
CHAPTER 5

Distributed Shared
Memory

5.1 INTRODUOION

In Chapter 3, it was mentioned that the two basic paradigms for interprocess
communication are as follows:

• Shared-memory paradigm

• Message-passing paradigm

Message-passing systems (described in Chapter 3), or systems supporting Remote
Procedure Calls (RPCs) (described in Chapter 4), adhere to the message-passing
paradigm. This paradigm consists of two basic primitives for interprocess
communication:

Send (recipient, data)

Receive (data)

The sending process generates the data to be shared and sends it to the
recipient(s) with which it wants to communicate. The recipient(s) receive the data.

231

232 Chap. 5 • Distributed Shared Memory

This functionality is sometimes hidden in language-level constructs. For example, RPC
provides automatic message generation and reception according to a procedural
specification. However, the basic communication paradigm remains the same because
the communicating processes directly interact with each other for exchanging the
shared data.

In contrast to the message-passing paradigm, the shared-memory paradigm
provides to processes in a system with a shared address space. Processes use this
address space in the same way they use normal local memory. That is, processes access
data in the shared address space through the following two basic primitives, of course,
with some variations in the syntax and semantics in different implementations:

data = Read (address)

Write (address, data)

Read returns the data item referenced by address, and write sets the contents
referenced by address to the value of data.

We saw in Chapter 1 that the two major kinds of multiple-instruction, multiple­
data-stream (MIMD) multiprocessors that have become popular and gained commer­
cial acceptance are tightly coupled shared-memory multiprocessors and loosely cou­
pled distributed-memory multiprocessors. The use of a shared-memory paradigm for
interprocess communication is natural for distributed processes running on tightly
coupled shared-memory multiprocessors. However, for loosely coupled distributed­
memory systems, no physically shared memory is available to support the shared­
memory paradigm for interprocess communication. Therefore, until recently, the
interprocess communication mechanism in loosely coupled distributed-memory multi­
processors was limited only to the message-passing paradigm. But some recent loosely
coupled distributed-memory systems have implemented a software layer on top of the
message-passing communication system to provide a shared-memory abstraction to the
programmers. The shared-memory abstraction gives these systems the illusion of
physically shared memory and allows programmers to use the shared-memory
paradigm. The software layer, which is used for providing the shared-memory
abstraction, can be implemented either in an operating system kernel or in runtime
library routines with proper system kernel support. The term Distributed Shared
Memory (DSM) refers to the shared-memory paradigm applied to loosely coupled
distributed-memory systems [Stumm and Zhou 1990].

As shown in Figure 5.1, DSM provides a virtual address space shared among
processes on loosely coupled processors. That is, DSM is basically an abstraction
that integrates the local memory of different machines in a network environment into
a single logical entity shared by cooperating processes executing on multiple sites.
The shared memory itself exists only virtually. Application programs can use it in
the same way as a traditional virtual memory, except, of course, that processes using
it can run on different machines in parallel. Due to the virtual existence of the
shared memory, DSM is sometimes also referred to as Distributed Shared Virtual
Memory (DSVM).

Sec. 5.2 • General Architecture of DSM Systems

Distributed sharedmemory
(existsonlyvirtually)

Communication Network

Fig. 5.1 Distributed shared memory (DSM).

5.2 GENERAL ARCHITEOURE OF DSM SYSTEMS

233

The DSM systems normally have an architecture of the form shown in Figure 5.1. Each
node of the system consists of one or more CPUs and a memory unit. The- nodes are
connected by a high-speed communication network. A simple message-passing system
allows processes on different nodes to exchange messages with each other.

The DSM abstraction presents a large shared-memory space to the processors of all
nodes. In contrast to the shared physical memory in tightly coupled parallel architectures,
the shared memory of DSM exists only virtually. A software memory-mapping manager
routine in each node maps the local memory onto the shared virtual memory. To facilitate
the mapping operation, the shared-memory space is partitioned into blocks.

Data caching is a well-known solution to address memory access latency. The idea of
data caching is used in DSM systems to reduce network latency.That is, the main memory of
individual nodes is used to cache pieces of the shared-memory space. The memory-mapping
manager ofeach node views its local memory as a big cache of the shared-memory space for
its associated processors. The basic unit of caching is a memory block.

When a process on a node accesses some data from a memory block of the shared­
memory space, the local memory-mapping manager takes charge of its request. If the
memory block containing the accessed data is resident in the local memory, the request is
satisfied by supplying the accessed data from the local memory. Otherwise, a network
block fault is generated and the control is passed to the operating system. The operating

234 Chap. 5 • Distributed Shared Memory

system then sends a message to the node on which the desired memory block is located
to get the block. The missing block is migrated from the remote node to the client
process's node and the operating system maps it into the application's address space. The
faulting instruction is then restarted and can now complete. Therefore, the scenario is that
data blocks keep migrating from one node to another on demand but no communication
is visible to the user processes. That is, to the user processes, the system looks like a
tightly coupled shared-memory multiprocessors system in which multiple processes freely
read and write the shared-memory at will, Copies of data cached in local memory
eliminate network traffic for a memory access on cache hit, that is, access to an address
whose data is stored in the cache. Therefore, network traffic is significantly reduced if
applications show a high degree of locality of data accesses.

Variations of this general approach are used in different implementations depending
on whether the DSM system allows replication and/or migration of shared-memory data
blocks. These variations are described in Section 5.6.1.

5.3 DESIGN AND IMPlEMENTAnON ISSUES OF DSM

Important issues involved in the design and implementation of DSM systems are as
folJows:

1. Granularity. Granularity refers to the block size of a DSM system, that is, to the
unit of sharing and the unit of data transfer across the network when a network block fault
occurs. Possible units are a few words, a page, or a few pages. Selecting proper block size
is an important part of the design of a DSM system because block size is usually a measure
of the granularity of parallelism explored and the amount of network traffic generated by
network block faults.

2. Structure ofshared-memory space. Structure refers to the layout of the shared data
in memory. The structure of the shared-memory space of a DSM system is normally
dependent on the type of applications that the DSM system is intended to support.

3. Memory coherence and access synchronization. In a DSM system that allows
replication of shared data items, copies of shared data items may simultaneously be
available in the main memories of a number of nodes. In this case, the main problem is
to solve the memory coherence problem that deals with the consistency of a piece of
shared data lying in the main memories of two or more nodes. This problem is similar to
that which arises with conventional caches [Smith 1982], in particular with multicache
schemes for shared-memory multiprocessors [Frank 1984, Goodman 1983, Katz et al.
1985. Yen et al. 1985]. Since different memory coherence protocols make different
assumptions and trade-offs, the choice is usually dependent on the pattern of memory
access. The terms coherence and consistency are used interchangeably in the literature.

In a DSM system, concurrent accesses to shared data may be generated. Therefore,
a memory coherence protocol alone is not sufficient to maintain the consistency of shared
data. In addition, synchronization primitives, such as semaphores, event count, and lock,
are needed to synchronize concurrent accesses to shared data.

Sec. 5.4 • Granularity 235

4. Datu location and access. To share data in a DSM system, it should be possible
to locate and retrieve the data accessed by a user process. Therefore, a DSM system must
implement some form of data block locating mechanism in order to service network data
block faults to meet the requirement of the memory coherence semantics being used.

5. Replacement strategy. If the local memory of a node is full, a cache miss at that
node implies not only a fetch of the accessed data block from a remote node but also a
replacement. That is, a data block of the local memory must be replaced by the new data
block. Therefore, a cache replacement strategy is also necessary in the design of a DSM
system.

6. Thrashing. In a DSM system, data blocks migrate between nodes on demand.
Therefore, if two nodes compete for write access to a single data item, the
corresponding data block may be transferred back and forth at such a high rate that no
real work can get done. A DSM system must use a policy to avoid this situation
(usually known as thrashing).

7. Heterogeneity. The DSM systems built for homogeneous systems need not
address the heterogeneity issue. However, if die underlying system environment is
heterogeneous, the DSM system must be designed to take care of heterogeneity so that it
functions properly with machines having different architectures.

These design and implementation issues of DSM systems are described in subsequent
sections.

5.4 GRANULARITY

One of the most visible parameters to be chosen in the design of a DSM system is the
block size. Several criteria for choosing this granularity parameter are described below.
Just as with paged main memory, there are a number of trade-offs and no single criterion
dominates.

5.4.1 Factors Influencing 810ck Size Selection

In a typical loosely coupled multiprocessor system, sending large packets of data (for
example, 4 kilobytes) is not much more expensive than sending small ones (for example,
256 bytes) [Li and Hudak 1989J. This is usually due to the typical software protocols and
overhead of the virtual memory layer of the operating system. This fact favors relatively
large block sizes. However, other factors that influence the choice of block size are
described below [Nitzberg and Virginia Lo 1991].

1. Paging overhead. Because shared-memory programs provide locality of refer­
ence, a process is likely to access a large region of its shared address space in a small
amount of time. Therefore, paging overhead is less for large block sizes as compared to
the paging overhead for small block sizes.

236 Chap. 5 • Distributed Shared Memory

2. Directory size. Another factor affecting the choice of block size is the need to
keep directory information about the blocks in the system. Obviously, the larger the
block size, the smaller the directory. This ultimately results in reduced directory
management overhead for larger block sizes.

3. Thrashing. The problem of thrashing may occur when data items in the same data
block are being updated by multiple nodes at the same time, causing large numbers of data
block transfers among the nodes without much progress in the execution of the application.
While a thrashing problem may occur with any block size, it is more likely with larger block
sizes, as different regions in the same block may be updated by processes on different nodes,
causing data block transfers, that are not necessary with smaller block sizes.

4. False sharing. False sharing occurs when two different processes access two
unrelated variables that reside in the same data block (Fig. 5.2). In such a situation, even
though the original variables are not shared, the data block appears to be shared by the two
processes. The larger is the block size, the higher is the probability of false sharing, due
to the fact that the same data block may contain different data structures that are used
independently. Notice that false sharing of a block may lead to a thrashing problem.

Process P1 accesses-----f p
data in this area 1

Process P2 accesses ..._----1:
data in this area P2

Adata block

5.4.1 Using Page 51z8 as 810ck Size

Fig.5.2 False sharing.

The relative advantages and disadvantages of small and large block sizes make it difficult
for a DSM designer to decide on a proper block size. Therefore, a suitable compromise in
granularity, adopted by several existing DSM systems, is to use the typical page size of a
conventional virtual memory implementation as the block size of a DSM system. Using
page size as the block size of a DSM system has the following advantages [Li and Hudak
1989]:

1. It allows the use of existing page-fault schemes (i.e., hardware mechanisms) to
trigger a DSM page fault. Thus memory coherence problems can be resolved in
page-fault handlers.

Sec. 5.5 • Structure of Shared-Memory Space 237

2. It allows the access right control (needed for each shared entity) to be readily
integrated into the functionality of the memory management unit of the system.

3. As long as a page can fit into a packet, page sizes do not impose undue
communication overhead at the time of network page fault.

4. Experience has shown that a page size is a suitable data entity unit with respect
to memory contention.

5.5 STRUauRE OF SHARED-MEMORY SPACE

Structure defines the abstract view of the shared-memory space to be presented to the
application programmers of a DSM system. For example, the shared-memory space of one
DSM system may appear to its programmers as a storage for words, while the
programmers of another DSM system may view its shared-memory space as a storage for
data objects. The structure and granularity of a DSM system are closely related [Nitzberg
and Virginia Lo 1991]. The three commonly used approaches for structuring the shared­
memory space of a DSM system are [Nitzberg and Virginia Lo 1991] as follows:

1. No structuring. Most DSM systems do not structure their shared-memory space.
In these systems, the shared-memory space is simply a linear array of words. An
advantage of the use of unstructured shared-memory space is that it is convenient to
choose any suitable page size as the unit of sharing and a fixed grain size may be used for
all applications. Therefore, it is simple and easy to design such a DSM system. It also
allows applications to impose whatever data structures they want on the shared memory.
IVY [Li and Hudak 1989J and Mether [Minnich and Farber 1989] use this approach.

2. Structuring by data type. In this method, the shared-memory space is structured
either as a collection of objects (as in Clouds [Dasgupta et a1. 1991] and Orca [Bal et a1.
1992]) or as a collection of variables in the source language (as in Munin [Bennett et al.
1990] and Midway [Bershad et al. 1993]). The granularity in such DSM systems is an
object or a variable. But since the sizes of the objects and data types vary greatly, these
DSM systems use variable grain size to match the size of the object/variable being
accessed by the application. The use of variable grain size complicates the design and
implementation of these DSM systems.

3. Structuring as a database. Another method is to structure the shared memory like
a database. For example, Linda [Carriero and Gelernter 1989] takes this approach. Its
shared-memory space is ordered as an associative memory (a memory addressed by
content rather than by name or address) called a tuple space ~ which is a collection of
immutable tuples with typed data items in their fields. A set of primitives that can be
added to any base language (such as C and FORTRAN) are provided to place tuples in the
tuple space and to read or extract them from tuple space. To perform updates, old data
items in the DSM are replaced by new data items. Processes select tuples by specifying
the number of their fields and their values or types. Although this structure allows the
location of data to be separated from its value, it requires programmers to use special

238 Chap. 5 • Distributed Shared Memory

access functions to interact with the shared-memory space. Therefore, access to shared
data is nontransparent. In most other systems, access to shared data is transparent.

5.6 CONSISTENCY MODELS

Consistency requirements vary from application to application [Bennett et a1. 1990,
Cheriton 1986, Garcia-Molina and Wiederhold 1982]. A consistency model basically
refers to the degree of consistency that has to be maintained for the shared-memory data
for the memory to work correctly for a certain set of applications. It is defined as a set of
rules that applications must obey if they want the DSM system to.provide the degree of
consistency guaranteed by the consistency model. Several consistency models have been
proposed in the literature. Of these, the main ones are described below.

It may be noted here that the investigation of new consistency models is currently an
active area of research. The basic idea is to invent a consistency model that can allow
consistency requirements to be relaxed to a greater degree than existing consistency
models, with the relaxation done in such a way that a set of applications can function
correctly. This helps in improving the performance of these applications because better
concurrency can be achieved by relaxing the consistency requirement. However,
applications that depend on a stronger consistency model may not perform correctly if
executed in a system that supports only a weaker consistency model. This is because if a
system supports the stronger consistency model, then the weaker consistency model is
automatically supported but the converse is not true.

Strict Consistency Model

The strict consistency model is the strongest form of memory coherence, having the most
stringent consistency requirement. A shared-memory system is said to support the strict
consistency model if the .value returned by a read operation on a memory address is always
the same as the value written by the most recent write operation to that address,
irrespective of the locations of the processes performing the read and write operations.
That is, all writes instantaneously become visible to all processes.

Implementation of the strict consistency model requires the existence of an absolute
global time so that memoryread/write operations can be correctly ordered to make the
meaning of "most recent" clear. However, as explained in Chapter 6, absolute
synchronization of clocks of all the nodes of a distributed system is not possible.
Therefore, the existence of an absolute global time in a distributed system is also not
possible. Consequently, implementation of the strict consistency model for a DSM system
is practically impossible.

Sequential Consistency Model

The sequential consistency model was proposed by Lamport [1979]. A shared-memory
system is said to support the sequential consistency model if all processes see the same
order of all memory access operations on the shared memory. The exact order in which the

Sec. 5.6 • Consistency Models 239

memory access operations are interleaved does not matter. That is, if the three operations
read ('1), write (WI)' read ('2) are performed on a memory address in that order, any of

the orderings ('1, WI' '2), ('" '2, WI), (w., '" '2), (W., '2' '1), (r2' '1, WI), (r2' WI' '1)
of the three operations is acceptable provided all processes see the same ordering. If one
process sees one of the orderings of the three operations and another process sees a
different one, the memory is not a sequentially consistent memory. Note here that the only
acceptable ordering for a strictly consistent memory is (rl' WI, '2)'

The consistency requirement of the sequential consistency model is weaker than that
of the strict consistency model because the sequential consistency model does not
guarantee that a read operation on a particular memory address always returns the same
value as written by the most recent write operation to that address. As a consequence, with
a sequentially consistent memory, running a program twice may not give the same result
in the absence of explicit synchronization operations. This problem does not exist in a
strictly consistent memory.

A DSM system supporting the sequential consistency model can be implemented by
ensuring that no memory operation is started until all the previous ones have been
completed. A sequentially consistent memory provides one-copy/single-copy semantics
because all the processes sharinga memory location always see exactly the same contents
stored in it. This is the most intuitively expected semantics for memory coherence.
Therefore, sequential consistency is acceptable by most applications.

Causal Consistency Model

The causal consistency model, proposed by Hutto and Ahamad [1990], relaxes the
requirement of the sequential consistency model for better concurrency. Unlike the
sequential consistency model, in the causal consistency model, all processes see only
those memory reference operations in the same (correct) order that are potentially causally
related. Memory reference operations that are not potentially causally related may be seen
by different processes in different orders. A memory reference operation (read/write) is
said to be potentially causally related to another memory reference operation if the first
one might have been influenced in any way by the second one. For example, if a process
performs a read operation followed by a write operation, the write operation is potentially
causally related to the read operation because the computation of the value written may
have depended in some way on the value obtained by the read operation. On the other
hand, a write operation performed by one process is not causally related to a write
operation performed by another process if the first process has not read either the value
written by the second process or any memory variable that was directly or indirectly
derived from the value written by the second process.

A shared memory system is said to support the causal consistency model if all write
operations that are potentially causally related are seen by all processes in the same
(correct) order. Write operations that are not potentially causally related may be seen by
different processes in different orders. Note that "correct order" means that if a write
operation (w2) is causally related to another write operation (Wi), the acceptable order is
(WI' w2) because the value written by W2 might have been influenced in some way by the
value written by WI' Therefore, (w2' WI) is not an acceptable order.

240 Chap. 5 • Distributed Shared Memory

Obviously, in the implementation of a shared-memory system supporting the causal
consistency model, there is a need to keep track of which memory reference operation is
dependent on which other memory reference operations. This can be done by constructing
and maintaining a dependency graph for the memory access operations.

Pipelined Random-Access Memory Consistency Model

The pipelined random-access memory (PRAM) consistency model, proposed by Lipton
and Sandberg [1988], provides a weaker consistency semantics than the consistency
models described so far. It only ensures that all write operations performed by a single
process are seen by all other processes in the order in which they were performed as if all
the write operations performed by a single process are in a pipeline. Write operations
performed by different processes may be seen by different processes in different orders.
For example, if WIl and Wl2 are two write operations performed by a process PI in that
order, and w21 and W22 are two write operations performed by a process P2 in that order,
a process P3 may see them in the order [(WI I, WI2), (W21' W2Z)] and another process P4
may see them in the order [(wz., WZ2), (WIJ' w,z)].

The PRAM consistency model is simple and easy to implement and also has good
performance. It can be implemented by simply sequencing the write operations
performed at each node independently of the write operations performed on other
nodes. It leads to better performance than the previous models because a process need
not wait for a write operation performed by it to complete before starting the next one
since all write operations of a single process are pipelined. Notice that in sequential
consistency all processes agree on the same order of memory reference operations, but
in PRAM consistency all processes do not agree on the same order of memory
reference operations. Therefore, for the example given above, either [(WIl' WIZ), (WZlt

W22)] or [(W21, W22), (w J" W IZ)] is an acceptable ordering for sequential consistency
but not both. That is, unlike PRAM consistency, both processes P3 and P4 must agree
on the same order.

Processor Consistency Model

The processor consistency model, proposed by Goodman [1989], is very similar to the
PRAM consistency model with an additional restriction of memory coherence. That is, a
processor consistent memory is both coherent and adheres to the PRAM consistency
model. Memory coherence means that for any memory location all processes agree on the
same order of all write operations to that location. In effect, processor consistency ensures
that all write operations performed on the same memory location (no matter by which
process they are performed) are seen by all processes in the same order. This requirement
is in addition to the requirement imposed by the PRAM consistency model. Therefore, in
the example given for PRAM consistency, if WIZ and W22 are write operations for writing
to the same memory location x, all processes must see them in the same order-wlZ before
W22 or W22 before W12. This means that for processor consistency both processes P3 and
P4must see the write operations in the same order, which may be either [(WII' WIZ), (WZl'

W22)] or [(W21' W22), (Wll' WJ2)]. Notice that, for this example, processor consistency and

Sec. 5.6 • Consistency Models 241

sequential consistency lead to the same final result, but this may not be true for other
cases.

Weak Consistency Model

The weak consistency model, proposed by Dubois et a1. [1988], is designed to take
advantage of the following two characteristics common to many applications:

1. It is not necessary to show the change in memory done by every write operation
to other processes. The results of several write operations can be combined and sent to
other processes only when they need it. For example, when a process executes in a critical
section, other processes are not supposed to see the changes made by the process to the
memory until the process exits from the critical section. In this case, all changes made to
the memory by the process while it is in its critical section need be made visible to other
processes only at the time when the process exits from the critical section.

2. Isolated accesses to shared variables are rare. That is, in many applications, a
process makes several accesses to a set of shared variables and then no access at all to the
variables in this set for a long time.

Both characteristics imply that better performance can be achieved if consistency is
enforced on a group of memory reference operations rather than on individual memory
reference operations. This is exactly the basic idea behind the weak consistency model.

The main problem in implementing this idea is determining how the system can
know that it is time to show the changes performed by a process to other processes since
this time is different for different applications. Since there is no way for the system to
know this on its own, the programmers are asked to tell this to the system for their
applications. For this, a DSM system that supports the weak consistency model uses a
special variable called a synchronization variable. The operations on it are used to
synchronize memory. That is, when a synchronization variable is accessed by a process,
the entire (shared) memory is synchronized by making all the changes to the memory
made by all processes visible to all other processes. Note that memory synchronization in
a DSM system will involve propagating memory updates done at a node to all other nodes
having a copy of the same memory addresses.

For supporting weak consistency, the following requirements must be met:

1. All accesses to synchronization variables must obey sequential consistency
semantics.

2. All previous write operations must be completed everywhere before an access to
a synchronization variable is allowed.

3. All previous accesses to synchronization variables must be completed before
access to a nonsynchronization variable is allowed.

Note that the weak consistency model provides better performance at the cost of
putting extra burden on the programmers.

242 Chap. 5 • Distributed Shared Memory

Release Consistency Model

We saw that in the weak consistency model the entire (shared) memory is synchronized
when a synchronization variable is accessed by a process, and memory synchronization
basically involves the following operations:

1. All changes made to the memory by the process are propagated to other nodes.

2. All changes made to the memory by other processes are propagated from other
nodes to the process's node.

A closer observation shows that this is not really necessary because the first
operation need only be performed when the process exits from a critical section and
the second operation need only be performed when the process enters a critical section.
Since a single synchronization variable is used in the weak consistency model, the
system cannot know whether a process accessing a synchronization variable is entering
a critical section or exiting from a critical section. Therefore, both the first and second
operations are performed on every access to a synchronization variable by a process.
For better performance, the release consistency model [Gharachorloo et al. 1990]
provides a mechanism to clearly tell the system whether a process is entering a critical
section or exiting from a critical section so that the system can decide and perform only
either the first or the second operation when a synchronization variable is accessed by
a process. This is achieved by using two synchronization variables (called acquire and
release) instead of a single synchronization variable. Acquire is used by a process to
tell the system that it is about to enter a critical section, so that the system performs
only the second operation when this variable is accessed. On the other hand, release
is used by a process to tell the system that it has just exited a critical section, so that
the system performs only the first operation when this variable is accessed. Pro­
grammers are responsible for putting acquire and release at suitable places in their
programs.

