;can add and delete any right in any
entry in column). Figure 11.18shows the access matrix of Figure 11.17with owner rights
included for the three objects. In the figure, domains D}, D2, and D3 have the owner rights
for objects F1, F2 , and F3 , respectively. Therefore, a process executing in domain D} can
add and delete any valid right of F) in any entry in column F). Similarly, a process
executing in domain D2 can add and delete any valid right of F2 in any entry in column
F2 , and a process executing in domain D] can add and delete any valid right of F3 in any
entry in column F3.

Fig. 11.18 An access matrix with owner
rights.

Is F1 ~ Fa
Domain

Read* Read
01 Write*

Execute
Owner

Read* Read*

02 Write Write
Execute*
Owner

Read

03
Write
Execute
Owner

Allowing Changes to the Row Entries. The control right, which is only
applicable to domain objects, is used to allow a process to change the entries in a row.
If the control right is present in the (D;, Dj)th entry of the access matrix, a process
executing in domain D; can remove any access right from row Dj . For example,
Figure 11.19 shows the access matrix of Figure 11.16 with control rights included. In
this figure, since the entries (Db D2) and (D}, D3) have control rights, a process
executing in domain D] can delete any right from rows D2 and D 3 . Similarly, since
the entry (D 2 , D3) has control right, a process executing in domain D2 can delete any
right from row D3 •

616 Chap. J] • Security

~ r, F2 F3 51 t, 01 02 03
Domain

01
Read Read Up Switch Switch
Write Down Control ControlExecute

Read
Read Up Read Switch

02 Write
Write Down Control
Execute

Read Read
D3 Write Write

Execute Rewind

Fig. 11.19 An access matrix with control rights.

In practice, an access matrix is large and sparse. Most domains have no access at all to most
objects, that is, most of the entries are empty. Therefore, a direct implementation of an
access matrix as a two-dimensional matrix would be very inefficient and expensive
(wastage of disk space). Moreover, in distributed systems, subjects and objects may be
located on different sites, which further complicates the implementation issue. The two
most commonly used methods that have gained popularity in contemporary distributed
systems for implementing an access matrix are access control lists (ACLs) and capabilities.
For instance, Andrew [Satyanarayanan 1989], Apollo [l.evine 1986], and Butler
[Dannenberg and Hibbard 1985] use ACLs and Accent [Rashid and Robertson 1981],
Amoeba [Mullender and Tanenbaum 1986], and Mach [Sansom et al. 1986] use capabilities.
These two methods are described below.

Access Control Lists

In this method, the access matrix is decomposed by columns, and each column of the matrix
is implemented as an access list for the object corresponding to that column. The empty
entries of the matrix are not stored in the access list. Therefore, for each object, a list of
ordered pairs (domain, rights) is maintained, which defines all domains with a nonempty set
of access rights for that object. Further details of the working and properties of a security
system based on ACLs are presented below.

Access Validation. Whenever a subject in domain D executes an operation r on an
object 0, the access list for object 0 is first searched for the list element whose domain field
is D. Then the rights field of this element is searched for r. If found, the operation is allowed
to continue; otherwise, a protection violation occurs.

In this method, the access list is checked on every access. This is a very desirable
feature from a security point of view. However, consulting the access Jist on every access

Sec. 11.5 • Access Control 617

could cause substantial overhead, especially when the access list is long. This drawback can
be overcome by maintaining a cache for the access list entries of only the active domains.

Granting Rights. Access right r for object 0 is granted to domain D in the
following manner:

1. The access list for object 0 is first searched for the list element whose domain
field is D.

2. If found, right r is added to the rights field of this list element. Otherwise, a new
list element is added to the access list for the object o. The domain field and rights
field of this list element are set to D and r, respectively.

Passing Rights. Access right r for object 0 is passed (propagated) from a domain
D1 to another domain D2 in the following manner:

1. Access list for object 0 is first checked to ensure that D I possesses either owner
right for object 0 or copy right for access right r.

2. If D 1 possesses any of the above two rights, access right r for object 0 is granted
to domain D2 in the manner described above. Otherwise, a protection violation
occurs.

Rights Revocation. Access right r for object 0 is revoked from domain D simply
by deleting r from the rights set of domain D in the access list for o.

For file protection, several systems use user-oriented domains like that of UNIX in
which a (uid, gid) pair forms a domain. Revocation of a user's access right becomes more
complicated in these systems because access revocation requires the deletion of the user's
uid (if present) from the access list of the object in question and also the cancellation of
the user's membership from all the groups that belong to a domain that has access to that
object. In a large distributed system, the process of discovering all groups that the user
should be removed from and performing the actual removal operation may take a
significant amount of time that may be unacceptable in emergencies. The concept of
negative rights is used to overcome this problem [Satyanarayanan 1989, 1990]. This
concept is based on the idea that to revoke a user's access right to an object, the user can
be given negative rights on that object. Negative rights indicate denial of the specified
rights, with denial overriding possession in case of conflict. With this extension, the ACLs
may contain negative rights, so that it is possible to express facts, such as every user of
a domain except user-i and user-j may exercise. right r on object O. The union of all the
negative rights specified for a user subtracted from his or her positive rights gives his or
her actual total rights. Negative rights thus act as a mechanism for rapid and selective
revocation and are particularly valuable in a large distributed system.

The main advantage of the method of ACLs is that for a given object the set of
domains from which it can be accessed can be determined efficiently. However, the main
drawback of the method is that for a given domain the set of access rights cannot be
determined efficiently.

Object identifier

618 Chap. 11 • Security

Capabilities

Rather than decomposing the access matrix by columns, in this method the access matrix
is decomposed by rows, and each row is associated with its domain. Obviously, the empty
entries are discarded. Therefore, for each domain, a list of ordered pairs (object, rights) is
maintained, which defines all objects for which the domain possesses some access rights.
Each (object, rights) pair is called a capability and the list associated with a domain is
called a capability list.

A capability is used for the following two purposes:

• To uniquely identify an object

• To allow its holder to access the object it identifies in one or more permission
modes

Therefore, as shown in Figure 11.20, a capability is composed of two basic parts-an
object identifier part and a rights information part, The object identifier part usually
contains a pointer to the object and acts as a globally unique system-oriented name for the
object. On the other hand, the rights information part is usually a set of bits that determine
which operations are allowed on the object with this capability. Further details of the
working and properties of a security system based on capabilities are presented below. For
ease of presentation, in the following description we will assume that each user/process
forms a domain of the system.

Rights information I Fig. 11.20 The two basic parts of a
~L-..J capability.

Access Validation. A capability is considered as an unforgeable ticket that allows
its holder to access the object (identified by its object identifier part) in one or more
permission modes (specified by its rights information part). A process that possesses a
capability can access the object identified by it in the modes permitted by it. There are
usually several capabilities for the same object. Each one confers different access rights
to its holders. The same capability held by different holders provides the same set of
access rights to all of them.

Since simple possession of a capability means that access is permitted in the modes
associated with the capability, to execute an operation r on an object 0, a process executes
the operation r, specifying the capability for object 0 as a parameter. When the monitor
for object 0 receives the access request (with the capability), it need only verify that the
rights information part of the capability has permission for operation r.

Notice that in a capability-based security system, there is no need to search a list to
verify that access is allowed. Rather, the security system need only verify that the
capability supplied by a process is valid for the desired operation on the object. Therefore,
once a process establishes the possession of a capability for an object, it can access the
object in one of the modes allowed by the capability without any further check by the

Sec. 11.5 • Access Control 619

security system. For these reasons, capability-based security systems are more efficient
than security systems based on ACLs. Also notice that in the capability-based approach,
there is no checking of user identity. If this is required for access validation, some user
authentication mechanism must be used.

Granting and Passing ofRights. In the capability-based security scheme, each
user maintains a list of capabilities that identifies all objects that the user can access and
the associated access permissions. But how does a user get a capability in the first
place?

In a capability-based system, there are usually one or more object managers for each
type of object. A request to create an object or to perform some operation on an object is
sent to one of the object managers of that object type. When a new object is created, the
object manager that creates the object generates (as a part of the object creation process)
a capability with all rights of access for the object. The generated capability is returned to
the owner for use. Now the owner may give the capability to other users with whom the
object is to be shared. However, the owner may want to restrict the access modes in a
different manner for different users who share the object. Therefore, before the owner
gives the capability to other users, it may be necessary to restrict the capability by
removing some of the rights. The usual way to do t.his is to have a function in the object
manager for restricting capabilities. When called, this function generates a new capability
for the object with only the desired access permissions and returns the newly generated
capability to the caller. This capability is then given to the usens) for whom it was
generated.

Protecting Capabilities against Unauthorized Access. To ensure that in a
capability-based security system the objects are protected against unauthorized access, the
following basic requirements must be met:

1. A capability must uniquely identify an object in the entire system. Even after the
object associated with a given capability is deleted, it is important that the capability is not
reused because some users may retain obsolete capabilities. Use of an obsolete capability
should produce an error instead of allowing access to a different object.

2. Capabilities must be protected from user tampering. For this, it is necessary that
capabilities be treated as unforgeable protected objects that are maintained by the
operating system and only indirectly accessed by the users.