Release consistency may also be realized by using the synchronization mechanism
based on barriers instead of critical sections. A barrier defines the end of a phase of
execution of a group of concurrently executing processes. All processes in the group must
complete their execution up to a barrier before any process is alJowed to proceed with its
execution following the barrier. That is, when a process of a group encounters a barrier
during its execution, it blocks until all other processes in the group complete their
executions up to the barrier. When the last process completes its execution up to the
barrier, all shared variables are synchronized and then all processes resume with their
executions. Therefore, acquire is departure from a barrier, and release is completion of the
execution of the last process up to a barrier.

A barrier can be implemented by using a centralized barrier server. When a barrier
is created, it is given a count of the number of processes that must be waiting on it before
they can all be released. Each process of a group of concurrently executing processes
sends a message to the barrier server when it arrives at a barrier and then blocks until a
reply is received from the barrier server. The barrier server does not send any replies until
all processes in the group have arrived at the barrier.

Sec. 5.6 • Consistency Models

For supporting release consistency, the following requirements must be met:

243

1. All accesses to acquire and release synchronization variables obey processor
consistency semantics.

2. All previous acquires performed by a process must be completed successfully
before the process is allowed to perform a data access operation on the
memory.

3. All previous data access operations performed by a process must be completed
successfully before a release access done by the process is allowed.

Note that acquires and releases of locks of different critical regions (or barriers) can
occur independently of each other. Gharachorloo et al. [1990] showed that if processes use
appropriate synchronization accesses properly, a release consistent DSM system will
produce the same results for an application as that if the application was executed on a
sequentially consistent DSM system.

A variation of release consistency is lazy release consistency, proposed by Keleher et
al. [1992], and is more efficient than the conventional release consistency. In the
conventional approach, when a process does a release access, the contents of all the
modified memory locations at the process's node are sent to all other nodes that have a
copy of the same memory locations in their local cache. However, .in the lazy approach,
the modifications are not sent to other nodes at the time of release. Rather, these
modifications are sent to other nodes only on demand. That is, when a process does an
acquire access, all modifications of other nodes are acquired by the process's node.
Therefore, the modifications that were to be sent to this node at the time of release access
will be received by the node now (exactly when it is needed there). Lazy release
consistency has better performance because in this method no network traffic is generated
at all until an acquire access is done by a process at some other node.

Discussion of Consistency Models

In the description above, we saw some of the main consistency models. Several others have
been proposed in the literature. A nice overview of the consistency models can be found in
[Mosberger 1993]. It is difficult to grade the consistency models based on performance
because quite different results are usually obtained for different applications. That is, one
application may have good performance for one model, but another application may have
good performance for some other model. Therefore, in the.design of a DSM system, the
choice of a consistency model usually depends on several other factors, such as how easy is
it to implement, how close is its semantics to intuition, how much concurrency does it allow,
and how easy is it to use (does it impose extra burden on the programmers).

Among the consistency models described above, strict consistency is never used in
the design of a DSM system because its implementation is practically impossible. The
most commonly used model in DSM systems is the sequential consistency model because
it can be implemented, it supports the most intuitively expected semantics for memory
coherence, and it does not impose any extra burden on the programmers. Another

244 Chap. 5 • Distributed Shared Memory

important reason for its popularity is that a sequentially consistent DSM system allows
existing multiprocessor programs to be run on multicomputer architectures without
modification. This is because programs written for multiprocessors normally assume that
memory is sequentially consistent. However, it is very restrictive and hence suffers from
the drawback of low concurrency. Therefore, several DSM systems are designed to use
other consistency models that are weaker than sequential consistency.

Causal consistency, PRAM consistency, processor consistency, weak consistency,
and release consistency are the main choices in the weaker category. The main problem
with the use of causal consistency, PRAM consistency, and processor consistency models
in the design of a DSM system is that they do not support the intuitively expected
semantics for memory coherence because different processes may see different sequences
of operations. Therefore, with these three models it becomes the responsibility of the
programmers to avoid doing things that work only if the memory is sequentially
consistent. In this respect, these models impose extra burden on the programmers.

Weak consistency and release consistency models, which use explicit synchroniza­
tion variables, seem more promising for use in DSM design because they provide better
concurrency and also support the intuitively expected semantics. The only problem with
these consistency models is that they require the programmers to use the synchronization
variables properly. This imposes some burden on the programmers.

Note that one of the main reasons for taking all the trouble to implement aD5M
system is to support the shared-memory paradigm to make programming of distributed
applications simpler than in the message-passing paradigm. Therefore, some DSM system
designers are of the opinion that no extra burden should be imposed on the programmers.
Designers having this view prefer to use the sequential consistency model.

5.6. 1 Implam.ntlng Sequential Conslst.ncy Model

We saw above that the most commonly used consistency model in DSM systems is the
sequential consistency model. Hence, a description of the commonly used protocols for
implementing sequentially consistent D5M systems is presented below. A protocol for
implementing a release-consistent DSM system will be presented in the next section.

Protocols for implementing the sequential consistency model in a DSM system
depend to a great extent on whether the DSM system allows replication and/or migration
of shared-memory data blocks. The designer of a DSM system may choose from among
the following replication and migration strategies [Stumm and Zhou 1990]:

1. Nonreplicated, nonmigrating blocks (NRNMBs)

2. Nonreplicated, migrating blocks (NRMBs)

3. Replicated, migrating blocks (RMBs)

4. Replicated, nonmigrating blocks (RNMBs)

The protocols that may be used for each of these categories are described below. The
data-locating mechanisms suitable for each category have also been described. Several of
the ideas presented below were first proposed and used in the IVY system [Li 1988].

Sec. 5.6 • Consistency Models 245

Nonreplicated, Nonmigrating Blocks

This is the simplest strategy for implementing a sequentially consistent DSM system.
In this strategy, each block of the shared memory has a single copy whose location is
always fixed. All access requests to a block from any node are sent to the owner node
of the block, which has the only copy of the block. On receiving a request from a client
node, the memory management unit (MMU) and operating system software of the
owner node perform the access request on the block and return a response to the client
(Fig. 5.3).

Client node
(sends request and
receives response)

Request

Owner node of the block
(receives request, performs data
access, and sends response)

Response

Fig. 5.3 Nonreplicated, nonmigrating blocks (NRNMB) strategy.

Enforcing sequential consistency is trivial in this case because a node having a shared
block can merely perform all the access requests (on the block) in the order it receives
them.

Although the method is simple and easy to implement, it suffers from the following
drawbacks:

• Serializing data access creates a bottleneck.

• Parallelism, which is a major advantage of DSM, is not possible with this
method.

Data Locating in the NRNMB Strategy. The NRNMB strategy has the
following characteristics:

1. There is a single copy of each block in the entire system.

2. The location of a block never changes.

Based on these characteristics, the best approach for locating a block in this case is
to use a simple mapping function to map a block to a node. When a fault occurs, the fault
handler of the faulting node uses the mapping function to get the location of the accessed
block and forwards the access request to that node.

246 Chap. 5 • Distributed Shared Memory

Nonreplicated, Migrating Blocks

In this strategy each block of the shared memory has a single copy in the entire system.
However, each access to a block causes the block to migrate from its current node to the
node from where it is accessed. Therefore, unlike the previous strategy in which the owner
node of a block always remains fixed, in this strategy the owner node of a block changes
as soon as the block is migrated to a new node (Fig. 5.4). When a block is migrated away,
it is removed from any local address space it has been mapped into. Notice that in this
strategy only the processes executing on one node can read or write a given data item at
anyone time. Therefore the method ensures sequential consistency.

Client node
(becomes new owner node of
block after its migration)

Owner node
(owns the block before
its migration)

Block request

0= =0
Block migration

Fig.5.4 Nonreplicated, migrating blocks (NRMB) strategy.

The method has the following advantages [Stumm and Zhou 1990]:

1. No communication costs are incurred when a process accesses data currently held
locally.

2. It allows the applications to take advantage of data access locality. If an
application exhibits high locality of reference, the cost of data migration is
amortized over multiple accesses.

However, the method suffers from the following drawbacks:

1. It is prone to thrashing problem. That is, a block may keep migrating frequently
from one node to another, resulting in few memory accesses between migrations
and thereby poor performance.

2. The advantage of parallelism cannot be availed in this method also.

Data Locating in the NRMB Strategy. In the NRMB strategy, although there
is a single copy of each block, the location of a block keeps changing dynamically.
Therefore, one of the following methods may be used in this strategy to locate a block:

1. Broadcasting. In this method, each node maintains an owned blocks table that
contains an entry for each block for which the node is the current owner (Fig. 5.5). When

Sec. 5.6 • Consistency Models

Node 1

Node boundary

Node I

Node boundary

NodeAt

247

Block address
(changes dynamically)

Contains an entry for
each block for which

this node is the current
owner

Owned blocks table

Block address
(changes dynamically)

Contains an entry for
each block for which

this node is the current
owner

Owned blocks table

Block address
(changes dynamically)

Contains an entry for
each block for which

this node ;s the current
owner

Owned blocks table

Fig. 5.5 Structure and locations of owned blocks table in the broadcasting

data-locating mechanism for NRMB strategy.

a fault occurs, the fault handler of the faulting node broadcasts a read/write request on the
network. The node currently having the requested block then responds to the broadcast
request by sending the block to the requesting node.

A major disadvantage of the broadcasting algorithm is that it does not scale well.
When a request is broadcast, not just the node that has the requested block but all nodes
must process the broadcast request. This makes the communication subsystem a potential
bottleneck. The network latency of a broadcast may also require accesses to take a long
time to complete.

2. Centralized-server algorithm. In this method, a centralized server maintains a
block table that contains the location information for all blocks in the shared-memory
space (Fig. 5.6). The location and identity of the centralized server is well known to all
nodes.

When a fault occurs, the fault handler of the faulting node (N) sends a request for the
accessed block to the centralized server. The centralized server extracts the location
information of the requested block from the block table, forwards the request to that node,
and changes the location information in the corresponding entry of the block table to node
N. On receiving the request, the current owner transfers the block to node N, which
becomes the new owner of the block.

The centralized-server method suffers from two drawbacks: (a) the centralized server
serializes location queries, reducing parallelism, and (b) the failure of the centralized
server will cause the DSM system to stop functioning.

3. Fixed distributed-server algorithm. The fixed distributed-server scheme is a direct
extension of the centralized-server scheme. It overcomes the problems of the centralized­
server scheme by distributing the role of the centralized server. Therefore, in this scheme,
there is a block manager on several nodes, and each block manager is given a

248

Node 1

Nodeboundary

Node I

Nodeboundary

Node If

Chap. 5 • Distributed Shared Memory

Block Owner
address node
(remains (changes
fixed) dynamically)

Contains an entryfor
eachblockin theshared-

memory space

Blocktable

Centralized server Fig. 5.6 Structure and location of block table
in the centralized-server data­
locating mechanism for NRMB
strategy.

predetermined subset of data blocks to manage (Fig. 5.7). The mapping from data blocks
to block managers and their corresponding nodes is described by a mapping function.
Whenever a fault occurs, the mapping function is used by the fault handler of the faulting
node to find out the node whose block manager is managing the currently accessed block.
Then a request for the block is sent to the block manager of that node. The block manager
handles the request exactly in the same manner as that described for the centralized-server
algorithm.

Nodeboundary

Node 1 Node I

Nodeboundary

Node If

Block Owner
address node
(remains (changes
fixed) dynamically)

Contains entriesfor a
fixedsubsetof all blocks
in the shared-memory

space

Blocktable
Blockmanager

Block Owner
address node
(remains (changes
fixed) dynamically)

Contains entriesfor a
fixedsubsetof all blocks
in the shared-memory

space

Blocktable
Blockmanager

Block Owner
address node
(remains (changes
fixed) dynamically)

Contains entries for a
fixedsubset of all blocks
in the shared-memory

space

Blocktable
Blockmanager

Flg.5.7 Structure and locations of block table in the fixed distributed-server
data-locating mechanism for NRMB strategy.

Sec. 5.6 • Consistency Models 249

4. Dynamic distributed-server algorithm. This scheme does not use any block
manager and attempts to keep track of the ownership information of all blocks in each
node. For this, each node has a block table that contains the ownership information for all
blocks in the shared-memory space (Fig. 5.8). However, the information contained in the
ownership field is not necessarily correct at all times, but if incorrect, it at least provides
the beginning of a sequence of nodes to be traversed to reach the true owner node of a
block. Therefore, this field gives the node a hint on the location of the owner of a block
and hence is called the probable owner.

Node 1

Nodeboundary

Node I

Nodeboundary

NodeM

Block Probable
address node
(remains (changes
fixed) dynamically)

Containsan entry for
eachblock in the shared-

memoryspace

Blocktable

Block Probable
address node
(remains (changes
fixed) dynamically)

Containsan entry for
eachblock in the shared-

memoryspace

Blocktable

Block Probable
address node
(remains (changes
fixed) dynamically)

Containsan entryfor
eachblock in the shared-

memoryspace

Blocktable

(f'ig. 5.8 Structure and locations of block table in the dynamic distributed-server
data-locating mechanism for NRMB strategy.

When a fault occurs, the faulting node (N) extracts from its local block table the node
information stored in the probable owner field of the entry for the accessed block. It then
sends a request for the block to that node. If that node is the true owner of the block, it
transfers the block to node N and updates the location information of the block in its local
block table to node N. Otherwise, it looks up its local block table, forwards the request to
the node indicated in the probable-owner field of the entry for the block, and updates the
value of this field to node N. When node N receives the block, it becomes the new owner
of the block.

Replicated, Migrating Blocks

A major disadvantage of the nonreplication strategies is lack of parallelism because only
the processes on one node can access data contained in a block at any given time. To
increase parallelism, virtually all DSM systems replicate blocks. With replicated blocks,
read operations can be carried out in parallel at multiple nodes by accessing the local copy
of the data. Therefore, the average cost of read operations is reduced because no

250 Chap. 5 • Distributed Shared Memory

communication overhead is involved if a replica of the data exists at the local node.
However, replication tends to increase the cost of write operations because for a write to
a block all its replicas must be invalidated or updated to maintain consistency.
Nevertheless, if the read/write ratio is large, the extra expense for the write operations may
be more than offset by the lower average cost of the read operations.

Replication complicates the memory coherence protocol due to the requirement of
keeping multiple copies of a block consistent. The two basic protocols that may be used
for ensuring sequential consistency in this case are as follows:

1. Write-invalidate. In this scheme, aJl copies of a piece of data except one are
invalidated before a write can be performed on it. Therefore, when a write fault occurs
at a node, its fault handler copies the accessed block from one of the block's current
nodes to its own node, invalidates all other copies of the block by sending an invalidate
message containing the block address to the nodes having a copy of the block, changes
the access of the local copy of the block to write, and returns to the faulting instruction
(Fig. 5.9). After returning, the node "owns" that block and can proceed with the write
operation and other read/write operations until the block ownership is relinquished to
some other node. Notice that in this method, after invalidation of a block, only the node
that performs the write operation on the block holds the modified version of the block.

Nodeshavingvalidcopies
of the data brock before
writeoperation

ellenlnode
(hasthe validcop~
of the datablockafter
writeoperation)

Fig.5.9 Write-invalidate memory coherence approach for replicated. migrating
blocks (RMB) strategy.

Sec. 5.6 • Consistency Models 251

If one of the nodes that had a copy of the block before invalidation tries to perform
a memory access operation (read/write) on the block after invalidation, a cache miss
will occur and the fault handler of that node will have to fetch the block again from
a node having a valid copy of the block. Therefore the scheme achieves sequential
consistency.

2. Write-update. In this scheme, a write operation is carried out by updating all
copies of the data on which the write is performed. Therefore, when a write fault occurs
at a node, the fault handler copies the accessed block from one of the block's current nodes
to its own node, updates all copies of the block by performing the write operation on the
local copy of the block and sending the address of the modified memory location and its
new value to the nodes having a copy of the block, and then returns to the faulting
instruction (Fig. 5.10). The write operation completes only after all the copies of the block
have been successfully updated. Notice that in this method, after a write operation
completes, all the nodes that had a copy of the block before the write also have a valid
copy of the block after the write. In this method, sequential consistency can be achieved
by using a mechanism to totally order the write operations of all the nodes so that all
processes agree on the order of writes. One method to do this is to use a global sequencer
to sequence the write operations of all nodes. In this method, the intended modification of
each write operation is first sent to the global sequencer. The sequencer assigns the next

Nodeshavingvalid copies
of the data block both beforeand
after write operation

Client node
(also has a valid copy
of the data block after
writeoperation)

Fig. S.10 Write-update memory coherence approach for replicated, migrating
blocks (RMB) strategy.

252 Chap. 5 • Distributed Shared Memory

sequence number to the modification and multicasts the modification with this sequence
number to all the nodes where a replica of the data block to be modified is located (Fig.
5.11). The write operations are processed at each node in sequence number order. That is,
when a new modification arrives at a node, its sequence number is verified as the next
expected one. If the verification fails, either a modification was missed or a modification
was received out of order, in which case the node requests the sequencer for a
retransmission of the missing modification. Obviously, a log of recent write requests must
be maintained somewhere in this method. Note that the set of reads that take place
between any two consecutive writes is well defined, and their ordering is immaterial to
sequential consistency.

OthernodeshaVing
a replicaof the
data block

Client node
(has a replica
of the data block)

Sequenced
modification

Sequenced 0
modification

Fig. 5.11 Global sequencing mechanism to sequence the write operationsof all nodes.

The write-update approach is very expensive for use with loosely coupled
distributed-memory systems because it requires a network access on every write operation
and updates all copies of the modified block. On the other hand, in the write-invalidate
approach, updates are only propagated when data are read, and several updates can take
place (because many programs exhibit locality of reference) before communication is
necessary. Therefore, most DSM systems use the write-invalidate protocol. In the basic
implementation approach of the write-invalidate protocol, there is a status tag associated
with each block. The status tag indicates whether the block is valid, whether it is shared,
and whether it is read-only or writable. With this status information, read and write
requests are carried out in the following manner [Nitzberg and Virginia Lo 1991]:

Sec. 5.6 • Consistency Models 253

Read Request

1. If there is a local block containing the data and if it is valid, the requestis satisfied
by accessing the local copy of the data.

2. Otherwise, the fault handler of the requesting node generates a read fault and
obtains a copy of the block from a node having a valid copy of the block. If the
block was writable on another node, this read request will cause it to become read­
only. The read request is now satisfied by accessing the data from the local block,
which remains valid until an invalidate request is received.

Write Request

1. If there is a local block containing the data and if it is valid and writable, the
request is immediately satisfied by accessing the local copy of the data.

2. Otherwise, the fault handler of the requesting node generates a write fault and
obtains a valid copy of the block and changes its status to writable. A write fault
for a block causes the invalidation of all other copies of the block. When the
invalidation of all other copies of the block completes, the block is valid locally
and writable, and the original write request may now be performed.

Data Locating in the RMB Strategy. The following data-locating. issues are
involved in the write-invalidate protocol used with the RMB strategy:

1. Locating the owner of a block. An owner of a block is the node that owns the
block, namely, the most recent node to have write access to it.

2. Keeping track of the nodes that currently have a valid copy of the block.

One of the following algorithms may be used to address these two issues:

1. Broadcasting. In this method, each node has an owned blocks table (Fig. 5.12).
This table of a node has an entry for each block for which the node is the owner. Each
entry of this table has a copy-set field that contains a list of nodes that currently have
a valid copy of the corresponding block.

When a read fault occurs, the faulting node (N) sends a broadcast read request
on the network to find the owner of the required block. The owner of the block
responds by adding node N to the block's copy-set field in its owned blocks table
and sending a copy of the block to node N. Similarly, when a write fault occurs, the
faulting node sends a broadcast write request on the network for the required block.
On receiving this request, the owner of the block relinquishes its ownership to node
N and sends the block and its copy set to node N. When node N receives the block
and the copy set, it sends an invalidation message to all nodes in the copy set. Node
N now becomes the new owner of the block, and therefore an entry is made for the
block in its local-owned blocks table. 'The copy-set field of the entry is initialized to
indicate that there are no other copies of the block since all the copies were
invalidated.

254

Node 1

Node boundary

Node I

Chap. 5 • Distributed Shared Memory

Node boundary

NodeM

Block Copy-set
address (changes
(changes dynamically
dynamically)

Containsan entry for
each block for which

this node is the owner

Owned blocks table

Block Copy-set
address (changes
(changes dynamically)
dynamically)

Containsan entry for
each block for which

this node is the owner

Owned blocks table

Block ~opy-set
address (changes
(changes ~ynamically)
dynamically)

Containsan entry for
each block for which

this node is the owner

Ownedblocks table

Fig. 5.12 Structure and locations of owned blocks table in the broadcasting
data-locating mechanism for RMB strategy.

The method of broadcasting suffers from the disadvantages mentioned during
the description of the data-locating mechanisms for the NRMB strategy.

2. Centralized-server algorithm. This method is similar to the centralized-server
algorithm of the NRMB strategy. However, in this case, each entry of the block table,
managed by the centralized server, has an owner-node field that indicates the current
owner node of the block and a copy-set field that contains a list of nodes having a valid
copy of the block (Fig. 5.13).

When a read/write fault occurs, the faulting node (N) sends a read/write fault request
for the accessed block to the centralized server. For a read fault, the centralized server adds
node N to the block's copy set and returns the owner node information to node N. On the
other hand, for a write fault, it returns both the copy set and owner node information to
node N and then initializes the copy-set field to contain only node N. Node N then sends
a request for the block to the owner node. On receiving this request, the owner node
returns a copy of the block to node N. In a write fault, node N also sends an invalidate
message to all nodes in the copy set. Node N can then perform the read/write
operation.

The disadvantages of the centralized-server algorithm have already been mentioned
during description of the data-locating mechanisms for the NRMB strategy.

3. Fixed distributed-server algorithm. This scheme is a direct extension of the
centralized-server scheme. In this scheme, the role of the centralized server is distributed
to several distributed servers. Therefore, in this scheme, there is a block manager on
several nodes (Fig. 5.14). Each block manager manages a predetermined subset of blocks,
and a mapping function is used to map a block to a particular block manager and its
corresponding node. When a fault occurs, the mapping function is used to find the location
of the block manager that is managing the currently requested block. Then a request for

Sec. 5.6 • Consistency Models

Node boundary

Node 1 Node I
Node boundary

Node If

255

Block
OwnernodeCopy-setaddress

(remains (changes (changes

fixed) dynamically) dynamically~

Contains an entryfor eachblock
in the shared-memory space

Blocktable

Fig. 5.13 Structure and location of block table in the centralized-server data-locating
mechanism for RMB strategy.

the accessed block is sent to the block manager of that node. A request is handled in
exactly the same manner as that described for the centralized-server algorithm.

The advantages and limitations of the fixed distributed-server algorithm have already
been mentioned during the description of the data-locating mechanisms for the NRMB
strategy.

Node 1

Nodeboundary
Node;

Nodeboundary

NodeM

Block
Ownernode Copy-setaddress

(remains (changes (changes

fixed) dynamicaUy) dynamicafly~

Containsentriesfor a fixed
subsetof all blocksin the

shared-memory space

Blocktable

Block manager

Block
Ownernode Copy-setaddress

(remains (changes (changes

fixed) dynamicaUy} dynamicaffy~

Containsentriesfor a fixed
subsetof all blocks in the
shared-memory space

Blocktable

Blockmanager

Block
Ownernode~opy-setaddress

(remains (changes Kchanges
fixed) dynamically)~ynamica"y)

Contains entriesfor a fixed
subsetof all blocksin the

shared-memory space

Blocktable

Blockmanager

Fig. 5.]4 Structure and locations of block table in the fixed distributed-server
data-locating mechanism for RMB strategy.