3. Guessing of a valid capability should be impossible or at least very difficult. This
is because in the capability-based scheme the degree of protection is probabilistic and
proportional to the difficulty of guessing a valid capability.

The following methods are normally used to meet these requirements:

1. Tagged architecture. In this method, each object has a tag to denote its type as
either a capability or an ordinary accessible data such as integer, pointer, character, or
instruction. Tags are normally implemented in hardware by associating a tag with units of
memory, usually words. In this case, each memory word has a tag field that tells whether

620 Chap. 11 • Security

the word contains a capability or not. The tag field is not directly accessible by an
application program, and it can be modified only by programs running in the kernel mode
(i.e., the operating system). Although only one bit is necessary for the tag field to
distinguish between capabilities and other objects, tagged architecture machines typically
use n bits for the tag field to allow the software to distinguish among 2n different types
of objects (memory contents).

2. Partitioned implementation. Another method to preserve the integrity of
capabilities is to store them separately from data in special segments that can only be
accessed by the operating system. One way to implement this is to partition the address
space of a user process into two parts-one accessible to the process and the other
accessible only to the operating system. The former contains the process's normal data and
instructions, whereas the latter contains its capabilities.

3. Encryption of sparse capabilities. The tagged and partitioned methods of
protecting capabilities from unauthorized access are oriented toward centralized computer
systems. These methods are not suitable for use in a distributed system because in a
distributed system the security mechanism used should allow capabilities to be safely
transferred from one node to another. The third method, which does not require
capabilities to be distinguished from other objects either by separation or by tagging, is
particularly suited to distributed systems. In addition to preventing capabilities from user
tampering, this method also makes capabilities unique and difficult to guess.

In this method, a large name space that is sufficiently sparse is used for the
capabilities. Uniqueness is achieved by using the methods described in Section 10.4 for
the creation of unique system-oriented identifiers that form the object identifier part of the
capabilities, On the other hand, to make the capabilities difficult to guess or forge, the
rights information part of each capability is combined with an extra field containing a
random number, thereby rending the task of a malicious user wishing to generate any valid
capability so lengthy as to be impractical. Furthermore, the rights information part and the
random-number part are encrypted by the object manager before a capability is issued to
a user. The secret key is available only with the object manager. When a process presents
the capability along with a request for object accessing, the object manager uses the key
to decrypt the encrypted part of the capability before using it. In this way, the rights
information part of a capability that confers restricted permissions cannot be forged by its
possessors to convert it to one with more permissions.

Rights AmplifICation. The concept of rights amplification was introduced in
Hydra [Cohen and Jefferson 1975]. We saw that in a capability-based system objects are
typed and recognize a set of predefined operations. The set of predefined operations for
an object type is known as auxiliary rights in Hydra. In addition to the auxiliary rights,
each object type has a set of kernel rights, such as get, put, and add to manipulate the data
part of an object and load, store, append, delete, copy, and create to manipulate the
capability list part of an object. The kernel rights are implemented within the kernel and
are transparent to the user processes.

A request to perform an operation on an object is sent to the object manager of that
object type. The request contains the capability for the object as a parameter. This

Sec. 11.5 • AccessControl 621

capability may include an auxiliary right to invoke some operation on the object but would
not include any of the kernel rights for the object. A problem arises here because the object
manager is itself an ordinary program. It is essential that the object manager be able to
invoke kernel operations in order to perform the requested operation successfully. The
rights amplification technique of Hydra solves this problem by giving a rights template to
object managers that gives them more rights to an object than the capability itself allows.
Additional rights given to the object managers allow them to perform kernel operations on
the objects.

When a process P invokes an operation r on an object 0, the capability C supplied
by P may get amplified to Ca when the object manager M starts performing the operation
r on the object. This may be necessary in order to allow M to access the storage segment
representing 0 for performing operation r on it. That is, M is allowed to perform kernel
operations on 0 directly, even though the calling process P cannot. After completion of the
operation ron 0, the capability Ca for 0 is restored to its original, unamplified state C.
This is a typical case in which the rights held by a process for access to a protected
segment must change dynamically, depending on the task to be performed.

Notice that in the rights amplification scheme, the object managers are treated as
"trustworthy" procedures and are allowed to perform kernel operations on the objects of
a specified type, on behalf of any process that holds an auxiliary right for an object of that
type. Therefore, the rights held by an object manager are independent of and normally
exceed the rights held by the subjects that access the object. However, an object manager
is not a universally trustworthy procedure because it is not allowed to act on other types
of objects and cannot extend its rights to any other procedure.

Rights Revocation. In a security system based on ACLs, revocation of rights is
easy because for a given object it is possible to easily and efficiently determine which
subjects have what rights for the object. However, in a security system based on
capabilities, revocation of rights is a much more difficult problem because for a given
object it is difficult to determine which subjects have what rights for the object. This is
because the capabilities for an object may be stored in several capability lists that are
distributed throughout the system, and we must first find them before we can revoke them.
Some commonly used methods for implementing revocation for capabilities are described
below.

1. Back pointers. One way is to keep track of all the capabilities for an object and
to change/delete them selectively depending on the desired revocation of access rights. A
simple method to keep track of all the capabilities for an object is to maintain a list of
pointers with the object, pointing to all capabilities associated with the object. This
method has been used in the Multics system. The method is quite general but very costly
to implement.

2. Indirection. Another approach is to use indirect addressing. In this method each
capability points to an indirect object (such as a table entry) rather than to the object itself.
The indirect object in turn points to the real object. Revocation is implemented by deleting
the indirect object to break the connection between the real object and the capabilities for
it. When an access is attempted with a capability whose indirect object has been deleted,

622 Chap. 11 • Security

access operation fails because the real object is unknown due to the broken connection. A
drawback of this method is that it does not allow selective revocation.

3. Use of keys. In this method, in addition to the object identifier and rights
information fields, each capability has a field that contains a unique bit pattern. The
contents of this field is called a "key." A capability's key is defined when the capability
is created and it cannot be modified or inspected by a process owning that capability. Each
object has a master key associated with it that can be dynamically defined or changed with
a special set_key operation. Normally, only the owner of an object is given the right to
invoke the set_key operation for changing the master key of the object.

When a new capability for an object is created, the key field of the capability is set
to the current master key for the object. When an access is attempted with a capability, the
capability's key is compared to the master key of the corresponding object. If the two keys
match, access to the object is allowed; otherwise, a protection violation occurs.
Revocation involves replacement of the master key with a new value by using the set_key
operation, invalidating all previous capabilities for this object.

This revocation scheme is used in Amoeba, in which random numbers are used as
keys. A drawback of this scheme is that it does not allow selective revocation, since only
one master key is associated with each object. However, this drawback can be overcome
by associating a list of keys with each object.

Hybrid Approach

As compared to the capability-based scheme, the scheme based on ACLs is more suited
to the implementation of security systems because ACLs correspond directly to the needs
of the users. When users create objects, they can specify which domains can access the
objects as well as the operations allowed. However, we saw that a security system based
on ACLs is normally less efficient than capability-based security systems because of the
need to search the access Jist on every access. To overcome the drawbacks of the two
schemes and to combine their advantages, most systems use a hybrid approach for
designing their security system.

In the hybrid approach, both ACLs and capabilities are employed along with the
concept of a session. A session is a logical concept of a period during which a process
accesses an object. When a process first tries to start a session for accessing an object,
it specifies the access modes (types of operations) that it may perform on the object
during the session. The ACL of the object is searched for the types of operations
desired. If access is denied, a protection violation occurs. Otherwise, the system
creates a new capability for the object and attaches it to the process. After this, all
accesses to the object by this process during the session are made using the capability
so that an access control check can be performed efficiently. After the session is over,
the capability is destroyed.

The UNIX file system employs this scheme, with a session being the period between
the open and close operations of a file by a process. Each file has an associated ACL.
When a process opens a file, its ACL is checked for the mode specified in the open
command. If access in the specified mode is permitted, a new entry is allocated in a file

Sec. 11.6 • Digital Signatures 623

table, the access mode is recorded in this entry, and an index to this entry is returned to
the process. All subsequent operations on the file are made by this process by specifying
the index into the file table. The entry in the file table points to the file. When the process
executes the close operation on the file, the session is closed by deleting the file table
entry. A new session must be started after this if the process wants to access the same file
at some later time.

The file table is maintained by the operating system, so that it cannot be corrupted
by the user. Security is ensured because access is validated at the time a session is started
and a process can access only those files for which a session has been started but not yet
closed.

11.6 DIGITAL SIGNATURES

Message integrity, which guarantees that the contents of a message were not changed
when it was in transfer, is also an important security requirement in a distributed system.
The concept of digital signature, which is based upon asymmetric cryptosystems, is the
most commonly used method to handle this issue.

Recall that in an asymmetric cryptosystem the secret key of a user is known only to
that user and no one else. Therefore, the sender of a message can use its secret key for
signing the message by encrypting it with the key. That is, the sender can uniquely "seal"
the message with his or her own signature (secret key). The sealed message can be sent
to anyone with the corresponding public key. Using digital signatures assures the receiver
of the message not only that the message content has not been manipulated but also that
the message was indeed sent by the claimed sender. Thus, digital signatures are applicable
to both user authentication and message integrity.