256 Chap. 5 • Distributed Shared Memory

4. Dynamic distributed-server algorithm. This scheme works in a similar manner
as the dynamic distributed-server algorithm of the NRMB strategy. Each node has a
block table that contains an entry for all blocks in the shared-memory space (Fig. 5.15).
Each entry of the table has a probable-owner field that gives the node a hint on the
location of the owner of the corresponding block. In addition, if a node is the true
owner of a block, the entry for the block in the block table of the node also contains
a copy-set field that provides a list of nodes having a valid copy of the block.

Node 1

Node boundary
Node;

Node boundary

NodeM

Block Probable
Copy-setaddress owner

(remains (changes (changes

fiXed) dynamically) dynamically)

An entryhas
Containsan a value in
entryfor each this field only
block in the if this nodeis
shared-memory the true owner
space of the

corresponding

block

Block table

Block Probable
Copy-set.ddress owner

(remains (changes (changes

~ixed) dynamically) dynamically)

An entryhas
Contains an a value in
entryfor each this field only
block in the if this nodeis
shared-memory the true owner
space oftha

corresponding

block

Block table

Block Probable
Copy-setaddress owner

(remains (changes (changes

fixed) dynamically) dynamically)

An entryhas
Contains an a value in
entryfor each this field only
block in the if this node is
shared-memory the true owner
space of the

corresponding
block

Block table

Fig. 5.15 Structure and locations of block table in the dynamic distributed-server
data-locating mechanism for RMB strategy.

When a fault occurs, the fault handler of the faulting node (N) extracts the probable­
owner node information for the accessed block from its local block table and sends a
request for the block to that node. If that node is not the true owner of the block, it looks
up its local block table and forwards the request to the node indicated in the probable...
owner field of the entry for the block. On the other hand, if the node is the true owner of
the block, it proceeds with the request as follows. For a read fault, it adds node N in the
copy-set field of the entry corresponding to the block and sends a copy of the block to
node N, which then performs the read operation. For a' write fault, it sends a copy of the
block and its copy-set information to node N and deletes the copy-set information of that
block from the local block table, On receiving the block and copy-set information, node
N sends an invalidation request to all nodes in the copy set. After this, it becomes the new
owner of the block, updates its local block table, and proceeds with performing the write
operation.

Sec. 5.6 • Consistency Models 257

To reduce the length of the chain of nodes to be traversed to reach the true owner of
a block, the probable-owner field of a block in a node's block table is updated as follows
[Li and Hudak 1989]:

(a) Whenever the node receives an invalidation request

(b) Whenever the node relinquishes ownership, that is, on a write fault

(c) Whenever the node forwards a fault request

In the first two cases, the probable-owner field is changed to the new owner of the
block. In the third case, the probable-owner field is changed to the original faulting node
(N). This is because, if the request is for write, the faulting node (N) is going to be the new
owner. If the request is for read, we know that after the request is satisfied, the faulting
node (N) will have the correct ownership information. In either case, it is a good idea to
change the probable-owner field of the block to node N.

It has been proved in [Li and Hudak 1989] that a fault on any node for a block
eventually reaches the true owner of the block, and if there are altogether M nodes, it will
take at most M - 1 messages to locate the true owner of a block.

Some refinements of the data-locating algorithms described above may be found in
[Li and Hudak 1989].

Replicated, Nonmigrating Blocks

In this strategy, a shared-memory block may be replicated at multiple nodes of the
system, but the location of each replica is fixed. A read or write access to a memory
address is carried out by sending the access request to one of the nodes having a
replica of the block containing the memory address. All replicas of a block are kept
consistent by updating them all in case of a write access. A protocol similar to the
write-update protocol is used for this purpose. Sequential consistency is ensured by
using a global sequencer to sequence the write operations of all nodes (Fig. 5.11).

Data Locating in the RNMB Strategy. The RNMB strategy has the following
characteristics:

1. The replica locations of a block never change.

2. All replicas of a data block are kept consistent.

3. Only a read request can be directly sent to one of the nodes having a replica of the
block containing the memory address on which the read request is performed and
all write requests have to be first sent to the sequencer.

Based on these characteristics, the best approach of data locating for handling read!
write operations in this case is to have a block table at each node and a sequence table
with the sequencer (Fig. 5.16). The block table of a node has an entry for each block
in the shared memory. Each entry maps a block to one of its replica locations. The
sequence table also has an entry for each block. in the shared-memory space. Each entry
of the sequence table has three fields-a field containing the block address, a replica-

258

Node 1

Nodeboundary

Node;

Chap. 5 • Distributed Shared Memory

Nodeboundary

NodeM

Block Replica
address node
(remains (remains
fixed) fixed)

Contains an entry
for eachblock in

the shared-memory
space

Block Replica
address node
(remains (remains
fixed) fixed)

Contains an entry
for eachblock in

the shared-memory
space

Block Replica
address node
(remains (remains
fixed) fixed)

Containsan entry
for eachblock in

the shared-memory
space

Blocktable Blocktable Block table

Block Replica Sequence
address set number(is
f.remains lremains Incremented
IXed) ixed) by onefor

eve':Y. new
modification
in theblock)

Contains an entry
for each block in

the shared-memory
space

Sequence table

Centralized sequencer

Fig. 5.16 Structure and locations of block table and sequence table in the centralized
sequencer data-locating mechanism for RNMB strategy.

set field containing a list of nodes having a replica of the block, and a sequence number
field that is incremented by I for every new modification performed on the block.

For performing a read operation on a block, the replica location of the block is
extracted from the local block table and the read request is directly sent to that node.
A write operation on a block is sent to the sequencer. The sequencer assigns the next
sequence number to the requested modification. It then multicasts the modification
with this sequence number to all the nodes listed in the replica-set field of the entry
for the block. The write operations are performed at each node in sequence" number
order.

Note that, to prevent all read operations on a block getting serviced at the same
replica node, as far as practicable, the block table of different nodes should have
different replica locations entered in the entry corresponding to the block. This will help
in evenly distributing the read operations on the same block emerging from different
nodes.

Sec. 5.6 • Consistency Models

5.6.2 Munin: ARelease Consistent DSM System

259

We saw in the discussion of consistency models that in addition to sequential consistency,
release consistency is also promising and attractive for use in DSM systems. Therefore, as a
case study ofa release consistent DSM system, a description of the Munin system is
presented below [Bennett et al. 1990, Carter et al. 1991, Carter et al. 1994].

Structure of Shared-Memory Space

The shared-memory space of Munin is structured as a collection of shared variables
(includes program data structures). The shared variables are declared with the keyword
shared so the compiler can recognize them. A programmer can annotate a shared variable
with one of the standard annotation types (annotation types for shared variables are
described later). Each shared variable, by default, is placed by the compiler on a separate
page that is the unit of data transfer across the network by the MMU hardware. However,
programmers can specify that multiple shared variables having the same annotation type be
placed in the same page. Placing of variables of different annotation types in the same page
is not allowed because the consistency protocol used for a page depends on the annotation
type of variables contained in the page. Obviously, variables of size larger than the size of a
page occupy multiple pages. The shared variables are declared with the keyword shared so
the compiler can recognize them.

Implementation of Release Consistency

In the description of release consistency, we saw that for release consistency applications
must be modeled around critical sections. Therefore a DSM system that supports release
consistency must have mechanisms and programming language constructs for critical
sections. Munin provides two such synchronization mechanisms-a locking mechanism
and a barrier mechanism.

The locking mechanism uses lock synchronization variables with acquirel.ock and
releaseLock primitives for accessing these variables. The acquirel.ock primitive with a lock
variable as its parameter is executed by a process to enter a critical section, and the
releaseLock primitive with the same lock variable as its parameter is executed by the
process to exit from the critical section. To ensure release consistency, write operations on
shared variables must be performed only within critical sections, but read operations on
shared variables may be performed either within or outside a critical section. Modifications
made to a shared variable within a critical section are sent to other nodes having a replica of
the shared variable only when the process making the update exits from the critical section.
If programs of an application are properly structured as described above, the DSM system
will appear to be sequentially consistent.

When a process makes an acquirel.ock request for acquiring a lock variable, the system
first checks if the lock variable is available on the local node. If not, the probable-owner
mechanism is used to find the location of the current owner of the lock variable, and the
request is sent to that node. Whether the lock is on the local or remote node, if it is free, it is
granted to the requesting process. Otherwise, the requesting process is added to the end of

Chap. 5 • Distributed Shared Memory

the queue of processes waiting to acquire the lock variable. When the lock variable is
released by its currentowner,it is given to the next process in the waitingqueue.

The barrier mechanism uses barrier synchronization variables with a waitAtBarrier
primitive for accessing these variables. Barriers are implemented by using the centralized
barrier server mechanism.

In a network page fault, the probable-owner-based dynamic distributed-server
algorithm (already describedduring the descriptionof RMB strategy) is used in Munin to
locate a page containingthe accessedsharedvariable. A mechanism similar to the copy-set
mechanism(alsodescribedduring the description ofRMB strategy)is used to keep trackof
all the replica locationsof a page.

Annotations for Shared Variables

The release consistencyof Munin allows applications to have better performancethan in a
sequentiallyconsistentDSMsystem.For furtherperformance improvement, Munindefines
several standardannotationsfor shared variablesand uses a differentconsistencyprotocol
for each type that is most suitable for that type. That is, consistency protocols in this
approach are applied at the granularityof individualdata items. The standard annotations
and the consistencyprotocolfor variablesof each type are as follows[Bennettet a1. 1990]:

I. Read-only. Shared-datavariablesannotatedas read-onlyare immutabledata items.
These variables are read but never written after initialization. Therefore, the question of
consistencycontroldoes not arise.As thesevariablesare nevermodified, theiraverageread
cost can be reduceddrasticallyby freelyreplicatingthem on all nodes from where they are
accessed. Therefore, when a reference to such a variablecauses a network page fault, the
page having the variableis copied to the faultingnodefromoneof the nodesalreadyhaving
a copyof the page.Read-onlyvariablesare protectedby theMMUhardware,andan attempt
to write to such a variablecauses a fatal error.

2. Migratory. Shared variables that are accessed in phases, where each phase
corresponds to a series of accesses by a single process, may be annotated as migratory
variables.The locking mechanism is used to keep migratory variablesconsistent. That is,
migratory variables are protected by lock synchronization variables and are used within
critical sections.

Toaccess a migratoryvariable, a processfirst acquiresa lock for the variable,uses the
variablefor sometime,and thenreleasesthe lock whenit has finishedusingit.At a time,the
system allows only a singleprocess to acquirea lock for a migratoryvariable. If a network
page fault occurs when a process attempts to acquire a lock for a migratory variable, the
page is migrated to the faulting node from the node that is its current owner.The NRMB
strategy is used in this case. That is, pages migrate from one node to another on a demand
basis, but pages are not replicated. Therefore, only one copy of a page containing a
migratoryvariableexists in the system.

Migratoryvariablesare handledefficientlyby integratingtheir movementwith thatof
the lock associatedwith them.That is, the lock and the variableare sent togetherin a single
messageto the locationof the next process that is given the lock for accessingit.

Sec. 5.6 • Consistency Models 261

3. Write-shared. A programmer may use this annotation with a shared variable to
indicate to the system that the variable is updated concurrently by multiple processes, but
the processes do not update the same parts of the variable. For example, in a matrix,
different processes can concurrently update different row/column elements, with each
process updating only the elements of one row/column. Munin avoids the false sharing
problem of write-shared variables by allowing them to be concurrently updated by
multiple processes.

A write-shared variable is replicated on all nodes where a process sharing is located.
That is, when access to such a variable causes a network page fault to occur, the page
having the variable is copied to the faulting node from one of its current nodes. If the
access is a write access, the system first makes a copy of the page (called twin page) and
then updates the original page. The process may perform several writes to the page before
releasing it. When the page is released, the system performs a word-by-word comparison
of the original page and the twin page and sends the differences to all nodes having a
replica of the page.

When a node receives the differences of a modified page, the system checks if the
local copy of the page wasalso modified. If not, the local copy of the page is updated by
incorporating the received differences in it. On the other hand, if the local copy of the page
was also modified, the local copy, its twin, and the received differences are compared
word by word. If the same word has not been modified in both the local and remote copies
of the page, the words of the original local page are updated by using the differences
received from the remote node. On the other hand, if the comparison indicates that the
same word was updated in both the local and remote copies of the page, a conflict occurs,
resulting in a runtime error.

4. Producer-consumer. Shared variables that are written (produced) by only one
process and read (consumed) by a fixed set of other processes may be annotated to be of
producer-consumer type. Munin uses an "eager object movement" mechanism for this
type of variable. In this mechanism, a variable is moved from the producer's node to the
nodes of the consumers in advance of when they are required so that no network page fault
occurs when a consumer accesses the variable. Moreover, the write-update protocol is
used to update existing replicas of the variable whenever the producer updates the
variable. If desired, the producer may send several updates together by using the locking
mechanism. In this case, the procedure acquires a synchronization lock, makes several
updates on the variable, and then releases the lock when the variable or the updates are
sent to the nodes of consumer processes.

5. ResuLt. Result variables are just the opposite of producer-consumer variables in
the sense that they are written by multiple processes but read by only one process.
Different processes write to different parts of the variable that do not conflict. The variable
is read only when all its parts have been written. For example, in an application there may
be different "worker" processes to generate and fill the elements of each row/column of
a matrix, and once the matrix is complete, it may be used by a "master" process for further
processing.

Munin uses a special write-update protocol for result variables in which updates are
sent only to the node having the master process and not to all replica locations of the

262 Chap. 5 • Distributed Shared Memory

variable (each worker process node has a replica of the variable). Since writes to the
variable by different processes do not conflict, all worker processes are allowed to perform
write operations concurrently. Moreover, since result variables are not read until all parts
have been written, a worker process releases the variable only when it has finished writing
all parts that it is supposed to write, when all updates are sent together in a single message
to the master process node.

6. Reduction. Shared variables that must be atomically modified may be anno­
tated to be of reduction type. For example, in a parallel computation application, a
global minimum must be atomically fetched and modified if it is greater than the
local minimum. In Munin, a reduction variable is always modified by being locked
(acquire lock), read, updated, and unlocked (release lock). For better performance, a
reduction variable is stored at a fixed owner that receives updates to the variable
from other processes, synchronizes the updates received from different processes,
performs the updates on the variable, and propagates the updated variable to its
replica locations.

7. Conventional. Shared variables that are not annotated as one of the above types
are conventional variables. The already described release consistency protocol of Munin
is used to maintain the consistency of replicated conventional variables. The write
invalidation protocol is used in this case to ensure that no process ever reads a stale
version of a conventional variable. The page containing a conventional variable is
dynamically moved to the location of a process that wants to perform a write operation on
the variable.

Experience with Munin has shown that read-only, migratory, and write-shared annotation
types are very useful because variables of these types are frequently used, but producer­
consumer, result, and reduction annotation types are of little use because variables of these
types are less frequently used.

5.7 REPLACEMENT STRATEGY

In DSM systems that allow shared-memory blocks to be dynamically migrated/replicated,
the following issues must be addressed when the available space for caching shared data
fills up at a node:

1. Which block should be replaced to make space for a newly required block?

2. Where should the replaced block be placed?

5.7.1 Which Ilock to lleplac.

The problem of replacement has been studied extensively for paged main memories and
shared-memory multiprocessor systems. The usual classification of replacement algo­
rithms group them into the following categories [Smith 1982]:

Sec. 5.7 • Replacement Strategy 263

1. Usage based versus non-usage based. Usage-based algorithms keep track of the
history of usage of a cache line (or page) and use this information to make replacement
decisions. That is, the reuse of a cache line normally improves the replacement status of
that line. Least recently used (LRU) is an example of this type of algorithm. Conversely,
non-usage-based algorithms do not take the record of use of cache lines into account when
doing replacement. First in, first out (FIFO) and Rand (random or pseudorandom) belong
to this class.

2. Fixed space versus variable space. Fixed-space algorithms assume that the cache
size is fixed while variable-space algorithms are based on the assumption that the cache
size can be changed dynamically depending on the need. Therefore, replacement in fixed­
space algorithms simply involves the selection of a specific cache line. On the other hand,
in a variable-space algorithm, a fetch does not imply a replacement, and a swap-out can
take place without a corresponding fetch.

Variable-space algorithms are not suitable for a DSM system because each node's
memory that acts as cache for the virtualJy shared memory is fixed in size. Moreover, as
compared to non-usage-based algorithms, usage-based algorithms are more suitable for
DSM systems because they allow to take advantage of the data access locality feature.
However, unlike most caching systems, which use a simple LRU policy for replacement,
most DSM systems differentiate the status of data items and use a priority mechanism. As
an example, the replacement policy used by the DSM system of IVY [Li 1986, 1988] is
presented here. In the DSM system of IVY, each memory block of a node is classified into
one of the folJowing five types:

1. Unused. A free memory block that is not currently being used.

2. Nil. A block that has been invalidated.

3. Read-only. A block for which the node has only read access right.

4. Read-owned. A block for which the node has only read access right but is also the
owner of the block.

5. Writable. A block for which the node has write access permission. Obviously, the
node is the owner of the block because IVY uses the write-invalidate protocol.

Based on this classification of blocks, the following replacement priority is used:

1. Both unused and nil blocks have the highest replacement priority. That is, they
will be replaced first if a block is needed. It is obvious for an unused block to have the
highest replacement priority. A nil block also has the same replacement priority because
it is no longer useful and future access to the block would cause a network fault to occur.
Notice that a nil block may be a recently referenced block, and this is exactly why a simple
LRU policy is not adequate.

2. The read-only blocks have the next replacement priority. This is because a copy
of a read-only block is available with its owner, and therefore it is possible to simply
discard that block. When the node again requires that block in the future, the block has to
be brought from its owner node at that time.

264 Chap. 5 • Distributed Shared Memory

3. Read-owned and writable blocks for which replica(s) exist on some other node(s)
have the next replacement priority because it is sufficient to pass ownership to one of the
replica nodes. The block itself need not be sent, resulting in a smaller message.

4. Read-owned and writable blocks for which only this node has a copy have the
lowest replacement priority because replacement of such a block involves transfer of the
block's ownership as well as the block from the current node to some other node. An LRU
policy is used to select a block for replacement when all the blocks in the local cache have
the same priority.

5.7.2 Wiler. to 'lac. a "-placed Block

Once a memory block has been selected for replacement, it should be ensured that if there
is some useful information in the block, it should not be lost. For example, simply
discarding a block having unused, nil, or read-only status does not lead to any loss of data.
Similarly, discarding a read-owned or a writable block for which replica(s) exist on some
other node(s) is also harmless. However, discarding a read-owned or a writable block for
which there is no replica on any other node may lead to loss of useful data. Therefore, care
must be taken to store them somewhere before discarding. The two commonly used
approaches for storing a useful block at the time of its replacement are as follows:

I. Using secondary store. In this method, the block is simply transferred on to a local
disk. The advantage of this method is that it does not waste any memory space, and if the
node wants to access the same block again, it can get the block locally without a need for
network access.

2. Using the memory space ofother nodes. Sometimes it may be faster to transfer a
block over the network than to transfer it to a local disk. Therefore, another method for
storing a useful block is to keep track of free memory space at all nodes in the system and
to simply transfer the replaced block to the memory of a node with available space. This
method requires each node to maintain a table of free memory space in all other nodes.
This table may be updated by having each node piggyback its memory status information
during normal traffic.

5.8 THRASHING

Thrashing is said to occur when the system spends a large amount of time transferring
shared data blocks from one node to another, compared to the time spent doing the useful
work of executing application processes. It is a serious performance problem with DSM
systems that allow data blocks to migrate from one node to another. Thrashing may occur
in the following situations:

1. When interleaved data accesses made by processes on two or more nodes causes
a data block to move back and forth from one node to another in quick succession
(a ping-pong effect)

Sec. 5.8 • Thrashing 265

2. When blocks with read-only permissions are repeatedly invalidated soon after
they are replicated

Such situations indicate poor (node) locality in references. If not properly handled,
thrashing degrades system performance considerably. Therefore, steps must be taken to
solve this problem. The following methods may be used to solve the thrashing problem in
DSM systems:

I. Providing application-controlled locks. Locking data to prevent other nodes from
accessing that data for a short period of time can reduce thrashing. An application­
controlled lock can be associated with each data block to implement this method.

2. Nailing a block to a node for a minimum amount of time. Another method to
reduce thrashing is to disallow a block to be taken away from a node until a minimum
amount of time t elapses after its allocation to that node. The time t can either be fixed
statically or be tuned dynamically on the basis of access patterns. For example, Mirage
[Fleisch and Popek 1989J employs this method to reduce thrashing and dynamically
determines the minimum amount of time for which a block will be available at a node on
the basis of access patterns.

The main drawback of this scheme is that it is very difficult to choose the appropriate
value for the time t. If the value is fixed statically, it is liable to be inappropriate in many
cases. For example, if a process accesses a block for writing to it only once, other
processes will be prevented from accessing the block until time t elapses. On the other
hand, if a process accesses a block for performing several write operations on it, time t
may elapse before the process has finished using the block and the system may grant
permission to another process for accessing the block. Therefore, tuning the value of t
dynamically is the preferred approach. In this case, the value of t for a block can be
decided based on past access patterns of the block. The MMU's reference bits may be used
for this purpose. Another factor that may be used for deciding the value. of t for a block
is the length of the queue of processes waiting for their turn to access the block.

3. Tailoring the coherence algorithm to the shared-data usage patterns. Thrashing
can also be minimized by using different coherence protocols for shared data having
different characteristics. For example, the coherence protocol used in Munin for write­
shared variables avoids the false sharing problem, which ultimately results in the
avoidance of thrashing.

Notice from the description above that complete transparency of distributed shared
memory is compromised somewhat while trying to minimize thrashing. This is because
most of the approaches described above require the programmer's assistance. For
example, in the method of application-controlled locks, the use of locks needs to be
directed toward a particular shared-memory algorithm and hence the shared-memory
abstraction can no longer be transparent. Moreover, the application must be aware of the
shared data it is accessing and its shared access patterns. Similarly, Munin requires
programmers to annotate shared variables with standard annotation types, which makes
the shared-memory abstraction nontransparent.

266

5.9 OTHER APPROACHES TO DSM

Chap. 5 • Distributed Shared Memory

Depending on the manner in which data caching (placement and migration of data) is
managed, there are three main approaches for designing a DSM system:

1. Data caching managed by the operating system

2. Data caching managed by the MMU hardware

3. Data caching managed by the language runtime system

This being a book on operating systems, in this chapter we mainly concentrate on
the first approach. Systems such as IVY [Li 1986] and Mirage [Fleish and Popek
1989] fall in this category. In these systems, each node has its own memory and
access to a word in another node's memory causes a trap to the operating system. The
operating system then fetches and acquires the page containing the accessed word
from the remote node's memory by exchanging messages with that machine. There­
fore, in these systems, the placement and migration of data are handled by the
operating system. For completion, the other two approaches of designing a DSM
system are briefly described below.

The second approach is to manage caching by the MMU. This approach is used
in multiprocessors having hardware caches. In these systems, the DSM implementation
is done either entirely or mostly in hardware. For example, if the multiprocessors are
interconnected by a single bus, their caches are kept consistent by snooping on the
bus. In this case, the DSM is implemented entirely in hardware. The DEC Firefly
workstation belongs to this category. On the other hand, if the multiprocessors are
interconnected by switches, directories are normally used in addition to hardware
caching to keep track of which CPUs have which cache blocks. Algorithms used to
keep cached data consistent are stored mainly in MMU microcode. Therefore, in this
case, the DSM is implemented mostly in hardware. Stanford's Dash [Lenoski el al.
1992] and MIT's Alewife [Agarwal et al. 1991, Kranz et al. 1993] systems belong to
this category. Notice that in these systems, when a remote access is detected, a
message is sent to the remote memory by the cache controller or MMU (not by the
operating system software).

The third approach is to manage caching by the language runtime system. In
these systems, the DSM is structured not as a raw linear memory of bytes from 0 to
total size of the combined memory of all machines, but as a collection of program­
ming language constructs, which may be shared variables and data structures (in
conventional programming languages) or shared objects (in object-oriented program­
ming languages). In these systems, the placement and migration of shared variables/
objects are handled by the language runtime system in cooperation with the operating
system. That is, when a variable/object is accessed by a process, it is the responsibility
of the runtime system and the operating system to successfully perform the requested
access operation on the variable/object independently of its current location. An
advantage of this approach is that programming languages may be provided with
features to allow programmers to specify the usage pattern of shared variables/objects

Sec. 5,]0 • Heterogeneous DSM 267

for their applications, and the system can support several consistency protocols and
use the one most suitable for a shared variable/object. Therefore, these systems can
allow consistency protocols to be applied at the granularity of individual data items
and can rely on' weaker consistency models than sequential consistency model for
better concurrency. However, a drawback of this approach is that it imposes extra
burden on programmers. Munin [Bennett et al. 1990] and Midway [Bershad et at
1993] are examples of systems that structure their DSM as a collection of shared
variables and data structures. On the other hand, Orca [Bal et al. 1992] and Linda
[Carriero and Gelernter 1989] are examples of systems that structure their DSM as a
collection of shared objects.

5.10 HETEROGENEOUS DSM

Computers of different architectures normally have different characteristic features. For
example, supercomputers and multiprocessors are good at compute-intensive applications
while personal computers and workstations usually have good user interfaces. A
heterogeneous computing environment allows the applications to exploit the best of all the
characteristic features of several different types of computers. Therefore, heterogeneity is
often desirable in distributed systems,

Heterogeneous DSM is a mechanism that provides the shared-memory paradigm in
a heterogeneous environment and allows memory sharing among machines of different
architectures. At first glance, sharing memory among machines of different architectures
seems almost impossible. However, based on the measurements made on their
experimental prototype heterogeneous DSM, called Mermaid, Zhou et al. [1990, 1992]
have concluded that heterogeneous DSM is not only feasible but can also be comparable
in performance to its homogeneous counterpart (at least for some applications). The two
main issues in building a DSM system on a network of heterogeneous machines are data
conversion and selection of block size. These issues are described below. The following
description is based on the material presented in [Zhou et al. 1990, 1992 J.

5.1O.1 Data Conversion

Machines of different architectures may use different byte orderings and floating-point
representations. When data is transferred from a node of one type to a node of another
type, it must be converted before it is accessed on the destination node. However, the
unit of data transfer in a DSM system is normally a block. Therefore, when a block
is migrated between two nodes of different types, the contents of the block must be
converted. But the conversion itself has to be based on the types of data stored in the
block. It is not possible for the DSM system to convert a block without knowing the
type of application-level data contained in the block and the actual block layout.
Therefore, it becomes necessary to take assistance from application programmers, who
know the layout of the memory being used by their application programs. Two
approaches proposed in the literature for data conversion in a heterogeneous DSM are
described below.

268 Chap. 5 • Distributed Shared Memory

Structuring the DSM System as a Collection of Source
Language Objects

In this method, the DSM system is structured as a collection of variables or objects in the
source language so that the unit of data migration is an object instead of a block. A DSM
compiler is used that adds conversion routines for translating variables/objects in the source
language among various machine architectures. For each access to a shared-memory object
from a remote node, a check is made by the DSM system if the machine of the node that
holds the object and the requesting node are compatible. If not, a suitable conversion routine
is used to translate the object before migrating it to the requesting node.

This method of data conversion is used in the Agora shared-memory system [Bisiani
et a1. 1987]. In Agora, each machine marks messages with a machine tag. A message
contains an object being migrated from one node to another. Messages between identical
or compatible machines do not require translation. When translation is necessary, the type
of information associated with the destination context is used to do a one-pass translation
of the object. Depending on the field tag and the machine requirements for data alignment,
the translation process may involve such operations as field-by-fieJd swapping of bytes,
inserting/removing gaps where necessary, and shuffling of bits.

Structuring a DSM system as a collection of source language objects may be useful
from the data conversion point of view but is generally not recommended due to
performance reasons. This is because objects in conventional programming languages
typically are scalars (single-memory words), arrays, and structures. None of these types is
suitable as a shared entity of a DSM system. For each shared entity, access rights must be
issued for every entity and the migration of an entity involves communication overhead.
Therefore, the choice of scalar data types as a unit of sharing would make a system very
inefficient. On the other hand, arrays may easily be too large to be treated as units of
sharing and data migration. Large data objects lead to false sharing and thrashing, and
their migration often requires fragmentation and reassembly operations to be carried out
on them due to the limited packet size of transport protocols.

Allowing Only One Type of Data in a Block

This mechanism is used in Mermaid [Zhou et al. 1990, 1992], which uses a page size as
its block size. Therefore, a page can contain only one type of data. In Mermaid, the DSM
page (block) table entry keeps additional information identifying the type of data
maintained in that page and the amount of data allocated to the page. Whenever a page is
moved between two machines of different architectures, a routine converts the data in the
page to the appropriate format. Mermaid requires the application programmers to provide
the conversion routine for each user-defined data type in the application. Mermaid
designers pointed out that the cost of converting a page is small compared to the overall
cost of page migration.

Zhou et ale [1990] identified the following limitations of this approach:

1. Allowing a page to contain data of only one type may lead to wastage of memory
due to fragmentation, resulting in increased paging activity.

Sec. 5.10 • Heterogeneous DSM 269

2. The mechanism requires that the compilers used on different types of machines
must be compatible in the sense that in the compiler-generated code the size of each data
type and the order of the fields within compound structures must be the same on each
machine. If incompatible compilers are used for an application to generate code for two
different machines such that the size of the application-level data structures differs for the
two machines, the mapping between pages on the two machines would not be one to one.
That is, it may not be possible for a structure to fit on a page in its entirety after the
conversion or, conversely, some data from the following page may be needed in order to
complete the conversion of the current page [Zhou et al. 1990]. This complicates the
conversion process.

3. Another problem associated with this method is that entire pages are converted
even though only a small. portion may be accessed before it is transferred away.
Sometimes this problem may be more severe in the first method, which converts an entire
object. For example, a large array may occupy several pages of memory, and migration of
this object would convert the data in all the occupied pages even when only the first few
array elements may be accessed before the object is transferred away.

4. The mechanism is not fully transparent because it requires the users to provide the
conversion routines for user-defined data types and a table specifying the mapping of data
types to conversion routines. The transparency problem may be solved by automatically
generating the conversion routines and the mapping table by using a preprocessor on the
user program [Zhou et al. 1990].

Another serious problem associated with the data conversion issue in heterogeneous
DSM systems is that of the accuracy of floating-point values in numerical applications.
Since an application has no control over how often a data is migrated or converted,
numerical accuracy of floating-point data may be lost if the data is converted several times
and the results may become numerically questionable.

5.10.2 Block Size Salaction

Recall that in a homogeneous DSM system the block size is usually the same size as
a native virtual memory (VM) page, so that the MMU hardware can be used to trigger
a DSM block fault. However, in a heterogeneous environment, the virtual memory
page size may be different for machines of different types. Therefore, block size
selection becomes a complicated task in such a situation. Zhou et al. [1990, 1992]
proposed the use of one of the following algorithms for block size selection in a
heterogeneous DSM system:

1. Largest page size algorithm. In this method, the DSM block size is taken as the
largest VM page size of all machines. Since VM page sizes are normally powers of 2,
multiple smaller VM pages fit exactly in one DSM block. If a page fault occurs on a node
with a smaller page size, it will receive a block of multiple.pages that includes the desired
page. This algorithm suffers from the same false sharing and thrashing problems
associated with large-sized blocks.

270 Chap. 5 • Distributed Shared Memory

2. Smallest page size algorithm. In this method, the DSM block size is taken as the
smallest VM page size of all machines. If a page fault occurs on a node with a larger page
size, multiple blocks (whose total size is equal to the page size of the faulting node) are
moved to satisfy the page fault. Although this algorithm reduces data contention, it suffers
from the increased communication and block table management overheads associated
with small-sized blocks.

3. Intermediate page size algorithm. To balance between the problems of large- and
small-sized blocks, a heterogeneous DSM system may select to choose a block size
somewhere in between the largest VM page size and the smallest VM page size of all
machines.

5.11 ADVANTAGES OF DSM

Distributed Shared Memory is a high-level mechanism for interprocess communication in
loosely coupled distributed systems. It is receiving increased attention because of the
advantages it has over the message-passing mechanisms. These advantages are discussed
below.

5.11.1 Simpl.r Abstraction

By now it is widely recognized that directly programming loosely coupled distributed­
memory machines using message-passing models is tedious and error prone. The main
reason is that the message-passing models force programmers to be conscious of data
movement between processes at all times, since processes must explicitly use
communication primitives and channels or ports. To alleviate this burden, RPC was
introduced to provide a procedure call interface. However, even in RPC, since the
procedure call is performed in an address space different from that of the caller's address
space, it is difficult for the caller to pass context-related data or complex data structures;
that is, parameters must be passed by value. In the message-passing model, the
programming task is further complicated by the fact that data structures passed between
processes in the form of messages must be packed and unpacked. The shared-memory
programming paradigm shields the application programmers from many such low-level
concerns. Therefore, the primary advantage of DSM is the simpler abstraction it provides
to the application programmers of loosely coupled distributed-memory machines.

5.11.1 ktt.r Portability of Distributed Application
Programs

The access protocol used in case of DSM is consistent with the way sequential
applications access data. This allows for a more natural transition from sequential to
distributed applications. In principle, distributed application programs written for a
shared-memory multiprocessor system can be executed on a distributed shared-memory
system without change. Therefore, it is easier to port an existing distributed application

Sec. 5.11 • Advantages of DSM 271

program to a distributed-memory system with DSM facility than to a distributed-memory
system without this facility.

5.11.3 letter Performance of Some Applications

The layer of software that provides DSM abstraction is implemented on top of a message­
passing system and uses the services of the underlying message-passing communication
system. Therefore, in principle, the performance of applications that use DSM is expected to
be worse than if they use message-passing directly. However, this is not always true, and it
has been found that some applications using DSM can even outperform their message­
passing counterparts. This is possible for three reasons [Stumm and Zhou 1990]:

1. Locality of data. The computation model of DSM is to make the data more
accessible by moving it around. DSM algorithms normally move data between nodes in
large blocks. Therefore, in those applications that exhibit a reasonable degree of locality
in their data accesses, communication overhead is amortized over multiple memory
accesses. This ultimately results in reduced overall communication cost for such
applications.

2. On-demand data movement. The computation model of DSM also facilitates 00­

demand movement of data as they are being accessed. On the other hand, there are several
distributed applications that execute in phases, where each computation phase is preceded
by a data-exchange phase. The time needed for the data-exchange phase is often dictated
by the throughput of existing communication bottlenecks. Therefore, in such applications,
the on-demand data movement facility provided by DSM eliminates the data-exchange
phase, spreads the communication load over a longer period of time, and allows for a
greater degree of concurrency.

3. Larger memory space. With DSM facility, the total memory size is the sum of the
memory sizes of all the nodes in the system, Thus, paging and swapping activities, which
involve disk access, arc greatly reduced.

5.11.4 Flexible Communication Environment

The message-passing paradigm requires recipient identification and coexistence of the
sender and receiver processes. That is, the sender process of a piece of data must
know the names of its receiver processes (except in multicast communication), and the
receivers of the data must exist at the time the data is sent and in a state that they can
(or eventually can) receive the data. Otherwise, the data is undeliverable. In contrast,
the shared-memory paradigm of DSM provides a more flexible communication
environment in which the sender process need not specify the identity of the receiver
processes of the data. It simply places the data in the shared memory and the receivers
access it directly from the shared memory. Therefore, the coexistence of the sender
and recei ver processes is also not necessary in the shared-memory paradigm. In fact,
the lifetime of the shared data is independent of the lifetime of any of its receiver
processes.

272 Chap. 5 • Distributed Shared Memory

5. 11.5 Eas. of 'roc.ss Migration

Migration of a process from one node to another in a distributed system (described in
Chapter 8) has been shown to be tedious and time consuming due to the requirement of
transferring the migrant process's address space from its old node to its new node.
However, the computation model of DSM provides the facility of on-demand migration of
data between processors. This facility allows the migrant process to leave its address space
on its old node at the time of migration and fetch the required pages from its new node
on demand at the ·time of accessing. Hence in a distributed system with DSM facility,
process migration is as simple as detaching the process control block (PCB) of the migrant
process from the processor of the old node and attaching it to the ready queue of the new
node's processor. A PCB is a data block or a record associated with each process that
contains useful information such as process state, CPU registers, scheduling information,
memory management information, I/O status information, and so on. This approach
provides a very natural and efficient form of process migration between processors in a
distributed system.

5.11 SUMMARY

Programming of applications for loosely coupled distributed-memory machines with the
message-passing paradigm is a difficult and error-prone task. The Distributed Shared
Memory (DSM) facility simplifies this programming task by providing a higher level
abstraction that allows programmers to write programs with the shared-memory paradigm,
which is consistent with the way sequential applications access data.

Important issues involved in the design and implementation of a DSM system are
granularity of data sharing, structure of the shared-memory space, memory coherence and
access synchronization, data location and access, replacement strategy, handling of
thrashing, and heterogeneity.

Granularity refers to block size, which is the unit of data sharing and data transfer
across the network. Both large- and small-sized blocks have their own advantages and
limitations. Several DSM systems choose the virtual memory page size as block size so
that the MMU hardware can be used to trigger a DSM block fault.

The structure of the shared-memory space of a DSM system defines the abstract view
to be presented to application programmers of that system. The three commonly used
methods for structuring the shared-memory space of a DSM system are no structuring,
structuring by data type, and structuring as a database. The structure and granularity of a
DSM system are closely related.

Memory coherence is an important issue in the design of a DSM system. It deals with
the consistency of a data block lying in the main memories of two or more nodes of the
system. Several consistency models have been proposed in the literature to handle this
issue. The main ones described in this chapter are strict consistency, sequential
consistency, causal consistency, PRAM consistency, processor consistency, weak
consistency, and release consistency. Of these, sequential consistency and release
consistency are appropriate for a large number of applications.

Sec. 5.12 • Summary 273

Protocols for implementing the sequential consistency model in a DSM system depend
on the following four replication and migration strategies used by the DSM system:

1. Nonreplicated, nonmigrating blocks (NRNMBs)

2. Nonreplicated, migrating blocks (NRMBs)

3. Replicated, migrating blocks (RMBs)

4. Replicated, nonmigrating blocks (RNMBs)

Protocols for implementing sequential consistency for each of these strategies have
been described in this chapter. The data-locating mechanisms suitable for each case have
also been described. In addition, the Munin system has been presented as an example of
a release consistent DSM system.

Replacement strategy deals with the selection of a block to be replaced when the
available space for caching shared data fills up and the placement of a replaced block. The
usual classifications of replacement algorithms are usage-based versus non-usage-based
and fixed-space versus variable-space. DSM systems use fixed-space, usage-based
replacement algorithms. At the time of its replacement, a useful block may be placed in
either the secondary storage of the local node or the memory space of some other
node.

Thrashing is a serious performance problem with DSM systems that allow data
blocks to migrate from one node to another. Methods that may be used to solve the
thrashing problem in DSM systems are providing application-controlled locks, nailing a
block to a node for a minimum amount of time, and tailoring the coherence algorithm to
the shared-data usage patterns.

Depending on the manner in which data caching is managed, there are three main
approaches to designing a DSM system: data caching managed by the operating system,
data caching managed by the MMU hardware, and data caching managed by the language
runtime system.

Heterogeneous DSM is a mechanism that provides the shared-memory paradigm
in a heterogeneous environment and allows memory sharing among machines with
different architectures. The two main issues in building this facility are data conversion
and selection of block size. Two approaches proposed in the literature for data
conversion in a heterogenous DSM are structuring the DSM system as a collection of
source language objects and allowing only one type of data in a DSM block. Three
algorithms that may be used for block size selection in a heterogeneous DSM system
are largest page size algorithm, smallest page size algorithm, and intermediate page size
algorithm.

Research has shown that DSM systems are viable, and they have several advantages
over the message-passing systems. However, they are still far from mature. Most existing
DSM systems are very small experimental or prototype systems consisting of only a few
nodes. The performance results to date are also preliminary and based on a small group
of applications or a synthetic workload. Nevertheless, research has proved that DSM
effectively supports parallel processing and promises to be a fruitful and exciting area of
research for the coming decade.

274 Chap. 5 • Distributed Shared Memory

EXERCISES

5.1. The distributed shared-memory abstraction is implemented by using the services of the
underlying message-passing communication system. Therefore. in principle, the performance
of applications that use DSM is expected to be worse than if they use message passing
directly. In spite of this fact, why do some distributed operating system designers support the
DSM abstraction in their systems? Are there any applications that can have better performance
in a system with DSM facility than in a system that has only message-passing facility? If yes,
give the types of such applications. If no, explain why.

5.2. Discuss the relative advantages and disadvantages of using large block size and small block
size in the design of a block-based DSM system. Why do most DSM system designers prefer
to use the typical page size used in a conventional virtual-memory implementation as the
block size of the DSM system?

5.3. It is often said that the structure of the shared-memory space and the granularity of data
sharing in a DSM system are closely related. Explain why.

5.4. What is false sharing? When is it likely to occur? Can this problem lead to any other problem
in a DSM system? Give reasons for your answer.

5.5. What should be done to minimize the false sharing problem? Can this problem be completely
eliminated? What other problems may occur if one tries to completely eliminate the false
sharing problem?

5.6. Discuss the relative advantages and disadvantages of using the NRNMB. NRMB, RMB, and
RNMB strategies in the design of a DSM system.

5.7. Discuss the relative advantages and disadvantages of the various data-locating mechanisms
that may be used in a DSM system that uses the NRMB strategy.

5.8. A sequentially consistent DSM system uses the RMB strategy. It employs the write-invalidate
approach for updating data blocks and the centralized-server algorithm for locating the owner
of a block and keeping track of the nodes that currently have a valid copy of the block. Write
pseudocode for the implementation of the memory coherence scheme of this DSM system.

5.9. Why is a global sequencer needed in a sequentially consistent DSM system that employs the
write-update protocol?

5.10. Most DSM systems in which caching is managed by the operating system use the write­
invalidate scheme for consistency instead of the write-update scheme. Explain why.

5.11. Differentiate between weak consistency and release consistency. Which of the two will you
prefer to use in the design of a -DSM system? Give reasons for your answer.

5.12. A programmer is writing an application for a release-consistent DSM system. However the
application needs,sequential consistency to produce correct results. What precautions must the
programmer take?

S.13. Differentiate between PRAM consistency and processor consistency.

5.14. Give the relative advantages and disadvantages of sequential and release consistency
models.

5.15. What is causal consistency? Give an example of an application for which causal consistency
is the most suitable consistency model.

5.16. Propose a suitable replacement algorithm for a DSM system whose shared-memory space is
structured as objects. One of the goals in this case may be to minimize memory
fragmentation.

5.17. Why does the simple LRU policy often used for replacing cache lines in a buffer cache not
work well as a replacement policy for replacing blocks in a DSM system?

Chap. 5 • Bibliography 275

5.18. To handle the issue of where to place a replaced block, the DSM system of Memnet [Delp
1988] uses the concept of "home memory," in which each block has a home memory. When
replacement of a block requires that the block be transferred to some other node's memory,
the block is transferred to the node whose memory is the home memory for the block. What
are the advantages and disadvantages of this approach as compared to the one presented in this
chapter?

5.19. What are the main causes of thrashing in a DSM system? What are the commonly used
methods to solve the trashing problem in a DSM system?

5.20. Complete transparency of a DSM system is compromised somewhat when a method is used
to minimize thrashing. Therefore, the designer of a DSM system is of the opinion that instead
of using a method to minimize thrashing, a method should be used by which the system
automatically detects and resolyes this problem. Propose a method by which the system can
detect thrashing and a method to resolve it once it has been detected.

5.21. A distributed system has DSM facility. The process-scheduling mechanism of this system
selects another process to run when a fault occurs for the currently running process, and the
CPU is utilized while the block is being fetched. Two system engineers arguing about how to
better utilize the CPUs of this system have the following opinions:
(a) The first one says that if a large number of processes are scheduled for execution at a

node, the available memory space of the node can be distributed among these processes
so that almost always there will be a ready process to run when a page fault occurs. Thus,
CPU utilization can be kept high.

(b) The second one says that if only a few processes are scheduled for execution at a node,
the available memory space of the node can be allocated to each of the few processes, and
each process will produce fewer page faults. Thus, CPU utilization can be kept high.

Whose argument is correct? Give reasons for your answer.

5.22. What are the three main approaches for designing a DSM system?

5.23. What are some of the issues involved in building a DSM system on a network of
heterogeneous machines? Suggest suitable methods for handling these issues.

5.24. Are DSM systems suitable for both LAN and WAN environments? Give reasons for your
answer.

5.25. Suggest some programming practices that will reduce network block faults in a DSM
system.

5.26. Write pseudocode descriptions for handling a block fault in each of the following types of
DSM systems:
(a) A DSM system that uses the NRNMB strategy
(b) A DSM system that uses the NRMB strategy
(c) A DSM system that uses the RMB strategy
(d) A DSM system that uses the RNMB strategy
You can make any assumptions that you feel necessary, but state the assumptions made.

BIBLIOGRAPHY

[Adve and Hill 1990] Adve, S., and Hill, M; "Weak Ordering: A New Definition," In: Proceedings
of the 17th International Symposium on Computer Architecture, Association for Computing
Machinery, New York, NY, pp. 2-14 (1990).

276 Chap. 5 • Distributed Shared Memory

[Agarwal et al. 1991] Agarwal, A., Chaiken, D., D'Souza, G., Johnson, K., Kranz, D., Kubiatowicz,
J., Kurihara, K., Lim, B., Maa, G., Nussbaum, D., Parkin, M., and Yeung, D., "The MIT Alewife
Machine: A Large-Scale Distributed Memory Multiprocessor," In: Proceedings of the Workshop
on Scalable Shared Memory Multiprocessors, Kluwer Academic, Norwell, MA (1991).

[Bal 1991] Bal, H. E., Programming Distributed Systems, Prentice-Hall, London, England
(1991).

[8al et al. 1992]Bal, H. E., Kaashoek, M. F.,and Tanenbaum, A. S., "Orca: A Language for Parallel
Programming of Distributed Systems:' IEEE Transactions on Software Engineering, Vol. SE-18,
pp. 190-205 (1992).

[Baldoni et al. 1995] Baldoni, R., Mostefaoui, A., and Raynal, M., "Efficient Causally Ordered
Communications for Multimedia Real Time Applications," In: Proceedings of the 4th
International Symposium on High Performance Distributed Computing, IEEE, New York
(1995).

[Bennett et al, 1990J Bennett, J., Carter, J., and Zwaenepoel, W., "Munin: Distributed Shared
Memory Based on Type-Specific Memory Coherence," In: Proceedings of the 1990 Conference
on Principles and Practice of Parallel Programming, Association for Computing Machinery,
New York, pp. 168-176 (1990).