A digital signature is basically a code, or a large number, that is unique for each
message and to each message originator. It is obtained by first processing the message
with a hash function (called a digest function) to obtain a small digest dependent on each
bit of information in the message and then encrypting the digest by using the originator's
secret key. To avoid duplicity problems, a digest function (D) must have the property that
D(M) is different from D(M') for all possible pairs of M and M'. Rivest [1992] proposed
a message digest function (known as ,WD5) for use in secure mail and other applications
on the Internet.

To illustrate how the digest of a message can be obtained from the message, the
example given in [Adam 1992] is presented here. In this example, it is assumed that a
message is a digital string of O's and I '8 and is divided into blocks of 64 bits. The bitwise
Exclusive-OR of the first two blocks is performed to obtain a new block of 64 bits. The
newly obtained block is again Exclusive-ORed with the third block of the message, again
resulting in a new block of 64 bits. This process is continued one by one with all the other
blocks of the message. The end result is a 64-bit digest that depends on each bit of data
in the whole message stream. In other words, to alter the message, even by 1 bit, would
alter the 64-bit digest. Moreover, it should beessentially impossible to forge a message
that would result in the same digest.

624 Chap. 11 • Security

A protocol based on a digital signature for ensuring message integrity works as
follows:

1. A sender (A) computes the digest (D) of a message (M). It then encrypts the digest
D by using its secret key (Sa) to obtain a ciphertext C l = E(D, Sa). A signed message is
then created that consists of the sender's identifier, the message M in its plaintext form,
and the ciphertext C,. The signed message, which has the form (IDa' CJ , M), is then sent
to a receiver.

2. On receiving the signed message, the receiver decrypts C l by using the public key
of the sender to recover the digest D. It then calculates a digest for M (by using the same
digest function) and compares the calculated digest· with the digest recovered by
decrypting Cl' If the two are equal, message M is considered to be correct; otherwise it
is considered incorrect.

Notice that the protocol does not require a message to be hidden from unauthorized
users. Rather, it allows a message to be read openly by anyone who receives or intercepts
it. But a forged message is successfully detected by the protocol.

An application may require that the first receiver retransmit the signed message to
another receiver, which may have to subsequently retransmit it to other receivers. In
such a situation, it is important that each of the recipients should be able to verify that
the signed message indeed originated from the claimed originator and that its contents
were not changed by any of the intermediate recipients or by an intruder. A digitally
signed message meets these requirements because it has the originator's identifier
included in it and the digest of the message can only be decrypted by using the
originator's public key.

In the actual implementation, a key distribution server may be used that maintains a
database of the public keys of all users. If the receiver of a digitally signed message does
not already have the public key of the message originator, it can request it from the key
distribution server. This avoids the need to send a new user's public key to all other user's
inthe system. The new user's public key can be simply registered with the key distribution
server.

Privacy Enhanced Mail (PEM) scheme, designed for adding privacy to Internet
mail applications, is a good example of use of cryptography and digital signature
techniques. PEM offers confidentiality, authentication, and message integrity. These
features are intended to provide sufficient trust so that the general Internet user
population will feel comfortable using the Internet for business correspondence and
sending messages that contain sensitive information. PEM is completely implemented
at the application level by end systems so that it can be incorporated on a site-by-site
or user-by-user basis. This approach imposes no special requirements on message
transfer systems at intermediate relay sites or endpoints. That is, network routers and
mail relays treat PEM messages as an ordinary piece of mail. How PEM provides
privacy to electronic mails is briefly described below. Readers interested in its detail
description may refer to [Linn 1993, Kent 1993b, Balenson 1993, Kaliski 1993, Kent
1993a].

Sec. 11.6 • Digital Signatures 625

PEM assumes that the network is not trusted but that each user of PEM trusts his or
her own local computer. Mail users obtain a public/secret key pair from a local PEM
program and publish their public keys with their mail addresses. The PEM program
maintains a database of the secret keys of its local users and the public keys of remote
users. Currently, the Rivest-Shamir-Adleman (RSA) algorithm is used to generate the
public/secret key pairs for users. PEM provides the following types of facilities:

1. Confidentiality. Sending a message in encrypted form so that sensitive
information within it cannot be read by an int.ruder.

2. Message integrity. Sending a signed message so that the receiver can be ensured
that the contents of the message were not changed.

Both facilities also possess an authentication feature because the encryption and
decryption of the message or the digital signature can only be done by a user having the
proper key.