[Bershad et al, 1993] Bershad, B. N., Zekauskas, M. 1, and Sawdon, W. A., "The Midway
Distributed Shared Memory System," In: Proceedings of the IEEE COMPCON Conference,
IEEE, New York, pp. 528-537 (1993).

[Bisiani and Ravishankar 1990J Bisiani, R., and Ravishankar, M., "Plus: A Distributed Shared­
Memory System," In: Proceedings of the 17th International Symposium on Computer
Architecture, Association for Computing Machinery, New York, NY, pp. 115-124 (1990).

[Bisiani et al. 1987] Bisiani, R., Alleva, F., Correrini, F., Forin, A., Lecouat, F., and Lerner, R.,
"Heterogeneous Parallel Processing: The Agora Shared Memory," Technical Report No. CMU­
CS-87-112, Computer Science Department, Carnegie-Mellon University (March 1987).

[Bisianiet al. 1989] Bisiani, R., Nowatzyk, A., and Ravishankar, M., "Coherent Shared Memory on
a Distributed Memory Machine," In: Proceedings of the International Conference on Parallel
Processing, IEEE, New York, pp. 133-141 (August 1989).

[Campine et al. 1990] Campine, G. A., Geer, Jr., D. E, and Ruh, W. N., "Project Athena as a
Distributed Computer System," IEEE Computer, Vol. 23, pp. 40-51 (1990).

[Carriero and Gelernter 1989] Carriero, N., and Gelernter, D., "Linda in Context," Communica­
tions of the ACM, Vol. 32, No.4, pp. 444-458 (1989).

[Carriero et al, 1986] Carriero, N., Gelernter, D., and Leichter, 1, "Distributed Data Structures in
Linda," In: Proceedings of the ACM Symposium on Principles of Programming Languages,
Association for Computing Machinery, New York (1986).

[Carter et al, 1991] Carter, 1. B., Bennett, 1 K., and Zwaenepoel, W., "Implementation and
Performance of Munin," In: Proceedings of the 13th Symposium on Operating Systems
Principles, Association for Computing Machinery, New York, NY, pp. 152-164 (1991).

[Carter et al. 1994] Carter, J. B., Bennett, 1 K., and Zwaenepoel, W., "Techniques for Reducing
Consistency-Related Communication in Distributed Shared Memory Systems," ACM Transac­
tions on Computer Systems, Vol. 12 (1994).

[Chase et al. 1989] Chase, J. S., Amador, F. G., Lazowska, E. D., Levy, H. M., and Littlefield, R.
J., "The Amber System: Parallel Programming on a Network of Multiprocessors," In:
Proceedings ofthe 12th Symposium on Operating Systems Principles, Association for Computing
Machinery, New York, NY, pp. 147-158 (1989).

Chap. 5 • Bibliography 277

[Cheong and Veidenbaum 1988] Cheong, H., and Veidenbaum, A. V., "A Cache Coherence
Scheme with Fast Selective Invalidation," In: Proceedings of the 15th International Symposium
on Computer Architecture, Association for Computing Machinery, New York, NY, pp. 299-307
(1988).

[Cheriton 1986] Cheriton, D. R., "Problem-Oriented Shared Memory: A Decentralized Approach to
Distributed System Design," In: Proceedings of the 6th International Conference on Distributed
Computing Systems, IEEE, New York, pp. 190-197 (May 1986).

[Cheriton et al. 1991] Cheriton, D. R., Goosen, H. A., and Boyle, P. D., "Paradigm: A Highly
Scalable Shared-Memory Multicomputer Architecture," IEEE Computer, Vol. 24, No.2, pp.
33-46 (1991).

[Cox and Fowler 1989J Cox, A. L., and Fowler, R. 1., "The Implementation of a Coherent Memory
Abstraction on a NUMA Multiprocessor: Experiences with PLATINUM," In: Proceedings ofthe
12th Symposium on Operating Systems Principles, Association for Computing Machinery, New
York, NY, pp. 32-34 (December 1989).

[Dasgupta et al. 1991] Dasgupta, P., LeBlanc, R. L, Ahmad, Jr., M., and Ramachandran, U.~ "The
Clouds Distributed Operating System," IEEE Computer, Vol. 24, No. 11, pp. 34-44 (1991).

[Delp 1988] Delp, G. S.• "The Architecture and Implementation of MemNet: An Experiment on
High-Speed Memory Mapped Network Interface," Ph.D. Dissertation, Department of Computer
Science, University of Delaware (1988).

[Delp et al, 1991] Delp, G. S., Farber, D. J., Minnich, R. G., Smith, 1. M., and Tam, M. C., "Memory
as a Network Abstraction," IEEE-' Network, Vol. 5, pp. 34-41 (1991).

[Dubois et al, 1986] Dubois, M., Scheurich, C., and Briggs, F. A., "Memory Access Buffering in
Multiprocessors," In: Proceedings of the J3th Annual Symposium on Computer Architecture,
Association for Computing Machinery, New York, NY, pp. 343-442 (1986).

[Dubois et al, 1988] Dubois, M., Scheurich, C., and Briggs, F.A.,"Synchronization, Coherence, and
Event Ordering in Multiprocessors," IEEE Computer, Vol. 21, No.2, pp. 9-21 (1988).

[Fekete et al. 1995] Fekete, A, Kaashoek, F., and Lynch, N.~ "Providing Sequentially-Consistent
Shared Objects Using Group and Point-to-Point Communication," In: Proceedings of the J5th
International Conference on Distributed Computing Systems, IEEE, New York (May-June
1995).

[Fleisch 1987] Fleisch, B. D., "Distributed Shared Memory in a Loosely Coupled Distributed
System," In: Proceedings of the 1987 ACM SIGCOMM Workshop, Association for Computing
Machinery, New York, NY (1987).

[Fleisch and Popek 1989] Fleisch, B. D., and Popek, G. J., "Mirage: A Coherent Distributed Shared
Memory Design," In: Proceedings of the 12thACM Symposium on Operating System Principles,
Association for Computing Machinery, New York, NY, pp. 211-223 (December 1989).

[Forin et al. 1989] Forin, A., Barrera, L, Young, M., and Rashid, R.,"Design, Implementation, and
Performance Evaluation of a Distributed Shared Memory Server for Mach," In: Proceedings of
the 1989 Winter Usenix Conference (January 1989).

[Frank 1984] Frank, S. J., "Tightly Coupled Multiprocessor System Speeds Memory-Access
Times," Electronics, pp. 164-169 (January 1984).

[Garcia Molina and Wiederhold 1982] Garcia-Molina, H., and Wiederhold, G., "Read-Only
Transactions in a Distributed Database," ACM Transactions on Database Systems, Vol. 7, No.2,
Association for Computing Machinery, New York, NY, pp. 209-234 (1982).

278 Chap. 5 • Distributed Shared Memory

[Gharachorloo et al. 1990] Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P, Gupta, A., and
Hennessy, J., "Memory Consistency and Event Ordering in Scalable Shared-Memory Multi­
processors," In: Proceedings of the 17th Annual Symposium on Computer Architecture,
Association for Computing Machinery, New York, NY, pp. 15-26 (1990).

[Gharachorloo et al. 1991] Gharachorloo, K., Gupta, A., and Hennessy, J., "Performance
Evaluation of Memory Consistency Models for Shared-Memory Multiprocessors," In: Proceed­
ings of the 4th International Conference on Architectural Support for Programming Languages
and Operating Systems, IEEE Computer Society Press, Los Alamitos, CA, pp. 245-257
(1991).

[Ghose 1995] Ghose, K., "SNOW: Hardware Supported Distributed Shared Memory over a
Network of Workstations," In: Proceedings of the 24th Annual International Conference on
Parallel Processing, IEEE, New York (August 1995).

[Goodman 1983] Goodman, J. R., "Using Cache Memory to Reduce Processor-Memory Traffic,"
In: Proceedings of the 10th Annual Symposium on Computer Architecture, Association for
Computing Machinery, New York, NY, pp. 124-131 (June 1983).

[Goodman 1989] Goodman, 1. R., "Cache Consistency and Sequential Consistency," Technical
Report No. 61, IEEE Scalable Coherent Interface Working Group, IEEE, New York (1989).

[Goodman et al, 1989] Goodman, 1. R., Vernon, M. K., and Woest, P.1., "Efficient Synchronization
Primitives for Large-Scale Cache-Coherent Multiprocessors," In: Proceedings of the 3rd
International Conference on Architectural Support for Programming Languages and Operating
Systems, IEEE Computer Society Press, Los Alamitos, CA, pp. 64-73 (1989).

[Harty and Cheriton 1992] Harty, K., and Cheriton, D., "Application-Controlled Physical Memory
Using External Page-Cache Management," In: Proceedings of the 5th International Conference
on Architectural Support for Programming Languages and Operating Systems, Association for
Computing Machinery, New York, NY, pp. 187-]99 (1992).

[Hutto and Ahamad 1990] Hutto, P. W., and Ahamad, M., "Slow Memory: Weakening Consistency
to Enhance Concurrency in Distributed Shared Memories," In: Proceedings of the 10th
International Conference on Distributed Computing Systems, IEEE, New York, pp. 302-311
(1990).

[Johnson et al, 1995] Johnson, D., Lilja, D., and Riedl, J., "A Circulating Active Barrier
Synchronization Mechanism," In: Proceedings of the 24th Annual International Conference on
Parallel Processing, IEEE, New York (August]995).

[Katz et al, 1985] Katz, R. H., Eggers, S. 1., Wood, D. A., Perkins, C. L., and Sheldon, R. G.,
"Implementing a Cache Consistency Protocol," In: Proceedings of the 12th Annual Symposium
on Computer Architecture, Association for Computing Machinery, New York, NY, pp. 276-283
(June 1985).

[Keleher et al, 1992] Keleher, P., Cox, A. L., and Zwaenepoel, W., "Lazy Release Consistency," In:
Proceedings of the 19th International Symposium on Computer Architecture, Association for
Computing Machinery, New York, NY, pp.]3-21 (1992).

[Kessler and Livny 1989] Kessler, R. E., and Livny, M., "An Analysis of Distributed Shared
Memory Algorithms," In: Proceedings of the 9th International Conference on Distributed
Computing Systems, IEEE, New York, pp. 98-104 (June 1989).

[Kranz et al, 1993] Kranz, D., Johnson, K., Agarwal, A., Kubiatowicz, J. J., and Lim, B.,
"Integrating Message Passing and Shared Memory: Early Experiences," In: Proceedings of the
4th Symposium on Principles and Practice ofParallel Programming, Association for Computing
Machinery, New York, NY, pp. 54-63 (May 1993).

Chap. 5 • Bibliography 279

[Lamport 1979] Lamport, L., "How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs," IEEE Transactions on Computers, Vol. C-28, IEEE, New York, pp.
690-69] (1979).

[Lenoski and Weber 1995) Lenoski, D. E., and Weber, W. D., Scalable Shared-Memory
Multiprocessing, Morgan Kaufmann, San Francisco, CA (1995).

[Lenoski et al, 1992] Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W. D., Gupta, A.,
Hennessy, J., Horowitz, M., and Lam, M, S., "The Stanford Dash Multiprocessor," IEEE
Computer, Vol. 25, No.3, pp. 63-79 (1992).

(Lenoski et al, 1993J Lenoski, D., Laudon, 1., Joe, T., Nakahira, D., Steves, L., Gupta, A., and
Hennessy, J., "The DASH Prototype: Logic Overhead and Performance," IEEE Transactions on
Parallel and Distributed Systems, Vol. 4, No.1, pp. 41-61 (1993).

[Li 1986] Li, K., "Shared Virtual Memory on Loosely Coupled Multiprocessors," Ph.D.
Dissertation, Technical Report No. YALE/DCS/RR-492, Department of Computer Science, Yale
University (September 1986).

[Li 1988] Li, K., "IVY: A Shared Virtual Memory System for Parallel Computing," In: Proceedings
of the International Conference on Parallel Processing. IEEE, New York, pp. 94-101 (August
1988).

[Li and Hudak 1989] Li, K., and Hudak. P., "Memory Coherence in Shared Virtual Memory
Systems," ACM Transactions on Computing Systems, Vol. 7, No.4, pp. 321-359 (1989).

[Li and Schaefer 19891 Li, K., and Schaefer, R.,"A Hypercube Shared Virtual Memory System,"
In: Proceedings of the International Conference on Parallel Processing, Pennsylvania State
University Press, pp. 125-132 (] 989).

(Lilja 1993J Lilja, D. 1., "Cache Coherence in Large-Scale Shared-Memory Multiprocessors: Issues
and Comparisons," AC~M Computing Surveys, Vol. 25, pp. 303-338 (1993).

[Lipton and Sandberg 1988] Lipton, R. 1., and Sandberg, J. S., "Pram: A Scalable Shared
Memory," Technical Report No. CS- TR-] 80-88, Princeton University (1988).

[Liskov 19881 Liskov, B., "Distributed Programming in Argus," Communications of the ACM, Vol.
31, No.3, pp. 300-313 (J988).

[Minnich and Farber 1989] Minnich, R. G., and Farber, D. J., "The Mether System: A Distributed
Shared Memory for SunOS 4.0," In: Proceedings of the /989 Summer Usenix Conference, pp.
5]-60 (1989).

[Minnich and Farber 19901 Minnich, R. (]., and Farber, D. 1., "Reducing Host Load, Network
Load, and Latency in a Distributed Shared Memory," In: Proceedings of the 10th International
Conference on Distributed Computing Systems, IEEE, New York (June)990).

[Mosberger 1993] Mosberger, D., "Memory Consistency Models," Technical Report No. TR 93/11,
Department of Computer Science, University of Arizona (1993).

[Nitzberg and Virginia Lo 1991] Nitzberg, N., and Virginia Lo, "Distributed Shared Memory: A
Survey of Issues and Algorithms," IEEE Computer, Vol. 24, No. 11, pp. 52-60 (1991).

[Oguchi et al, 1995] Oguchi, M., Aida, H., and Saito, T., "A Proposal for a DSM Architecture
Suitable for a Widely Distributed Environment and Its Evaluation," In: Proceedings of the 4th
International Symposium on High Performance Distributed Computing, IEEE, New York
(August 1995).

[Ramachandran and Khalidi 1989J Ramachandran. U., and Khalidi, M.Y. A., HAn Implementation
of Distributed Shared Memory," First Workshop on Experiences with Building Distributed and
Multiprocessor Systems, Usenix Association, Berkeley, CA, pp. 21-38 (1989).

280 Chap. 5 • Distributed Shared Memory

[Sane et al, 1990] Sane, A., MacGregor, K., and Campbell, R., "Distributed Virtual Memory
Consistency Protocols: Design and Performance," Second IEEE Workshop on Experimental
Distributed Systems, IEEE, New York, pp. 91-96 (October 1990).

[Scheurich and Dubois 1988] Scheurich, C., and Dubois, M., "Dynamic Page Migration in
Multiprocessors with Distributed Global Memory," In: Proceedings of the 8th International
Conference on Distributed Computing Systems, IEEE Computer Society Press, Los Alamitos,
CA, pp. 162-169 (June 1988).

[Shrivastava et al. 1991] Shrivastava,S., Dixon, G. N., and Parrington, G. D., "An Overview of the
Arjuna Distributed Programming-System," IEEE Software, pp. 66-73 (January 1991).

[Singhal and Shivaratri 1994] Singhal, M., and Shivaratri, N. G., Advanced Concepts in Operating
Systems, McGraw Hill, New York (1994).

[Sinha et al. 1991] Sinha, P. K., Ashihara, H., Shimizu, K., and Maekawa, M., "Flexible User­
Definable Memory Coherence Scheme in Distributed Shared Memory of GALAXY," In:
Proceedings of the 2nd European Distributed Memory Computing Conference (EDMCC2),
Springer-Verlag, New York, pp. 52-61 (April 1991).

[Smith 1982] Smith, A. J., "Cache Memories," ACM Computing Surveys, Vol. 14, No.3, pp.
437-530, New York, NY (1982).

[Stumm and Zhou 1990] Stumm, M., and Zhou, S., "Algorithms Implementing Distributed Shared
Memory," IEEE Computer, Vol. 23, No.5, New York, NY, pp. 54-64 (1990).

[18m and Usu 1990] Tam, V., and Hsu, M., "Fast Recovery in Distributed Shared Virtual Memory
Systems," In: Proceedings of the 10th International Conference on Distributed Computing
Systems, IEEE, New York, pp. 38-45 (May-June 1990).

(18m et al, 1990] Tam, M. C., Smith, J. M., and Farber, D. J., "A Taxonomy-Based Comparison of
Several Distributed Shared Memory Systems," Operating Systems Review, Vol. 24, pp. 40-67
(1990).

[Tartalja and Milutinovic 1996] Tartalja, I., and Milutinovic, V. (Eds.), The Cache Coherence
Problem in Shared-Memory Multiprocessors: Software Solutions, IEEE Computer Society Press,
Los Alamitos, CA (1996).

[Theel and Fleisch 1995] Theel, O. E., and Fleisch, B. D., "Design and Analysis of Highly
Available and Scalable Coherence Protocols for Distributed Shared Memory Systems Using
Stochastic Modeling," In: Proceedings of the 24th Annual International Conference on Parallel
Processing, IEEE, New York (August 1995).

[Wu and Fuchs 1989] Wu, K. L., and Fuchs, W. K., "Recoverable Distributed Shared Virtual
Memory: Memory Coherence and Storage Structures," In: Proceedings of the 19th International
Symposium on Fault-Tolerant Computing, pp. 520-527 (June 1989).

[Yen et al, 1985] Yen, D. W. L., Yen, W.C., and Fu, K., "Data Coherence Problem in a Multicache
System," IEEE Transactions on Computers, Vol. C-34, No.1, pp. 56-65, New York, NY
(1985).

[Zhou et al. 1990] Zhou, S., Stumm, M., and McInerney, T., "Extending Distributed Shared
Memory to Heterogeneous Environments," In: Proceedings ofthe 10th International Conference
on Distributed Computing Systems, IEEE, New York, pp. 30-37 (May-June 1990).

[Zhou et al. 1992] Zhou, S., Stumm, M., Li, K., and Wortman, D., "Heterogeneous Distributed
Shared Memory," IEEE Transactions on Parallel and Distributed Systems, Vol. 13, No.5, New
York, NY, pp. 540-554 (1992).

Chap. 5 • Pointers to Bibliographies on the Internet

POINTERS TO 818UOGRAPHIES ON THE INTERNET

Bibliography containing references on Distributed Shared Memory can be found at:

ftp:ftp.cs.umanitoba.calpublbibliographieslParallelJdsm.html

Bibliography containing references on Distributed Memory Systems can be found at:

ftp:ftp.cs.umanitoba.calpublbibliographies/ParalleUdistmem.htrnl

281

Bibliography containing references on Cache Memories and Related Topics can be
found at:

ftp:ftp.cs.umanitoba.calpublbibliographieslMisc/cache.html

Bibliography containing references on Single Address Space Operating Systems (SASOS)
and Related Topics can be found at:

ftp:ftp.cs.umanitoba.calpublbibliographies/Os/sasos.html

CHAPTER 6

SynchronizQtion

6.1 INTRODUOION

A distributed system consists of a collection of distinct processes that are spatially
separated and run concurrently. In systems with multiple concurrent processes , it is
economical to share the system resources (hardware or software) among the concurrently
executing processes. In such a situation, sharing may be cooperative or competitive. That
is, since the number of available resources in a computing system is restricted , one process
must necessarily influence the action of other concurrently executing processes as it
competes for resources. For example, for a resource (such as a tape drive) that cannot be
used simultaneously by multiple processes, a process willing to use it must wait if another
process is using it. At times, concurrent processes must cooperate either to achieve the
desired performance of the computing system or due to the nature of the computation
being performed. Typical examples of process cooperation involve two processes that bear
a producer-consumer or client-server relationship to each other. For instance, a client
process and a file server process must cooperate when performing file access operations .
Both cooperative and competitive sharing require adherence to certain rules of behavior
that guarantee that correct interaction occurs . The rules for enforcing correct interaction
are implemented in the form of synchronization mechanisms . This chapter presents

282

Sec. 6.2 • Clock Synchronization 283

synchronization mechanisms that are suitable for distributed systems. In particular, the
following synchronization-related issues are described:

• Clock synchronization

• Event ordering

• Mutual exclusion

• Deadlock

• Election algorithms

6.2 ClOCK SYNCHRONIZATION

Every computer needs a timer mechanism (called a computer clock) to keep track of
current time and also for various accounting purposes such as calculating the time spent
by a process in CPU utilization, disk I/(), and so on, so that the corresponding user can
be charged properly. In a distributed system, an application may have processes that
concurrently run on rnultiple nodes of the system. For correct results, several such
distributed applications require that the clocks of the nodes are synchronized with each
other. For example, for a distributed on-line reservation system to be fair, the only
remaining seat booked almost simultaneously from two different nodes should be offered
to the client who booked first, even if the time difference between the two bookings is very
small. It may not be possible to guarantee this if the clocks of the nodes of the system are
not synchronized. In a distributed system, synchronized clocks also enable one to measure
the duration of distributed activities that start on one node and terminate on another node,
for instance, calculating the time taken to transmit a message from one node to another at
any arbitrary time. It is difficult to get the correct result in this case if the clocks of the
sender and receiver nodes are not synchronized. There are several other applications of
synchronized clocks in distributed systems. Some good examples of such applications
may be found in [Liskov 1993].

The discussion above shows that it is the job of a distributed operating system
designer to devise and use suitable algorithms for properly synchronizing the clocks of a
distributed system. This section presents a description of such algorithms. However, for a
better understanding of these algorithms, we will first discuss how computer clocks are
implemented and what arc the main issues in synchronizing the clocks of a distributed
system.

6.2.1 How Computer Clocks Are Implemented

A computer clock usually consists of three components-a quartz crystal that oscillates at
a well-defined frequency, a counter register, and a constant register. The constant register
is used to store a constant value that is decided based on the frequency of oscillation of
the quartz crystal. The counter register is used to keep track of the oscillations of the
quartz crystal. That is, the value in the counter register is decremented by 1 for each
oscillation of the quartz crystal. When the value of the counter register becomes zero, an

284 Chap. 6 • Synchronization

interrupt is generated and its value is reinitialized to the value in the constant register.
Each interrupt is called a clock tick.

To make the computer clock function as an ordinary clock used by us in our day-to­
day life, the following things are done:

1. The value in the constant register is chosen so that 60 clock ticks occur in a
second.

2. The computer clock is synchronized with real time (external clock). For this, two
more values are stored in the system-a fixed starting date and time and the
number of ticks. For example, in UNIX, time begins at 0000 on January 1, 1970.
At the time of initial booting, the system asks the operator to enter the current date
and time. The system converts the entered value to the number of ticks after the
fixed starting date and time. At every clock tick, the interrupt service routine
increments the value of the number of ticks to keep the clock running.

6.2.1 Drifting or Clocks

A clock always runs at a constant rate because its quartz crystal oscillates at a well-defined
frequency. However, due to differences in the crystals, the rates at which two clocks run
are normally different from each other. The difference in the oscillation period between
two clocks might be extremely small, but the difference accumulated over many
oscillations leads to an observable difference in the times of the two clocks, no matter how
accurately they were initialized to the same value. Therefore, with the passage of time, a
computer clock drifts from the real-time clock that was used for its initial setting. For
clocks based on a quartz crystal, the drift rate is approximately 10-6

, giving a difference
of 1 second every 1,000,000 seconds, or 11.6 days [Coulouris et al. 1994]. Hence a
computer clock must be periodically resynchronized with the real-time clock to keep it
nonfaulty. Even nonfaulty clocks do not always maintain perfect time. A clock is
considered nonfaulty if there is a bound on the amount of drift from real time for any given
finite time interval.