Let us first see how PEM sends a secret message (M) for ensuring confidentiality:

I. The PEM program of the sender's computer first generates a random secret key
(K) and encrypts the message (M) by using this key to obtain a ciphertext C. =E(M, K).
Currently, the DES algorithm is used for this purpose, but others may as well be used in
the future. The secret key (K) is then encrypted by using the recipient's public key (say,
Pr) to obtain a ciphertext C2 = E(K, Pr) . Now C. and C2 are sent to the recipient in a
message mI'

2. On receiving m., the PEM program of the recipient's computer fetches the
recipient's secret key (Sr) from its database and decrypts C2 by using S, to obtain K. Now
by using K, it decrypts C I to obtain the original message M, which it then stores in the
recipient's mailbox.

Notice that the PEM scheme retains the efficiency of symmetric cryptography for the
bulk encryption but avoids the need for a secure key distribution server.

Now let us see how PEM sends a signed message (M) for ensuring message
integrity:

1. The PEM program of the sender's computer computes the digest (D) of the
message (M) by using a message digest function. The digest (D) is then encrypted by
using the sender's secret key (Ss) to obtain a ciphertext C1 = (D, Ss). The sender's ID, C1,

and M are then sent to the recipient in a message m.,

2. On receiving mi , the PEM program of the recipient's computer fetches the
sender's public key (P s) from its database and uses it to decrypt C1 to obtain the digest D.
It then applies the same message digest function to M and compares the result with D. If
the two are equal, message M is considered to be correct; otherwise it is considered
incorrect. The message M is then stored in the recipient's mailbox with a proper note from
the PEM program's side about the result of its integrity check.

626

11.7 DESIGN PRINCIPlES

Chap. 11 • Security

Based on their experience with Multics, Saltzer, and Schroeder [1975] identified some
design principles that can be used as a guide to designing secure systems. Although these
design principles were proposed for centralized systems, they hold good for distributed
systems as well [Kent 1981]. These and some other design principles are summarized
below. Designers of security components of a distributed operating system should use
them as basic guidelines.

1. Least privilege. The principle of least privilege (also known as the need-to-know
principle) states that any process should begiven only those access rights that enable it to
access, at any time, what it needs to accomplish its function and nothing more and nothing
less. That is, the security system must be flexible enough to allow the access rights of a
process to grow and shrink with its changing access requirements. This principle serves to
limit the damage when a system's security is broken. For example, if an editor is given the
right to access only the file that has to be edited, even if the editor has a Trojan horse, it
will not be able to access other files of the user and hence cannot do much damage.

2. Fail-safe defaults. Access rights should be acquired by explicit permission only
and the default should be no access. This principle requires that access control decisions
should be based on why an object should be accessible to a process rather than on why it
should not be accessible.

3. Open design. This principle requires that the design of the security mechanisms
should not be secret but should be public. It is a mistake on the part of a designer to
assume that the intruders will not know how the security mechanism of the system
works.

4. Built in to the system. This principle requires that security be designed into the
systems at their inception and be built in to the lowest layers of the systems. That is,
security should not be treated as an add-on feature because security problems cannot be
resolved very effectively by patching the penetration holes detected in an existing
system.

5. Check for current authority. This principle requires that every access to every
object must be checked using an access control database for authority. This is necessary
to have immediate effect of revocation of previously given access rights. For instance, in
some file systems, a check for access permission is made only when a file is opened and
subsequent accesses to the file are allowed without any check. In these systems, a user can
keep a file open for several days and continue to have access to its contents, even if the
owner of the file changes the access permission and revokes the user's right to access its
contents.

6. Easy granting and revocation of access rights. For greater flexibility, a security
system must allow access rights for an object to be granted or revoked dynamically.
It should be possible to restrict some of the rights and to grant to a user only those
rights that are sufficient to accomplish its functions. On the other hand, a good security

Sec. 11.8 • Case Study: DeE Security Service 627

system should allow immediate revocation with the flexibility of selective and partial
revocation. With selective revocation facility, it is possible to revoke access rights to
an object only from a selected group of users rather than from all users who posses
access rights for the object. And with partial revocation facility, only a subset of the
rights granted to a user for an object can be revoked instead of always revoking all its
rights for the object.

7. Never trust other parties. For producing a secure distributed system, the system
components must be designed with the assumption that other parties (people or programs)
are not trustworthy until they are demonstrated to be trustworthy. For example, clients and
servers must always be designed to view each other with mutual suspicion.

8. Always ensure freshness of messages. To avoid security violations through the
replay of messages, the security of a distributed system must be designed to always ensure
freshness of messages exchanged between two communicating entities.