More precisely, let us suppose that when the real time is t, the time value of a clock
p is Cp(t). If all clocks in the world were perfectly synchronized, we would have Cp(t) =
t for all p and all t. That is, if C denotes the time value of a clock, in the ideal case dCldt
should be 1. Therefore, if the maximum drift rate allowable is p, a clock is said to be
nonfaulty if the following condition holds for it:

dC
l-p~-~l+p

dt

As shown in Figure 6.1, after synchronization with a perfect clock, slow and fast
clocks drift in opposite directions from the perfect clock. This is because for slow clocks
dCldt < 1 and for fast clocks dCldt > 1.

A distributed system consists of several nodes, each with its own clock, running at
its own speed. Because of the nonzero drift rates of all clocks, the set of clocks of a
distributed system do not remain well synchronized without some periodic resynchroniza-

Slowclock region

dC<1
dt

Sec. 6.2 • Clock Synchronization

Q)

E
.~

.x:
oo
[5

Fastclockregion

dC>1
dt

Perfect clock

dC - 1
dt -

285

Fig. 6.1 Slow, perfect, and fast clocks. Realtime

tion. This means that the nodes of a distributed system must periodically resynchronize
their local clocks to maintain a global time base across the entire system. Recall from
Figure 6.1 that slow and fast clocks drift in opposite directions from the perfect clock.
Therefore, of two clocks, if one is slow and one is fast, at a time at after they were
synchronized, the maximum deviation between the time value of the two clocks will be
2pat. Hence, to guarantee that no two clocks in a set of clocks ever differ by more than
0, the clocks in the set must be resynchronized periodically, with the time interval between
two synchronizations being less than or equal to 0/2p. Therefore, unlike a centralized
system in which only the computer clock has to be synchronized with the real-time clock,
a distributed system requires the following types of clock synchronization:

1. Synchronization ofthe computer clocks with real-time (or external) clocks. This
type of synchronization is mainly required for real-time applications. That is, external
clock synchronization allows the system to exchange information about the timing of
events with other systems and users.

An external time source that is often used as a reference for synchronizing computer
clocks with real time is the Coordinated Universal Time (UTC). The UTC is an
international standard. Many standard bodies disseminate UTe signals by radio,
telephone, and satellite. For instance, the WWV radio station in the United States and the
Geostationary Operational Environmental Satellites (GEOS) are two such standard
bodies. Commercial devices (called time providers) are available to receive and interpret
these signals. Computers equipped with time provider devices can synchronize their
clocks with these timing signals.

2. Mutual (or internal) synchronization ofthe clocks ofdifferent nodes ofthe system.
This type of synchronization is mainly required for those applications that require a
consistent view of time across all nodes of a distributed system as well as for the
measurement of the duration of distributed activities that terminate on a node different
from the one on which they start.

Note that externally synchronized clocks are also internally synchronized. However,
the converse is not true because with the passage of time internally synchronized clocks
may drift arbitrarily far from external time.

286 Chap. 6 • Synchronization

6.1.3 Clock SynchronlzQtlon Issues

We have seen that no two clocks can be perfectly synchronized. Therefore, in
practice, two clocks are said to be synchronized at a particular instance of time if the
difference in time values of the two clocks is less than some specified constant 8.
The difference in time values of two clocks is called clock skew. Therefore, a set of
clocks are said to be synchronized if the clock skew of any two clocks in this set is
less than 8.

Clock synchronization requires each node to read the other nodes' clock values.
The actual mechanism used by a node to read other clocks differs from one
algorithm to another. However, regardless of the actual reading mechanism, a node
can obtain only an approximate view of its clock skew with respect to other nodes'
clocks in the system. Errors occur mainly because of unpredictable communication
delays during message passing used to deliver a clock signal or a clock message
from one node to another. A minimum value of the unpredictable communication
delays between two nodes can be computed by counting the time needed to prepare,
transmit, and receive an empty message in the absence of transmission errors and
any other system load. However, in general, it is rather impossible to calculate the
upper bound of this value because it depends on the amount of communication and
computation going on in parallel in the system, on the possibility that transmission
errors will cause messages to be transmitted several times, and on other random
events, such as page faults, process switches, or the establishment of new commu­
nication routes.

An important issue in clock synchronization is that time must never run
backward because this could cause serious problems, such as the repetition of certain
operations that may be hazardous in certain cases. Notice that during synchronization
a fast clock has to be slowed down. However, if the time of a fast clock is
readjusted to the actual time all at once, it may lead to running the time backward
for that clock. Therefore, clock synchronization algorithms are normally designed to
gradually introduce such a change in the fast running clock instead of readjusting it
to the correct time all at once. One way to do this is to make the interrupt routine
more intelligent. When an intelligent interrupt routine is instructed by the clock
synchronization algorithm to slow down its clock, it readjusts the amount of time to
be added to the clock time for each interrupt. For example, suppose that if 8 msec is
added to the clock time on each interrupt in the normal situation, when slowing
down, the interrupt routine only adds 7 msec on each interrupt until the correction
has been made. Although not necessary, for smooth readjustment, the intelligent
interrupt routine may also advance its clock forward, if it is found to be slow, by
adding 9 msec on each interrupt, instead of readjusting it to the correct time all at
once.

6.1.4 Clock SynchronlzQtlon Algorithms

Clock synchronization algorithms may be broadly classified as centralized and
distributed.

Sec. 6.2 • Clock Synchronization 287

Centralized Algorithms

In centralized clock synchronization algorithms one node has a real-time receiver. This
node is usually called the time server node, and the clock time of this node is regarded as
correct and used as the reference time. The goal of the algorithm is to keep the clocks of
all other nodes synchronized with the clock time of the time server node. Depending on
the role of the time server node, centralized clock synchronization algorithms are again of
two types-passive time server and active time server.

Passive Time Server Centralized Algorithm. In this method, each node
periodically (with the interval between two periods being less than or equal to 8/2p) sends
a message ("time = ?") to the time server. When the time server receives the message, it
quickly responds with a message ("time = T"), where T is the current time in the clock of
the time server node. Let us assume that when the client node sends the "time =?"
message, its clock time is To, and when it receives the "time = T" message, its clock time
is T). Since To and T) are measured using the same clock, in the absence of any other
information, the best estimate of the time required for the propagation of the message
"time = T" from the time server node to the client's node is (T 1 - To)/2. Therefore, when
the reply is received at the client's node, its clock is readjusted to' T+(T1 - To)/2.

Since there may be unpredictable variation in the message propagation time between
two nodes, (T) - To)/2 is not a very good estimate of the time to be added to T for
calculating the current time of the client's node clock. Several proposals have been made
to improve this estimated value. Two such methods are described below. The first one
assumes the availability of some additional information and the second one assumes that
no additional information is available:

1. In this method, it is assumed that the approximate time taken by the time server
to handle the interrupt and process a "time =?" request message is known. Let this time
be equal to 1. Then a better estimate of the time taken for propagation of the message
"time = J'" from the tirne server node to the client's node would be (T) - To-/)/2.
Therefore, in this method, when the reply is received at the client's node, its clock is
readjusted to T + (T) - To- I)/2.

2. This method was proposed by Cristian [1989]. In this method, several
measurements of T) - To are made, and those measurements for which T) - To exceeds
some threshold value are considered to be unreliable and discarded. The average of the
remaining measurements is then calculated, and half of the calculated value is used as the
value to be added to T. Alternatively, the measurement for which the value of T1- To is
minimum is considered to be the 1110st accurate one, and half of this value is used as the
value to be added to T. One limitation of this approach is the need to restrict the number
of measurements for estimating the value to be added to T, since these are directly related
to the message traffic generated and the overhead imposed by the algorithm.

Active Time Server Centralized Algorithm. In the passive time server
approach, the time server only responds to requests for time from other nodes. On the other
hand, in the active time server approach, the time server periodically broadcasts its clock
time ("time = T"). The other nodes receive the broadcast message and use the clock time in

288 Chap. 6 • Synchronization

the message for correcting their own clocks. Each node has a priori knowledge of the
approximate time (To) required for the propagation of the message "time =T" from the time
sever node to its own node. Therefore, when the broadcast message is received at a node, the
node's clock is readjusted to the time T+ To. A major drawback of this method is that it is not
fault tolerant. If the broadcast message reaches too late at a node due to some
communication fault, the clock of that node will be readjusted to an incorrect value. Another
drawback of this approach is that it requires broadcast facility to be supported by the
network.

Another active time server algorithm that overcomes the drawbacks of the above
algorithm is the Berkeleyalgorithm. It was proposed by Gusella and Zatti [1989] for internal
synchronization of clocks of a group of computers running the Berkeley UNIX. In this
algorithm, the time server periodically sends a message ("time = ?") to all the computers in
the group. On receiving this message, each computer sends back its clock value to the time
server. The time server has a priori knowledge of the approximate time required for the
propagation of a message from each node to its own node. Based on this knowledge, it first
readjusts the clock values of the reply messages. It then takes efault-tolerant averageof the
clock values of all the computers (including its own). To take the fault-tolerant average, the
time server chooses a subset of all clock values that do not differ from one another by more
than a specified amount, and the average is taken only for the clock values in this subset.
This approach eliminates readings from unreliable clocks whose clock values could have a
significant adverse effect if an ordinary average was taken.

The calculated average is the current time to which all the clocks should be
readjusted. The time server readjusts its own clock to this value. However, instead of
sending the calculated current time back to the other computers, the time server sends the
amount by which each individual computer's clock requires adjustment. This can be a
positive or a negative value and is calculated based on the knowledge the time server has
about the approximate time required for the propagation of a message from each node to
its own node.

Centralized clock synchronization algorithms suffer from two major drawbacks:

I. They are subject to single-point failure. If the time server node fails, the clock
synchronization operation cannot be performed. This makes the system unreli­
able. Ideally, a distributed system should be more reliable than its individual
nodes. If one goes down, the rest should continue to function correctly.

2. From a scalability point of view it is generally not acceptable to get all the time
requests serviced by a single time server. In a large system, such a solution puts
a heavy burden on that one process.

Distributed algorithms overcome these drawbacks.

Distributed Algorithms

Recall that externally synchronized clocks are also internally synchronized. That is, if
each node's clock is independently synchronized with real time, all the clocks of the
system remain mutually synchronized. Therefore, a simple method for clock synchroniza-

Sec. 6.2 • Clock Synchronization 289

tion may be to equip each node of the system with a real-time receiver so that each node's
clock can be independently synchronized with real time. Multiple real-time clocks (one
for each node) are normally used for this purpose.

Theoretically, internal synchronization of clocks is not required in this approach.
However, in practice, due to the inherent inaccuracy of real-time clocks, different real­
time clocks produce different time. Therefore, internal synchronization is normally
performed for better accuracy. One of the following two approaches is usually used for
internal synchronization in this case.

Global Averaging Distributed Algorithms. In this approach, the clock process
at each node broadcasts its local clock time in the form of a special "resync" message
when its local time equals To + iR for some integer i, where To is a fixed time in the past
agreed upon by all nodes and R is a system parameter that depends on such factors as the
total number of nodes in the system, the maximum allowable drift rate, and so on. That
is, a resync message is broadcast from each node at the beginning of every fixed-length
resynchronization interval. However, since the clocks of different nodes run at slightly
different rates, these broadcasts will not happen simultaneously from all nodes.

After broadcasting the clock value, the clock process of a node waits for time T,
where T is a parameter to be determined by the algorithm. During this waiting period, the
clock process collects the resync messages broadcast by other nodes. For each resync
message, the clock process records the time, according to its own clock, when the message
was rcceived. At the end of the waiting period, the clock process estimates the skew of its
clock with respect to each of the other nodes on the basis of the times at which it received
resync messages. It then computes a fault-tolerant average of the estimated skews and uses
it to correct the local clock before the start of the next resynchronization interval.

The global averaging algorithms differ mainly in the manner in which the fault­
tolerant average of the estimated skews is calculated. Two commonly used algorithms are
described here:

1. The simplest algorithm is to take the average of the estimated skews and use it as
the correction for the local clock. However, to limit the impact of faulty clocks on the
average value, the estimated skew with respect to each node is compared against a
threshold, and skews greater than the threshold are set to zero before computing the
average of the estimated skews.

2. In another algorithm, each node limits the impact of faulty clocks by first
discarding the m highest and m lowest estimated skews and then calculating the average
of the remaining skews, which is then used as the correction for the local clock. The value
of m is usually decided based on the total number of clocks (nodes).

Localized Averaging Distributed Algorithms. The global averaging algo­
rithms do not scale well because they require the network to support broadcast facility and
also because of the large amount of message traffic generated. Therefore, they are suitable
for small networks, especially for those that have fully connected topology (in which each
node has a direct communication link to every other node). The localized averaging
algorithms attempt to overcome these drawbacks of the global averaging algorithms. In

290 Chap. 6 • Synchronization

this approach, the nodes of a distributed system are logically arranged in some kind of
pattern, such as a ring or a grid. Periodically, each node exchanges its clock time with its
neighbors in the ring, grid, or other structure and then sets its clock time to the average
of its own clock time and the clock times of its neighbors.

6.2.5 (ase Study: Distributed nme Service

Two popular services for synchronizing clocks and for providing timing information over
a wide variety of interconnected networks are the Distributed Time Service (DTS) and the
Network Time Protocol (NTP). DTS is a component of DCE (Distributed Computing
Environment) that is used to synchronize clocks of a network of computers running DCE,
and NTP is used in the Internet for clock synchronization. DTS is briefly described below
as a case study of clock synchronization. Details of NTP can be found in [Mills 1991].

In a DeE system, each node is configured as either a DTS client or a DTS server. On
each DTS client node runs a daemon process called a DTS clerk. To synchronize its local
clock, each DTS clerk makes requests to the DTS servers on the same LAN for timing
information. The DTS servers provide timing information to DTS clerks or to other DTS
servers upon request. To make them publicly known, each DTS server exports its name to
a LAN profile.

DTS does not define time as a single value. Instead, time is expressed as an interval
containing the correct time. By using intervals instead of values, DTS provides the users
with a clear idea of how far off the clock might be from reference time.

A DTS clerk synchronizes its local clock in the following manner. It keeps track of
the drift rate of its local clock, and when it discovers that the time error of the local clock
has exceeded the allowable limit, it initiates resynchronization by doing an RPC with all
the DTS servers on its LAN requesting for the time. Each DTS server that receives this
message returns a reply containing a time interval based on the server's own clock. From
the received replies, the DTS clerk computes its new value of time in the following
manner (see Fig. 6.2 for an example). At first, time intervals that do not intersect with the
majority of time intervals are considered to be faulty and discarded. For instance, in Figure
6.2, the value supplied by DTS server 3 is discarded. Then the largest intersection falling
within the remaining intervals is computed. The DTS clerk then resets its clock value to
the midpoint of this interval. However, instead of resetting the clock to the calculated
value all at once, an intelligent interrupt routine is used to gradually introduce such a
change in the clock time.

Note that due to the use of the method of intersection for computing new clock value,
it is recommended that each LAN in a DCE system should have at least three DTS servers
to provide time information.

In addition to DTS clerks synchronizing their clocks with DTS servers, the DTS
servers of a LAN also communicate among themselves periodically to keep their clocks
mutually synchronized. They also use the algorithm of Figure 6.2 to compute the new
clock value.

So far we have seen how clocks of nodes belonging to the same LAN are
synchronized. However, a DCE system. may have several interconnected LANs. In this
case, a need arises to synchronize the clocks of all nodes in the network. For this, one DTS

Sec. 6.2 • Clock Synchronization

Timeintervals
supplied by

DTSserver 1

DTS server2

DTS server3

DTSserver4

Discarded
interval

-----.~ Time

291

Largestintersection falling
within the remaining intervals I

I

Midpoint of this interval
is the newclockvalue

Fig.6.2 Computation of new clock value in DTS from obtained time intervals.

server of each LAN is designated. a global server. Although not necessary for external
synchronization, it is recommended that each global server be equipped with a time
provider device to receive UTe signals. The global servers of all LANs communicate
among themselves periodically to keep their clocks mutually synchronized. Since the
global server of a LAN is also a DTS server, its clock value is automatically used to
synchronize the clocks of other nodes in the LAN. In this manner, DTS synchronizes the
clocks of all nodes in the network.

DTS is transparent to DeE users in the sense that users cannot access DTS directly.
However, DTS application programming interface (API) provides a rich set of library
procedures to allow DTS applications to perform time-related activities to control their
executions. In particular, there are library procedures to get the current time, to convert
between binary and ASCII representations of time, to manipulate binary time information,
to compare two times, to perform arithmetic operations on times, to get time zone
information, and so on. In addition, there is an administrative interface to DTS that allows
a system administrator to perform administrative operations such as configuring and
dynamically reconfiguring the number of DTS clients and DTS servers on a LAN,

292 Chap. 6 • Synchronization

changing a DTS server into a global server when the global server of a LAN fails, and
setting the maximum inaccuracy and error tolerance to decide how frequently
resynchronization should take place.

6.3 EVENT ORDERING

Keeping the clocks in a distributed system synchronized to within 5 or 10msec is an
expensive and nontrivial task. Lamport [1978] observed that for most applications it is not
necessary to keep the clocks in a distributed system synchronized. Rather, it is sufficient
to ensure that all events that occur in a distributed system be totally ordered in a manner
that is consistent with an observed behavior.

For partial ordering of events, Lamport defined a new relation called happened­
before and introduced the concept of logical clocks for ordering of events based on the
happened-before relation. He then gave a distributed algorithm extending his idea of
partial ordering to a consistent total ordering of all the events in a distributed system. His
idea is presented below.

6.3.1 HOPfMn.d-kfor. Ralotlon

The happened-before relation (denoted by ~) on a set of events satisfies the following
conditions:

1. If a and b are events in the same process and a occurs before b, then a ~ b.

2. If a is the event of sending a message by one process and b is the event of the
receipt of the same message by another process, then a ~ b. This condition holds
by the law of causality because a receiver cannot receive a message until the
sender sends it, and the time taken to propagate a message from its sender to its
receiver is always positive.

3. If a ~ b and b ~ c, then a~ c. That is, happened-before is a transitive relation.

Notice that in a physically meaningful system, an event cannot happen before itself,
that is, a ~ a is not true for any event a. This implies that happened-before is an
irreflexive partial ordering on the set of all events in the system.

In terms of the happened-before relation, two events a and b are said to be concurrent
if they are not related by the happened-before relation. That is, neither a ~ b nor b --7 a
is true. This is possible if the two events occur in different processes that do not exchange
messages either directly or indirectly via other processes. Notice that this definition of
concurrency simply means that nothing can be said about when the two events happened
or which one happened first. That is, two events are concurrent if neither can causally
affect the other. Due to this reason, the happened-before relation is sometimes also known
as the relation of causal ordering.

A space-time diagram (such as the one shown in Fig. 6.3) is often used to illustrate
the concepts of the happened-before relation and concurrent events. In this diagram, each

Sec. 6.3 • Event Ordering 293

Process P1 Process P2 Process P3

Fig.6.3 Space-time diagram for three processes.

vertical line denotes a process, each dot on a vertical line denotes an event in the
corresponding process, and each wavy line denotes a message transfer from one process
to another in the direction of the arrow.

From this space-time diagram it is easy to see that for two events a and b, a ~ b is
true if and only if there exists a path from a to b by moving forward in time along process
and message lines in the direction of the arrows. For example, some of the events of
Figure 6.3 that are related by the happened-before relation are

elO ~ ell

e30 ~ e24

ell ~ e32

e20 ~ e24 ell ~ e23 e2l ~ el3

(since e30 -) e22 and e22 ~ e24)

(since e II ~ e23' e23 ~ e24' and e24 ~ e32)

On the other hand, two events a and b are concurrent if and only if no path exists
either from a to b or frOITI b to a. For example, some of the concurrent events of Figure
6.3 are

6.3.2 logical Clocks Concept

To determine that an event a happened before an event b, either a common clock or
a set of perfectly synchronized clocks is needed. We have seen that neither of these is
available in a distributed system. Therefore, in a distributed system the happened-before
relation must be defined without the use of globally synchronized physical clocks.

294 Chap. 6 • Synchronization

Lamport [1978] provided a solution for this problem by introducing the concept of
logical clocks.

The logical clocks concept is a way to associate a timestamp (which may be simply
a number independent of any clock time) with each system event so that events that are
related to each other by the happened-before relation (directly or indirectly) can be
properly ordered in that sequence. Under this concept, each process P; has a clock C;
associated with it that assigns a number C,{a) to any event a in that process. The clock of
each process is called a logical clock because no assumption is made about the relation of
the numbers C;(a) to physical time. In fact, the logical clocks may be implemented by
counters with no actual timing mechanism. With each process having its own clock, the
entire system of clocks is represented by the function C, which assigns to any event b the
number C(b), where C(b) = Cj(b) if b is an event in process Pj.

The logical clocks of a system can be considered to be correct if the events of the
system that are related to each other by the happened-before relation can be properly
ordered using these clocks. Therefore, the timestamps assigned to the events by the system
of logical clocks must satisfy the following clock condition:

For any two events a and b. if a ~ b. then C(a) < C(b).

Note that we cannot expect the converse condition to hold as well, since that would
imply that any two concurrent events must occur at the same time, which is not necessarily
true for all concurrent events.

6.3.3 Impl.m.ntatlon of logical Clocks

From the definition of the happened-before relation, it follows that the clock condition
mentioned above is satisfied if the following conditions hold:

Cl: If a and b are two events within the same process Pi and a occurs before b, then
Ci(a) < Cj(b).

C2: If a is the sending of a message by process Pi and b is the receipt of that message
by process Pj, then C;(a) < Cj(b).

In addition to these conditions, which are necessary to satisfy the clock condition, the
following condition is necessary for the correct functioning of the system:

C3: A clock C, associated with a process Pi must always go forward, never
backward. That is, corrections to time of a logical clock must always be made by
adding a positive value to the clock, never by subtracting value.

Obviously, any algorithm used for implementing a set of logical clocks must satisfy
all these three conditions. The algorithm proposed by Lamport is given below.

To meet conditions CI, C2, and C3, Lamport's algorithm uses the following
implementation rules:

Sec. 6.3 • Event Ordering 295

IRl: Each process Pi increments C, between any two successive events.

IR2: If event a is the sending of a message m by process Pi' the message m contains
a timestamp Tm =Cia), and upon receiving the message m a process Pj sets C, greater
than or equal to its present value but greater than Tm :

Rule IR1 ensures that condition C1 is satisfied and rule IR2 ensures that condition C2
is satisfied. Both IR 1 and IR2 ensure that condition C3 is also satisfied. Hence the simple
implementation rules IR1 and IR2 guarantee a correct system of logical clocks.

The implementation of logical clocks can best be illustrated with an example. How
a system of logical clocks can be implemented either by using counters with no actual
timing mechanism or by using physical clocks is shown below.

Implementation of Logical Clocks by Using Counters

As shown in Figure 6.4, two processes PI and P2 each have a counter C I and C2,

respectively. The counters act as logical clocks. At the beginning, the counters are
initialized to zero and a process increments its counter by 1 whenever an event occurs in
that process. If the event is sending of a message (e.g., events e04 and e14), the process
includes the incremented value of the counter in the message. On the other hand, if the
event is receiving of a message (e.g., events e)3 and e~g), instead of simply incrementing
the counter by 1, a check is made to see if the incremented counter value is less than or
equal to the timestamp in the received message. If so, the counter value is corrected and

e13 C2=-35
since 3 is less than
timestamp 4

Process P2

--"'--------.........- C2 =0

C1=8 eoa

C1=7 eo7

C1=6 Bos

Q) C1=5 Bos
E
t= C1=4 904

C1=3 e03

C1=2 Bo2

C1=1 eo1

C1=O

Process Pt

Fig. 6.4 Example illustrating the implementation of logical clocks by using counters.