9. Build firewalls. To limit the damage in case a system's security is compromised,
the system must have firewalls built into it. One way to meet this requirement is to allow
only short-lived passwords and keys in the system. For example, a shared secret key used
to build a logical communication channel between a client and a server should be fairly
short-lived, perhaps being changed with every communication session between them.

10. Efficient, The security mechanisms used must execute efficiently and be simple
to implement.

11. Convenient to use. To be psychologically acceptable, the security mechanisms
must be convenient to use. Otherwise, they are likely to be bypassed or incorrectly used
by the users.

12. Cost effective. It is often the case that security needs to be traded off with other
goals of the system, such as performance or ease of use. Therefore, in designing the
security of a system, it is important to come up with t.he right set of trade-offs that take
into account the likelihood that the system will be compromised with the cost of providing
the security, both in terms of money and personnel experience.

11.8 CASE STUDY: DCE SECURITY SERVICE

As a case study of how the various securit.y concepts described in this chapter can be
integrated to provide security in a single system, the DCE Security Service is briefly
described below.

In DeE, a user or a process (client or server) that needs to communicate securely is
called a principal. For convenience of access control, principals are assigned membership
in one or more groups and organizations. All principals of the same group or organization
have the same access rights. Groups generally correspond to work groups or departments,
and organizations typically include multiple groups having some common properties.
Typically, a principal is a member of one organization but may simultaneously be a
member of multiple groups. Each principal has a unique identifier associated with it.

628 Chap. II • Security

Together, a principal's identifier, group, and organization membership are known as the
principal's privilege attributes.

The main components of the DCE Security Service for a single cell are shown in
Figure 11.21. These components collectively provide authentication, authorization,
message integrity, and security administration services. Let us consider these services one
by one.

Security server node

Client node

Physically
protected

Administrator

Applicat ion server node

Fig. 11.21 Main components of DeE Security Service for a single cell.

11.8.1 Ruth.ntlcatlon In DCE

The DCE authentication service uses the Kerberos system described in Section 11.4.5. The
authentication server, ticket-granting server, and authentication database of Kerberos are
respectively called authentication server, privilege server, and registry database in DCE.
The information registered in the registry database includes each principal's secret key and
privilege attributes. The protocols for authenticating a user at the time of login and for
mutual authentication of a client and a server are the same as that of Kerberos (the intercell
client-server authentication protocol in DCE is the same as the interrealm authentication
protocol of Kerberos). The only difference is that the service-granting ticket in DCE also
contains the group and organization membership information of a client. This information
is used by the application server to verify the access rights of the client before providing
the requested service.

Sec. 11.8 • Case Study: DCE Security Service 629

The establishment of a secure logical communication channel between a client and
a server by using the authentication protocol is known as authenticated RPC in DeE. This
is because in DeE clients and servers communicate by using RPCs. Once authenticated
RPC has been established, it is up to the client and the server to determine how much
security is desired. That is, subsequent RPC messages mayor may not be encrypted
depending on the security needs of the application.

11.8.2 Authorization in DCE

Authorization in DCE is based on ACLs. Associated with each application ·server is an
ACL and an ACL manager. The ACL contains complete information about which
principals have what rights for the resources managed by the server. When a client's
request comes to the server, it extracts the client ~s ID and its group and organization
membership information from the received encrypted ticket. It then passes the client's ID,
membership, and the operation desired to the ACL manager. Using this information, the
ACL manager checks the ACL to make a decision if the client is authorized to perform the
requested operation. It returns an access granted or denied reply to the server, after which
the server acts accordingly.

Note that in DCE groups are effective only within cells. Therefore, a principal
belonging to a different cell can be granted access based solely on its unique identifier, not
on group membership. That is, if access is to be granted to principals of remote cells, their
unique identifiers have to be entered in the ACL along with the access rights.

11.8.3 Message Integrity In DCE

As already mentioned above, once authenticated RPC has been established, it is up to the
client and server to determine how much security is desired. Therefore, if message
integrity is desired, it can be ensured by the use of a digital signature technique. That is,
applications can ensure data integrity by including an encrypted digest of the message data
passed between clients and servers. The digest must be encrypted and decrypted by using
the session key that a client and a server share for secure communication between
them.

11.8.4 S8curlty Administration in DeE

The administrator, registry server, and ACL manager jointly perform security administra­
tion tasks. Two programs are used by the administrator for performing administration
tasks. One is the registry editor program and the other is the ACL editor program.

The registry editor program may be used by the system administrator to view, add,
delete, and modify information in the registry database. Even system administrators do not
have direct access to the registry database, and they access the registry database only by
making requests to the registry server. This is much safer, for although an administrator
can change any password, he or she cannot obtain the password of any user.