296 Chap. 6 • Synchronization

set to 1 plus the timestamp in the received message (e.g., in event eJ3). If not, the counter
value is left as it is (e.g., in event e08).

Implementation of Logical Clocks by Using Physical
Clocks

The implementation of the example of Figure 6.4 by using physical clocks instead of
counters is shown in Figure 6.5. In this case, each process has a physical clock associated
with it. Each clock runs at a constant rate. However, the rates at which different clocks run
are different. For instance, in the example of Figure 6.5, when the clock of process PI has
ticked 10 times, the clock of process P2 has ticked only 8 times.

Physical clock times
aftercorrections (if any)

Physicalclock times if
no correctionswere made

e08 101

110 88 93

907 100 80 85 614

806 90 72 77

90s 80 64 69

CD 70 56 61 913
E
i=

Bo4 60 48------------- ..
50 40--------------

803 40 32 812--------------
802 30 24--- --------------

20 16 911-------------- ----eo1 10 8--------------
0 0

Process P1 ProcessP2

Fig. 6.5 Example illustrating the implementation of logical clocks by using physical
clocks.

To satisfy condition C I, the only requirement is that the physical clock of a
process must tick at least once between any two events in that process. This is usually
not a problem because a computer clock is normally designed to click several times
between two events that happen in quick succession. To satisfy condition C2, for a

Sec. 6.4 • Mutual Exclusion 297

message-sending event (e.g., events e04 and eI4), the process sending the message
includes its current physical time in the message. And for a message-receiving event
(e.g., events el3 and e~g), a check is made to see if the current time in the receiver's
clock is less than or equal to the time included in the message. If so, the receiver's
physical clock is corrected by fast forwarding its clock to be 1 more than the time
included in the message (e.g., in event e13). If not, the receiver's clock is left as it is
(e.g., in event e~g).

6.3.4 Total Or.rlng of Ev.nts

We have seen how a system of clocks satisfying the clock condition can be used to
order the events of a system based on the happened-before relationship among the
events. We simply need to order the events by the times at which they occur.
However, recall that the happened-before relation is only a partial ordering on the set
of all events in the system. With this event-ordering scheme, it is possible that two
events a and b that are not related by the happened-before relation (either directly or
indirectly) may have the same timestamps associated with them. For instance, if
events a and b happen respectively in processes PI and P2' when the clocks of both
processes show exactly the same time (say 100), both events will have a timestamp of
100. In this situation, nothing can be said about the order of the two events.
Therefore, for total ordering on the set of all system events, an additional requirement
is desirable: No two events ever occur at exactly the same time. To fulfill this
requirement, Lamport proposed the use of any arbitrary total ordering of the processes.
For example, process identity numbers may be used to break ties and to create a total
ordering of events. For instance, in the situation described above, the timestamps
associated with events a and b will be 100.001 and 100.002, respectively, where the
process identity numbers of processes PI and. P2 are 001 and 002, respectively. Using
this method, we now have a way to assign a unique timestamp to each event in a
distributed system to provide a total ordering of all events in the system.

6.4 MUTUAL EXCLUSION

There are several resources in a system that must not be used simultaneously by multiple
processes if program operation is to be correct. For example, a file must not be
simultaneously updated by multiple processes. Similarly, use of unit record peripherals
such as tape drives or printers must be restricted to a single process at a time. Therefore,
exclusive access to such a. shared resource by a process must be ensured. This
exclusiveness of access is called mutual exclusion between processes. The sections of a
program that need exclusive access to shared resources are referred to as critical sections.
For mutual exclusion, means are introduced to prevent processes from executing
concurrently within their associated critical sections.

An algorithm for implementing mutual exclusion must satisfy the following
requirements:

298 Chap. 6 • Synchronization

1. Mutual exclusion. Given a shared resource accessed by multiple concurrent
processes, at any time only one process should access the resource. That is, a
process that has been granted the resource must release it before it can be granted
to another process.

2. No starvation. If every process that is granted the resource eventually releases it,
every request must be eventually granted.

In single-processor systems, mutual exclusion is implemented using semaphores,
monitors, and similar constructs. The three basic approaches used by different algorithms
for implementing mutual exclusion in distributed systems are described below. Interested
readers who want to explore further on this topic may refer to [Agarwal and Abbadi 1991,
Bulgannawar and Vaidya 1995, Rayna11991, Sanders 1987, Suzuki and Kasami 1985]. To
simplify our description, we assume that each process resides at a different node.

6.4. 1 C.ntrallzM Approach

In this approach, one of the processes in the system is elected as the coordinator
(algorithms for electing a coordinator are described later in this chapter) and coordinates
the entry to the critical sections. Each process that wants to enter a critical section must
first seek permission from the coordinator. If no other process is currently in that critical
section, the coordinator can immediately grant permission to the requesting process.
However, if two or more processes concurrently ask for permission to enter the same
critical section, the coordinator grants permission to only one process at a time in
accordance with some scheduling algorithm. After executing a critical section, when a
process exits the critical section, it must notify the coordinator so that the coordinator can
grant permission to another process (if any) that has also asked for permission to enter the
same critical section.

An algorithm for mutual exclusion that uses the centralized approach is described
here with the help of an example. As shown in Figure 6.6, let us suppose that there is a
coordinator process (Pc:) and three other processes PI' P2, and P3 in the system. Also
assume that the' requests are granted in the first-come, first-served order for which the
coordinator maintains a request queue. Suppose PI wants to enter a critical section for
which it sends a request message to Pc. On receiving the request message, Pc checks to
see whether some other process is currently in that critical section. Since no other process
is in the critical section, P; immediately sends back a reply message granting permission
to Pl. When the reply arrives, PI enters the critical section.

Now suppose that while PI is in the critical section P2 asks for permission to enter
the same critical section by sending a request message to Pc. Since PI is already in the
critical section, P2 cannot be granted permission. The exact method used to deny
permission varies from one algorithm to another. For our algorithm, let us assume that the
coordinator does not return any reply and the process that made the request remains
blocked until it receives the reply from the coordinator. Therefore, P, does not send a reply
to P2 immediately and enters its request in the request queue.

Again suppose that while PI is still in the critical section P3 also sends a request
message to P; asking for permission to enter the same critical section. Obviously, P3

Sec. 6.4 • Mutual Exclusion

Fig. 6.6 Example illustrating the centralized
approach for mutual exclusion.

299

Q)
en
«S
Q)
Q)
a:
e

L.....- I Initial status

~__--.l~ Status after@

~ Status after @

~ ~~ St~usafterQD

____---'1 Status after <V
Status of

request queue

cannot be granted permission, so no reply is sent immediately to P3 by PC' and its request
is queued in the request queue.

Now suppose P I exits the critical section and sends a release message to P; releasing
its exclusive access to the critical section. On receiving the release message, P; takes the
first request from the queue of deferred requests and sends a reply message to the
corresponding process, granting it permission to enter the critical section. Therefore, in
this case, P; sends a reply message to Pz.

On receiving the reply message, P2 enters the critical section, and when it exits the
critical section, it sends a release message to Pc. Again P; takes the first request from the
request queue (in this case request of P3) and sends a reply message to the corresponding
process (P3)' On receiving the reply message, P3 enters the critical section, and when it
exits the critical section, it sends a release message to Pc. Now since there are no more
requests, P, keeps waiting for the next request message.

This algorithm ensures mutual exclusion because, at a time, the coordinator allows
only one process to enter a critical section. The algorithm also ensures that no starvation
will occur because of the use of first-come, first-served scheduling policy. The main
advantages of this algorithm is that it is simple to implement and requires only three
messages per critical section entry: a request, a reply, and a release. However, it suffers
from the usual drawbacks of centralized schernes. That is, a single coordinator is subject

300 Chap. 6 • Synchronization

to a single point of failure and can become a performance bottleneck in a large system.
Furthermore, for failure handling, means must be provided to detect a failure of the
coordinator, to elect a unique new coordinator, and to reconstruct its request queue before
the computation can be resumed.

6.4.1 Dlstribut.d Approach

In the distributed approach, the decision making for mutual exclusion is distributed across
the entire system. That is, all processes that want to enter the same critical section cooperate
with each other before reaching a decision on which process will enter the critical section
next. The first such algorithm was presented by Lamport [1978] based on his event-ordering
scheme described in Section ·6.3. Later, Ricart and Agrawala [1981] proposed a more
efficient algorithm that also requires there be a total ordering of all events in the system. As
an example of a distributed algorithm for mutual exclusion, Ricart and Agrawala's
algorithm is described below. In the following description we assume that Lamport's event­
ordering scheme is used to generate a unique timestamp for each event in the system.

When a process wants to enter a critical section, it sends a request message to all
other processes. The message contains the following information:

1. The process identifier of the process

2. The name of the critical section that the process wants to enter

3. A unique timestamp generated by the process for the request message

On receiving a request message, a process either immediately sends back a reply
message to the sender or defers sending a reply based on the following rules:

1. If the receiver process is itself currently executing in the critical section, it simply
queues the request message and defers sending a reply.

2. If the receiver process is currently not executing in the critical section but is
waiting for its turn to enter the critical section, it compares the timestamp in the
received request message with the timestamp in its own request message that it
has sent to other processes. If the timestamp of the received request message is
lower, it means that the sender process made a request before the recciver process
to enter the critical section. Therefore, the receiver process immediately sends
back a reply message to the sender. On the other hand, if the receiver process's
own request message has a lower timestamp, the receiver queues the received
request message and defers sending a reply message.

3. If the receiver process neither is in the critical section nor is waiting for its turn
to enter the critical section, it immediately sends back a reply message.

A process that sends out a request message keeps waiting for reply messages from
other processes. It enters the critical section as soon as it has received reply messages from
all processes. After it finishes executing in the critical section, it sends reply messages to
all processes in its queue and deletes them from its queue.

Sec. 6.4 • Mutual Exclusion 301

To illustrate how the algorithm works, let us consider the example of Figure 6.7.
There are four processes PI, P2' P3' and P4' While process P4 is in a critical section,
processes PI and P2 want to enter the same critical section. To get permission from other
processes, processes PI and P2 send request messages with timestamps 6 and 4
respectively to other processes (Fig. 6.7(a)).

Now let us consider the situation in Figure 6.7(b). Since process P4 is already in the
critical section, it defers sending a reply message to PI and P2 and enters them in its
queue. Process P3 is currently not interested in the critical section, so it sends a reply

TS=6

Fig. 6.7 Example illustrating the distributed algorithm for mutual exclusion: (a) status
when processes P I and P2 send request messages to other processes while
process P4 is already in the critical section; (b) status while process P4 is
still in critical section; (c) status after process P4 exits critical section; (d)
status after process P2 exits critical section.

302 Chap. 6 • Synchronization

message to both PI and Pz. Process Pz defers sending a reply message to PI and enters
P1 in its queue because the timestamp (4) in its own request message is less than the
timestamp (6) in PI'S request message. On the other hand, PI immediately replies to P2

because the timestamp (6) in its request message is found to be greater than the timestamp
(4) of P2'S request message.

Next consider the situation in Figure 6.7{c). When process P4 exits the critical
section, it sends a reply message to all processes in its queue (in this case to processes PI
and P2) and deletes them from its queue. Now since process P2 has received a reply
message from all other processes (PI' P3 , and P4), it enters the critical section. However,
process PI continues to wait since it has not yet received a reply message from process

P2 •

Finally, when process P2 exits the critical section, it sends a reply message to PI (Fig.
6.7(d». Now since process PI has received a reply message from all other processes, it
enters the critical section.

The algorithm guarantees mutual exclusion because a process can enter its critical
section only after getting permission from all other processes, and in the case of a conflict
only one of the conflicting processes can get permission from all other processes. The
algorithm also ensures freedom from starvation since entry to the critical section is
scheduled according to the timestamp ordering. It has also been proved by Ricart and
Agrawala [1981] that the algorithm is free from deadlock. Furthermore, if there are n
processes, the algorithm requires n-I request messages and n-l reply messages, giving a
total of 2(n-I) messages per critical section entry. However, this algorithm suffers from
the following drawbacks because of the requirement that all processes must participate in
a critical section entry request by any process:

1. In a system having n processes, the algorithm is liable to n points of failure
because if one of the processes fails, the entire scheme collapses. This is because the failed
process will not reply to request messages that will be falsely interpreted as denial of
permission by the requesting processes, causing all the requesting processes to wait
indefinitely.

Tanenbaum [1995] proposed a simple modification to the algorithm to solve this
problem. In the modified algorithm, instead of remaining silent by deferring the sending
of the reply message in cases when permission cannot be granted immediately, the
receiver sends a "permission denied" reply message to the requesting process and then
later sends an OK message when the permission can be granted. Therefore, a reply
message (either "permission denied" or OK) is immediately sent to the requesting process
in any case. If the requesting process does not receive a reply from a process within a fixed
timeout period, it either keeps trying until the process replies or concludes that the process
has crashed. When the requesting process receives a "permission denied" reply message
from one or more of the processes, it blocks until an OK message is received from all of
them.

2. The algorithm requires that each process know the identity of all the processes
participating in the mutual-exclusion algorithm. This requirement makes implementation
of the algorithm complex because each process of a group needs to dynamically keep track

Sec. 6.4 • Mutual Exclusion 303

of the processes entering or leaving the group. That is, when a process joins a group, it
must receive the names of all the other processes in the group, and the name of the new
process must be distributed to all the other processes in the group. Similarly, when a
process leaves the group or crashes, all members of that group must be informed so that
they can delete it from their membership list. Updating of the membership list is
particularly difficult when request and reply messages are already being exchanged among
the processes of the group. Therefore, the algorithm is suitable only for groups whose
member processes are fixed and do not change dynamically.

3. In this algorithm, a process willing to enter a critical section can do so only after
communicating with all other processes and getting permission from them. Therefore,
assuming that the network can handle only one message at a time, the waiting time from
the moment the process makes a request to enter a critical region until it actually enters
the critical section is the time for exchanging 2(n-1) messages in a system having n
processes. This waiting time may be large if there are too many processes in the system.
Therefore, the algorithm is suitable only for a small group of cooperating processes.

Some improvements to this algorithm have been proposed in the literature. For
instance, a simple improvement is possible by using the idea of majority consensus
rather than the consensus of all other processes for critical section entry [Tanenbaum
1995]. That is, in an algorithm that uses the idea of majority consensus, a process can
enter a critical section as soon as it has collected permission from a majority of the
other processes, rather than from all of them. Note that in this algorithm a process can
grant permission for a critical section entry to only a single process at a time. Two other
possible improvements to the algorithm can be found in [Carvalho and Roucairol 1983,
Maekawa et al. 1987).

6.4.3 Token-Passing Approach

In this method, mutual exclusion is achieved by using a single token that is circulated
among the processes in the system. A token is a special type of message that entitles its
holder to enter a critical section. For fairness, the processes in the system are logically
organized in a ring structure, and the token is circulated from one process to another
around the ring always in the same direction (clockwise or anticlockwise).

The algorithm works as follows. When a process receives the token, it checks if it
wants to enter a critical section and acts as follows:

• If it wants to enter a critical section, it keeps the token, enters the critical section,
and exits from the critical section after finishing its work in the critical section. It
then passes the token along the ring to its neighbor process. Note that the process
can enter only one critical section when it receives the token. If it wants to enter
another critical section, it must wait until it gets the token again.

• If it does not want to enter a critical section, it just passes the token along the ring
to its neighbor process. Therefore" if none of the processes is interested in entering
a critical section, the token simply keeps circulating around the ring.

304 Chap. 6 • Synchronization

Mutual exclusion is guaranteed by the algorithm because at any instance of time only
one process can be in a critical section, since there is only a single token. Furthermore,
since the ring is unidirectional and a process is permitted to enter only one critical section
each time it gets the token, starvation cannot occur. In this algorithm the number of
messages per critical section entry may vary from 1 (when every process always wants to
enter a critical section) to an unbounded value (when no process wants to enter a critical
section). Moreover, for a total of n processes in the system, the waiting time from the
moment a process wants to enter a critical section until its actual entry may vary from the
time needed to exchange 0 to n-l token-passing messages. Zero token-passing messages
are needed when the process receives the token just when it wants to enter the critical
section, whereas n-I messages are needed when the process wants to enter the critical
section just after it has passed the token to its neighbor process.

The algorithm, however, requires the handling of the following types of failures:

1. Process failure. A process failure in the system causes the logical ring to break.
In such a situation, a new logical ring must be established to ensure the continued
circulation of the token among other processes. This requires detection of a failed process
and dynamic reconfiguration of the logical ring when a failed process is detected or when
a failed process recovers after failure.

Detection of a failed process can be easily done by making it a rule that a
process receiving the token from its neighbor always sends an acknowledgment
message to its neighbor. With this rule, a process detects that its neighbor has failed
when it sends the token to it but does not receive the acknowledgment message within
a fixed timeout period. On the other hand, dynamic reconfiguration of the logical ring
can be done by maintaining the current ring configuration with each process. When a
process detects that its neighbor has failed, it removes the failed process from the
group by skipping it and passing the token to the process after it (actually to the next
alive process in the sequence). When a process becomes alive after recovery, it simply
informs the neighbor previous to it in the ring so that it gets the token during the next
round of circulation.

2. Lost token. If the token is lost, a new token must be generated. Therefore, the
algorithm must also have mechanisms to detect and regenerate a lost token. One method
to solve this problem is to designate one of the processes on the ring as a "monitor"
process. The monitor process periodically circulates a "who has the token?" message on
the ring. This.message rotates around the ring from one process to another. All processes
simply pass this message to their neighbor process, except the process that has the token
when it receives this message. This process writes its identifier in a special field of the
message before passing it to its neighbor. When the message returns to the monitor
process after one complete round, it checks the special field of the message. If there is no
entry in this field, it concludes that the token has been lost, generates a new token, and
circulates it around the ring.

There are two problems associated with this method-the monitor process may
itself fail and the "who has the token?" message may itself get lost. Both problems may
be solved by using more than one monitor processes. Each monitor process independ­
ently checks the availability of the token on the ring. However, when a monitor process

Sec. 6.5 • Deadlock 305

detects that the token is lost, it holds an election with other monitor processes to decide
which monitor process will generate and circulate a new token (election algorithms are
described later in this chapter). An election is needed to prevent the generation of
multiple tokens that may happen when each monitor process independently detects that
the token is lost, and each one generates a new token.

6.5 DEADLOCK

We saw in the previous section that there are several resources in a system for which
the resource allocation policy must ensure exclusive access by a process. Since a system
consists of a finite number of units of each resource type (for example, three printers,
six tape drives, four disk drives, two CPUs, etc.), multiple concurrent processes
normally have to compete to use a resource. In this situation, the sequence of events
required to use a resource by a process is as follows:

I. Request. The process first makes a request for the resource. If the requested
resource is not available, possibly because it is being used by another process, the
requesting process must wait until the requested resource is allocated to it by the
system. Note that if the system has multiple units of the requested resource type, the
allocation of any unit of the type will satisfy the request. Also note that a process may
request as many units of a resource as it requires with the restriction that the number
of units requested may not exceed the total number of available units of the
resource.

2. Allocate. The system allocates the resource to the requesting process as soon
as possible. It maintains a table in which it records whether each resource is free or
allocated and, if it is allocated, to which process. If the requested resource is currently
allocated to another process, the requesting process is added to a queue of processes
waiting for this resource. Once the system allocates the resource to the requesting
process, that process can exclusively use the resource by operating on it.

3. Release. After the process has finished using the allocated resource, it releases the
resource to the system. The system table records are updated at the time of allocation and
release to reflect the current status of availability of resources.

The request and release of resources are system calls, such as requestand release for
devices, open and close for files, and allocate and free for memory space. Notice that of
the three operations, allocate is the only operation that the system can control. The other
two operations are initiated by a process.

With the above-mentioned pattern of request, allocation, and release of resources,
if the total request made by multiple concurrent processes for resources of a certain
type exceeds the amount available, some strategy is needed to order the assignment of
resources in time. Care must be taken that the strategy applied cannot cause a
deadlock, that is, a situation in which competing processes prevent their mutual
progress even though no single one requests more resources than are available. It may

306 Chap. 6 • Synchronization

happen that some of the processes that entered the waiting state (because the requested
resources were not available at the time of request) will never again change state,
because the resources they have requested are held by other waiting processes. This
situation is calJed deadlock, and the processes involved are said to be deadlocked.
Hence, deadlock is the state of permanent blocking of a set of processes each of
which is waiting for an event that only another process in the set can cause. All the
processes in the set block permanently because all the processes are waiting and hence
none of them will ever cause any of the events that could wake up any of the other
members of the set.

A deadlock situation can be best explained with the help of an example. Suppose
that a system has two tape drives TI and T2 and the resource allocation strategy is
such that a requested resource is immediately allocated to the requester if the resource
is free. Also suppose that two concurrent processes PI and P2 make requests for the
tape drives in the following order:

1. PI requests for one tape drive and the system allocates TI to it.

2. P2 requests for one tape drive and the system allocates T2 to it.

3. PI requests for one more tape drive and enters a waiting state because no tape
drive is presently available.

4. P2 requests for one more tape drive and it also enters a waiting state because no
tape drive is presently available.

From now on, PI and P2 will wait for each other indefinitely, since PI will not
release T I until it gets T2 to carry out its designated task, that is, not until P2 has
released T2 , whereas Pz will not release T2 until it gets TI . Therefore, the two
processes are in a state of deadlock. Note that the requests made by the two processes
are totally legal because each is requesting for only two tape drives, which is the total
number of tape drives available in the system. However, the deadlock problem occurs
because the total requests of both processes exceed the total number of units for the
tape drive and the resource allocation policy is such that it immediately allocates a
resource on request if the resource is free.

In the context of deadlocks, the term "resource" applies not only to physical
objects (such as tape and disk drives, printers, CPU cycles, and memory space) but
also to logical objects (such as a locked record in a database, files, tables, semaphores,
and monitors). However, these resources should permit only exclusive use by a single
process at a time and should be nonpreemptable. A nonpreemptable resource is one
that cannot be taken away from a process to which it was allocated until the process
voluntarily releases it. If taken away, it has ill effects on the computation already
performed by the process. For example, a printer is a nonpreemptable resource
because taking the printer away from a process that has started printing but has not
yet completed its printing job and giving it to another process may produce printed
output that contains a mixture of the output of the two processes. This is certainly
unacceptable.

Sec. 6.5 • Deadlock

6.5.1 Necessary Conditions for Deadlock

307

Coffman et al. [1971] stated that the following conditions are necessary for a deadlock
situation to occur in a system:

1. Mutual-exclusion condition. If a resource is held by a process, any other process
requesting for that resource must wait until the resource has been released.

2. Hold-and-wait condition. Processes are allowed to request for new resources
without releasing the resources that they are currently holding.

3. No-preemption condition. A resource that has been allocated to a process becomes
available for allocation to another process only after it has been voluntarily
released by the process holding it.

4. Circular-wait condition. Two or more processes must form a circular chain in
which each process is waiting for a resource that is held by the next member of
the chain.

All four conditions must hold simultaneously in a system for a deadlock to occur. If
anyone of them is absent, no deadlock can occur. Notice that the four conditions are not
completely independent because the circular-wait condition implies the hold-and-wait
condition. Although these four conditions are somewhat interrelated, it is quite useful to
consider them separately to devise methods for deadlock prevention.