On the other hand, the ACL editor program may be used by an application
administrator to view, add, delete, and modify entries in ACLs for applications or ACLs

630 Chap. 11 • Security

for objects (resources) controlled by them. Once again, all requests for updates to ACLs
are sent to the ACL manager and not performed directly on ACLs.

In DCE, system administrators use organization membership to apply global security
policies, such as deciding the lifetime of tickets and passwords of different principals. For
example, the lifetime of tickets and passwords is kept smaller for principals of an
organization that handles highly sensitive information as compared to the lifetime of
tickets and passwords of principals of an organization that does not handle sensitive
information.

11.9 SUMMARY

Computer security deals with protecting the various resources and information of a
computer system against destruction and unauthorized access. The main goals of
computer security are secrecy, privacy, authenticity, and integrity.

A total approach to computer security involves both external and internal security.
The three main aspects of internal security in distributed systems are authentication,
access control, and communication security.

An intruder is a person or program that tries to obtain unauthorized access to data or
a resource of a computer system. An intruder may be a threat to computer security in many
ways that are broadly classified into two categories-passive attacks and active attacks.
In passive attacks, an intruder somehow tries to steal unauthorized information from the
computer system without interfering with the normal functioning of the system. Some
commonly used methods of passive attack are browsing, leaking, inferencing, and
masquerading. On the other hand, active attacks interfere with the normal functioning of
the system and often have damaging effects. Some commonly used forms of active attacks
are viruses, worms, and logic bombs. Active attacks associated with message
communications are integrity attack, authenticity attack, denial attack, delay attack, and
replay attack.

Three kinds of channels that can be used by a program to leak information are
legitimate channels, storage channels, and convert channels. The confinement problem
deals with the problem of eliminating every means by which an authorized subject can
release any information contained in the object to which it has access to some subjects that
are not authorized to access that information. The confinement problem is in general
unsolvable.

Cryptography is a means of protecting private information against unauthorized
access in those situations where it is difficult to provide physical security. There are two
broad classes of cryptosystems-symmetric and asymmetric. When cryptography is
employed for secure communications in distributed systems, a need for key distribution
arises. The mechanisms and protocols for key distribution in symmetric and asymmetric
cryptosystems have been described in the chapter.

An authentication mechanism prohibits the use of the system (or some resource of the
system) by unauthorized users by verifying the identity of a user making a request. The
main types of authentication normally needed in a distributed system are user login
authentication, one-way authentication of communicating entities, and two-way authenti-

Chap. 11 • Exercises 631

cation of communicating entities. The three basic approaches to authentication are proof
by knowledge, proof by possession, and proof by property. The proof-by-knowledge
method based on passwords is the most widely used method for user login authentication.
For one-way and two-way authentication of communicating entities, the protocols based
on cryptosystems have been described in the chapter. The Kerberos authentication system
has also been described as a case study.

Access control deals with the ways that are used in a computer system to prohibit a
user (or a process) from accessing those resources/information that he or she is not
authorized to access. The three access control models proposed in the literature are the
access matrix model, the information flow control model, and the security kernel model.
Of these, the access matrix model is the most popular one and is widely used in existing
centralized and distributed systems.

In the access matrix model, the access rights of each subject to each object are
defined as entries in a matrix, called the access matrix. The two most widely used methods
that have gained popularity in contemporary distributed systems for implementing an
access matrix are ACLs and capabilities.

The concept of digital signatures, which is based upon asymmetric cryptosystems, is
the most commonly used method to handle the issue of message integrity in distributed
systems.

Some design principles that can be used as a guide to designing secure systems are
least privilege, fail-safe defaults, open design, security built in to the system, checking for
current authority, easy to grant and revoke access rights, not to trust other parties, always
ensuring freshness of messages, building of firewalls, cost effective, efficient, convenient
to use, and right set of trade-offs.

EXERCISES

11.1. List some of the common goals of computer security.

11.2. What are the additional security problems that a distributed operating system designer must
deal with as compared to the designer of an operating system for a centralized time-sharing
system? Can we ensure the same degree of security in a distributed system as we have in a
centralized time-sharing system? Give reasons for your answer.

11.3. What is the "need-to-know" principle in computer security? Think of some security problems
that may occur if this principle is not taken care of in the design of the security component
of a computer system.

11.4. Differentiate between passive and active attacks. Which of the two is more harmful and
why?

11.5. What are some of the commonly used methods for passive attack? Comment on the relative
complexity of each of these methods from the point of view of the following:
(a) An intruder
(b) The designer of a security system

11.6. What is a Trojan horse program? Give an example (in pseudocode) of both a passive type and
an active type Trojan horse program.

	Chapter 11: Security