6.5.2 Deadlock Modeling

Deadlocks can be modeled using directed graphs. Before presenting a graphical model for
deadlocks, some terminology from graph theory is needed:

1. Directed graph. A directed graph is a pair (N, E), where N is a nonempty set of
nodes and E is a set of directed edges. A directed edge is an ordered pair (a, b),
where a and b are nodes in N.

2. Path. A path is a sequence of nodes (a, b, c, ... , i, j) of a directed graph such that
(a, b), (b, c), ... , (i, j) are directed edges. Obviously, a path contains at least two
nodes.

3. Cycle. A cycle is a path whose first and last nodes are the same.

4. Reachable set. The reachable set of a node a is the set of all nodes b such that a
path exists from a to b.

5. Knot. A knot. is a nonempty set K of nodes such that the reachable set of each node
in K is exactly the set K. A knot always contains one or more cycles.

An example of a directed graph is shown in Figure 6.8. The graph has a set of nodes
{a, b, c, d, e,f} and a set of directed edges {(a, b), (b, c), (c, d), (d, e), (e,j), if, a), (e,
b)}. It has two cycles (a, b, c, d, e, f, a) and (b, C, d, e, b). It also has a knot {a, b, C, d,
e,11 that contains the two cycles of the graph.

308 Chap. 6 • Synchronization

e
Fig. 6.8 A directed graph.

For deadlock modeling, a directed graph, called a resource allocation graph, is used
in which both the set of nodes and the set of edges are partitioned into two types, resulting
in the following graph elements:

1. Process nodes. A process node represents a process of the system. In a resource
allocation graph, it is normally shown as a circle, with the name of the process written
inside the circle (nodes PI' Pz, and P3 of Fig. 6.9).

2. Resource nodes. A resource node represents a resource of the system. In a
resource allocation graph, it is normally shown as a rectangle with the name of the
resource written inside the rectangle. Since a resource type R, may have more than one
unit in the system, each such unit is represented as a bullet within the rectangle. For
instance, in the resource allocation graph of Figure 6.9, there are two units of resource R J ,

one unit of R2 , and three units of R3 •

3. Assignment edges. An assignment edge is a directed edge from a resource node to
a process node. It signifies that the resource is currently held by the process. In multiple
units of a resource type, the tail of an assignment edge touches one of the bullets in the
rectangle to indicate that only one unit of the resource is held by that process. Edges (R1 ,

PI), (RI , P3), and (R2 , P2) are the three assignment edges in the resource allocation graph
of Figure 6.9.

4. Request edges. A request edge is a directed edge from a process node to a resource
node. It signifies that the process made a request for a unit of the resource type and is
currently waiting for that resource. Edges (PI' R2) and (P2, RI) are the two request edges
in the resource allocation graph of Figure 6.9.

Sec. 6.S • Deadlock 309

G A process named Pi'

I: Rj I A resource Rj having 3 unitsin the system.

~ Process Piholding a unitof resource Rj'

~ Process Pi requesting for a unitof resource Rj'

Fig. 6.9 Resource allocation graph.

Constructing a Resource Allocation Graph

A resource allocation graph provides an overall view of the processes holding or waiting
for the various resources in the system. Therefore, the graph changes dynamically as the
processes in the system request for or release resources or the system allocates a resource
to a process. That is, when a process Pi requests for a unit of resource type Rj , a request
edge (Pi' Rj) is inserted in the resource allocation graph. When this request can be
fulfilled, a unit of resource R, is allocated to Pi and the request edge (Pi' Rj) is
instantaneously transformed to an assignment edge (Rj , Pi). Later, when Pi releases Rj , the
assignment edge (Rj , Pi) is deleted from the graph.

Note that in many systems the resource allocation graph is not constructed in the
above-mentioned manner. Rather it is used as a tool for making resource allocation
decisions that do not lead to deadlock. In these systems, for the available resources,
different request/release sequences are simulated step by step, and after every step, the
graph is checked for deadlock. Later, in the resource allocation strategy, only those

310 Chap. 6 • Synchronization

sequences are allowed that do not lead to deadlock. Therefore, in these systems, the
resource allocation graph is basically used to formulate a deadlock free resource allocation
strategy.

Necessary and Sufficient Conditions for Deadlock

In a resource allocation graph, a cycle is a necessary condition for a deadlock to exist. That
is, if the graph has no cycles, then it represents a state that is free from deadlock. On the
other hand, if the graph contains a cycle, a deadlock may exist. Therefore, the presence of
a cycle in a general resource allocation graph is a necessary but not a sufficient condition
for the existence of deadlock. For instance, the resource allocation graph of Figure 6.9
contains a cycle (Ph Rz, PZ , R h P,) but does not represent a deadlock state. This is
because when P3 completes using R) and releases it, RI can be allocated to Pz. With both
R1 and R2 allocated to it, P2 can now complete its job after which it will release both R I

and R2 . As soon as R2 is released, it can be allocated to PI' Therefore, all processes can
finish their job one by one.

The sufficient condition for deadlock is different for the following different cases:

1. A cycle in the graph is both a necessary and a sufficient condition for deadlock if
all the resource types requested by the processes forming the cycle have only a single unit
each.

For example, the resource allocation graph of Figure 6.10 shows a deadlock state in
which processes PI and Pz are deadlocked. Notice that in this graph, although there are
three units of resource R3 , it is not involved in the cycle (P I , Rz, Pz, R I , PI)' Both R I and
Rz that are involved in the cycle have only one unit each. Therefore, the cycle represents
a deadlock state.

2. A cycle in the graph is a necessary but not a sufficient condition for deadlock if
one or more of the resource types requested by the processes forming the cycle have more
than one unit. In this case, a knot is a sufficient condition for deadlock.

Fig.6.10 A cy.cle representing a deadlock.

Sec. 6.5 • Deadlock 311

We have already seen that the cycle (PI' R2 , P2 , R}, PI) in the graph of Figure 6.9
doesnot represent a deadlock. This is because resource typeRI has twounitsand thereare
no knots in the graph. Nowsuppose that in thesamegraphP3 requests forR2 anda request
edge (P3' Rz) is added to the graph. The modified graph is shown in Figure 6.11. This
graph has two cycles (PI' R2 , P2 , «; PI) and (P3, R2 , P2 , R}, P3) and a knot {PI' Pz,
P3 , R., R2 } . Since the graph contains a knot, it represents a deadlock state in which
processes p., Pz, and P3 are deadlocked.

Fig. 6.11 A knot representing a deadlock.

In terms of the resource allocation graph, the necessary and sufficient conditions for
deadlock can be summarized as follows:

• A cycle is a necessary condition for deadlock.

• If there is only a single unit of each resource t.ype invol ved in the cycle, a cycle
is both a necessary and a sufficient condition for a deadlock to exist.

• If one or more of the resource types involved in the cycle have more than one unit,
a knot is a sufficient condition for a deadlock to exist.

Wait-for Graph

When all the resource types have only a single unit each, a simplified form of resource
allocation graph is normally used. The simplified graph is obtained from the original
resource allocation graph by removing the resource nodes and collapsing the appropriate
edges. This simplificat.ion is based on the observation that a resource can always be
identified by its current owner (process holding it). Figure 6.12 shows an example of a
resource allocation graph and its simplified form.

The simplified graph is commonly known as a wait-for graph (Wf-'G) because it
clearly shows which processes are waiting for which other processes. For instance, in the
WFG of Figure 6.12(b), processes P I and P3 arc waiting for P2 and process Pz is waiting
for P J • Since WFG is constructed only when each resource type has only a single unit, a
cycle is both a necessary and sufficient condition for deadlock in a WFG.

312 Chap. 6 • Synchronization

.....---- Simplified to

--+

(a) (b)

Fig.6.12 A conversion from a resource allocation graph to a WFG:
(0) resource allocation graph; (b) corresponding WFG.

6.5.3 Handling Deadlocks In Distributed Systems

In principle, deadlocks in distributed systems are similar to deadlocks in centralized
systems. Therefore, the description of deadlocks presented above holds good both for
centralized and distributed systems. However, handling of deadlocks in distributed
systems is more complex than in centralized systems because the resources, the processes,
and other relevant information are scattered on different nodes of the system.

Three commonly used strategies to handle deadlocks are as follows:

1. Avoidance. Resources are carefully allocated to avoid deadlocks.

2. Prevention. Constraints are imposed on the ways in which processes request
resources in order to prevent deadlocks.

3. Detection and recovery. Deadlocks are allowed to occur and a detection algorithm
is used to detect them. After a deadlock is detected, it is resolved by certain
means.

Although the third strategy is the most commonly used one in distributed systems, for
completion, the other two strategies will also be briefly described.

At this point, it may also be noted that some people prefer to make a distinction
between two kinds of distributed deadlocks-resource deadlocks and communication
deadlocks. As already described, a resource deadlock occurs when two or more
processes wait permanently for resources held by each other. On the other hand, a
communication deadlock occurs among a set of processes when they are blocked
waiting for messages from other processes in the set in order to start execution but
there are no messages in transit between them. When there are no messages in transit
between any pair of processes in the set, none of the processes will ever receive a

Sec. 6.5 • Deadlock 313

message. This implies that all processes in the set are deadlocked. Communication
deadlocks can be easily modeled by using WFGs to indicate which processes are
waiting to receive messages from which other processes. Hence, the detection of
communication deadlocks can be done in the same manner as that for systems having
only one unit of each resource type.

Deadlock Avoidance

Deadlock avoidance methods use some advance knowledge of the resource usage of
processes to predict the future state of the system for avoiding allocations that can
eventually lead to a deadlock. Deadlock avoidance algorithms are usually in the following
steps:

1. When a process requests for a resource, even if the resource is available for
allocation, it is not immediately allocated to the process. Rather, the system
simply assumes that the request is granted.

2. With the assumption made in step 1 and advance knowledge of the resource usage
of processes, the system performs some analysis to decide whether granting the
process's request is safe or unsafe.

3. The resource is allocated to the process only when the analysis of step 2 shows
that it is safe to do so; otherwise the request is deferred.

Since the algorithms for deadlock avoidance are based on the concept of safe and
unsafe states, it is important to look at the notion of safety in resource allocation. A system
is said to be in a safe state if it is not in a deadlock state and there exists some ordering
of the processes in which the resource requests of the processes can be granted to run all
of them to completion. For a particular safe state there may be many such process
orderings. Any ordering of the processes that can guarantee the completion of all the
processes is called a safe sequence. The formation of a safe sequence is based on the idea
of satisfying the condition that, for any process Pi in a safe sequence, the resources that
Pi can still request can be satisfied by the currently available resources plus the resources
held by all the processes lying before Pi in the safe sequence. This condition guarantees
that process Pi can be run to completion because if the resources that Pi needs are not
immediately available, Pi can wait until all other processes in the sequence lying before
Pi have finished. When they have finished, Pi can obtain all its needed resources and run
to completion. A system state is said to be unsafe if no safe sequence exists for that
state.

The concept of safe and unsafe states can be best illustrated with the help of an
example. Let us assume that in a system there are a total of 8 units of a particular resource
type for which three processes PI' Pz, and P3 are competing. Suppose the maximum units
of the resource required by PJ, Pz, and P3 are 4, 5, and 6, respectively. Also suppose that
currently each of the three processes is holding 2 units of the resource. Therefore, in the
current state of the system, 2 units of the resource are free. The current state of the system
can be modeled as shown in Figure 6.13(a).

314 Chap. 6 • Synchronization

P1 P2 P3

I Max 4 5 6

I Holds 2 2 2

(a) Free =2

P1 P2 P3

I Max 4 5 6

I Holds 4 2 2

(b) Free =0 ,
P1 P2 P3

I Max - 5 6

I Holds 0 2 2

/ ~
P1 P2 P3 P1 P2 P3

I Max - 5 6 I Max - 5 6

f Holds 0 5 2 I Holds 0 2 6

(d) Free =1 (~ Free =0
,

"
P1 P2 P3 P1 P2 P3

I Max - - 6 t Max - 5 -

I Holds a 0 2 I Holds 0 2 a
(e) Free = 6 (g) Free = 6

Fig. 6.13 Demonstration that the state in (a) is a safe state and has two safe sequences.

Now let us try to find out whether the state of Figure 6.13(a) is safe or unsafe. The
analysis performed in Figure 6.13 shows that this state is safe because there exists a
sequence of allocations that allows all processes to complete. In fact, as shown in the
figure, for this state there are two safe sequences, (Ph P2' P3) and (Ph P3' P2) . Let us
see the scheduling of the resource units for the first of these two safe sequences. Starting
from the state of Figure 6.13(a), the scheduler could simply run PI exclusively, until it
asked for and got two more units of the resource that are currently free, leading to the state
of Figure 6.13(b). When PI completes and releases the resources held by it, we get the
state of Figure 6.13(c). Then the scheduler chooses to run P2' eventually leading to the
state of Figure 6.13(d). When P2 completes and releases the resources held by it, the
system enters the state of Figure 6.13(e). Now with the available resources, P3 can be run
to completion. The initial state of Figure 6.13(a) is a. safe state because the system, by
careful scheduling, can avoid deadlock. This example also shows that for a particular state
there may be more than one safe sequence.

Sec. 6.5 • Deadlock 315

If resource allocation is not done cautiously, the system may move from a safe state
to an unsafe state. For instance, let us consider the example shown in Figure 6.14. Figure
6.14(a) is the same initial state as that of Figure 6.l3(a). This time, suppose process P2
requests for one additional unit of the resource and the same is allocated to it by the
system. The resulting system state is shown in Figure 6.14(b). The system is no longer in
a safe state because we only have one unit of the resource free, which is not sufficient to
run any of the three processes to completion. Therefore, there is no safe sequence for the
state of Figure 6.14(b). Thus the decision to allocate one unit of the resource to P2 moved
the system from a safe state to an unsafe state.

Fig. 6.14 Demonstration that an allocation
[nay move the system from a safe
to an unsafe state.

P1 P2 P3

I Max 4 5 6

I Holds 2 2 2

(a) Free =2
,

P1 P2 P3

I Max 4 5 6

I Holds 2 3 2

(b) Free = 1

It is important to note the following remarks about safe and unsafe states:

1. The initial state in which no resources are yet allocated and all are available (free)
is always a safe state.

2. From a safe state, the system can guarantee that all processes can be run to
completion.

3. An unsafe state is not a deadlock state, but it may lead to a deadlock state. That
is, from an unsafe state, the system cannot guarantee that all processes can be run
to completion.

Deadlock avoidance algorithms basically perform resource allocation in such a
manner as to ensure that the system will always remain in a safe state. Since the initial
state of a system is always a safe state, whenever a process requests a resource that is
currently available, the system checks to find out if the allocation of the resource to the
process will change the state of the system from safe to unsafe. If no, the request is
immediately granted; otherwise it is deferred.

Although theoretically attractive, deadlock avoidance algorithms are rarely used in
practice due to the following reasons:

1. The algorithms work on the assumption that advance knowledge of the resource
requirements of the various processes is available. However, in practice, processes rarely
know in advance what their maximum resource needs will be. Modern operating systems

316 Chap. 6 • Synchronization

are attempting to provide more and more user-friendly interfaces, and as a result, it is
becoming common to have users who do not have the slightest idea about what their
resource needs are.

2. The algorithms also assume that the number of processes that compete for a
particular resource is fixed and known in advance. However, in practice, the number of
processes is not fixed but dynamically varies as new users log in and log out.

3. The algorithms also assume that the number of units of a particular resource type
is always fixed and known in advance. However, in practice, the actual number of units
available may change dynamically due to the sudden breakdown and repair of one or more
units.

4. The manner in which these algorithms work restricts resource allocation too
severely and consequently degrades the system performance considerably. This is because
the algorithms first consider the worst possible case and then guarantee that the system is
deadlock free even in the worst situation. This worst situation may arise but would be very
unlikely. Thus many safe requests could be turned down.

The practical limitations of deadlock avoidance algorithms become more severe in a
distributed system because the collection of information needed for making resource
allocation decisions at one point is difficult and inefficient. Therefore, the deadlock
avoidance strategy is never used in distributed operating systems.

Deadlock Prevention

This approach is based on the idea of designing the system in such a way that deadlocks
become impossible. It differs from avoidance and detection in that no runtime testing of
potential allocations need be performed.

We saw that mutual-exclusion, hold-and-wait, no-preemption, and circular-wait are
the four necessary conditions for a deadlock to occur in a system. Therefore, if we can
somehow ensure that at least one of these conditions is never satisfied, deadlocks will be
impossible. Based on this idea, there are three important deadlock-prevention methods­
collective requests, ordered requests, and preemption. The first one denies the hold-and­
wait condition, the second one denies the circular-wait condition, and the third one denies
the no-preemption condition.

The mutual-exclusion condition can also be denied for some nonsharable resources
by devising an alternative way of using them. For instance, the following example, taken
from [Tanenbaum 1992], illustrates how this can be done for a printer. A printer is a
nonsharable resource. However, by spooling printer output, several processes can generate
output at the same time. The spooled outputs are .transferred one by one to the printer by
the printer daemon. Therefore, the printer daemon is the only process that actually
requests for the physical printer. Since the daemon never requests for any other resources,
deadlock for the printer becomes structurally impossible. Unfortunately, in general, it is
not possible to prevent deadlocks by denying the mutual-exclusion condition because
some resources are intrinsically nonsharable and it is not possible to devise an alternative

Sec. 6.5 • Deadlock 317

way of using them. Therefore, denial of the mutual-exclusion condition for deadlock
prevention is rarely used. The other three methods that are more commonly used are
described below.

Collective Requests. This method denies the hold-and-wait condition by
ensuring that whenever a process requests a resource, it does not hold any other resources.
One of the following resource allocation policies may be used to ensure this:

1. A process must request all of its resources before it begins execution. If all the
needed resources are available, they are allocated to the process so that the process can run
to completion. If one or more of the requested resources are not available, none will be
allocated and the process would just wait.

2. Instead of requesting all its resources before its execution starts, a process may
request resources during its execution if it obeys the rule that it requests resources only
when it holds no other resources. If the process is holding some resources, it can adhere
to this rule by first releasing all of them and then re-requesting all the necessary
resources.

The second policy has the following advantages over the first one:

1. In practice, many processes do not know how many resources they will need until
they have started running. For such cases, the second approach is more useful.

2. A long process may require some resources only toward the end of its execution.
In the first policy, the process will unnecessarily hold these resources for the entire
duration of its execution. In the second policy, however, the process can request
for these resources only when it needs them.

The collective requests method of deadlock prevention is simple and effective but has
the following problems:

1. It generally has low resource utilization because a process may hold many
resources but may not actually use several of them for fairly long periods.

2. It may cause starvation of a process that needs many resources, but whenever it
makes a request for the needed resources, one or more of the resources is not
available.

3. The method also raises an accounting question. When a process holds resources
for extended periods during which they are not needed, it is not clear who should
pay the charge for the idled resources.

Ordered Requests. In this method, each resource type is assigned a unique global
number to impose a total ordering of all resource types. Now a resource allocation policy
is used according to which a process can request a resource at any time, but the process
should not request a resource with a number lower than the number of any of the resources
that it is already holding. That is, if.a process holds a resource type whose number is i, it
may request a resource type having the number j only ifj »i. If the process needs several

318 Chap. 6 • Synchronization

units of the same resource type, it must issue a single request for all the units. It has been
proven that with this rule the resource allocation graph can never have cycles (denying the
circular-wait condition), and hence deadlock is impossible.

Note that this algorithm does not require that a process must acquire all its resources
in strictly increasing sequence. For instance, a process holding two resources having
numbers 3 and 7 may release the resource having number 7 before requesting a resource
having number 5. This is allowed because when the process requests for the resource
having number 5, it is not holding any resource having number larger than 5.

The ordering of resources is decided according to the natural usage pattern of the
resources. For example, since the tape drive is usually needed before the printer, it would
be reasonable to assign a lower number to the tape drive than to the printer. However, the
natural ordering is not always the same for all jobs. Therefore, a job that matches the
decided ordering can be expected to use resources efficiently but others would waste
resources. Another difficulty is that once the ordering is decided, it will stay for a long
time because the ordering is coded into programs. Reordering will require reprogramming
of several jobs. However, reordering may become inevitable when new resources are
added to the system. Despite these difficulties, the method of ordered requests is one of
the most efficient methods for handling deadlocks.

Preemption. A preemptable resource is one whose state' can be easily saved and
restored later. Such a resource can be temporarily taken away from the process to which
it is currently allocated without causing any harm to the computation performed so far by
the process. The CPU registers and main memory are examples of preemptable resources.
If the resources are preemptable, deadlocks can be prevented by using either of the
following resource allocation policies that deny the no-preemption condition:

1. When a process requests for a resource that is not currently available, all the
resources held by the process are taken away (preempted) from it and the process is
blocked. The process is unblocked when the resource requested by it and the resources
preempted from it become available and can be allocated to it.

2. When a process requests a resource that is not currently available, the system
checks if the requested resource is currently held by a process that is blocked, waiting for
some other resource. If so, the requested resource is taken away (preempted) from the
waiting process and given to the requesting process. Otherwise, the requesting process is
blocked and waits for the requested resource to become available. Some of the resources
that this process is already holding may be taken away (preempted) from it while it is
blocked, waiting for the allocation of the requested resource. The process is unblocked
when the resource requested by it and any other resource preempted from it become
available and can be allocated to it.

In general, the applicability of this method for deadlock prevention is extremely
limited because it works only for preemptable resources. However, the availability of
atomic transactions and global timestamps makes this method an attractive approach for
deadlock prevention in distributed and database transaction processing systems. The
transaction mechanism allows a transaction (process) to be aborted (killed) without any ill

Sec. 6.5 • Deadlock 319

effect (transactions are described in Chapter 9). This makes it possible to preempt
resources from processes holding them without any harm.

In the transaction-based deadlock prevention method, each transaction is assigned a
unique priority number by the system, and when two or more transactions compete for the
same resource, their priority numbers are used to break the tie. For example, Lamport's
algorithm may be used to generate systemwide globally unique timestamps, and each
transaction may be assigned a unique timestamp when it is created. A transaction's
timestamp may serve as its priority number; a transaction having lower value of timestamp
may have higher priority because it is older.

Rosenkrantz et at [1978] proposed the following deadlock prevention schemes based
on this idea:

1. Wait-die scheme. In this scheme, if a transaction 1'; requests a resource that is
currently held by another transaction 1), T, is blocked (waits) if its timestamp is lower than
that of 1); otherwise it is aborted (dies). For example, suppose that of the three
transactions T1, T2 , and T3 , 1'1 is the oldest (has the lowest timestamp value) and T3 is the
youngest (has the highest timestamp value). Now if T) requests a resource that is currently
held by T2 , T1 will be blocked and will wait until the resource is voluntarily released by
T2 • On the other hand, if T3 requests a resource held by T2 , T3 win be aborted.

2. Wait-wound scheme. In this scheme, if a transaction T, requests a resource
currently held by another transaction T, T, is blocked (waits) if its timestamp is larger than
that of 1); otherwise T, is aborted (wounded by T;). Once again considering the same
example of transactions T), T2 , and T), if TI requests a resource held by T2 , the resource
will be preempted by aborting T2 and will be given to 1'). On the other hand, if T3 requests
a resource held by T2 , T3 will be blocked and will wait until the resource is voluntarily
released by T2 .

Notice that both schemes favor older transactions, which is quite justified because, in
general, an older transaction has run for a longer period and has used more system
resources than a younger transaction. However, the manner in which the two schemes treat
a younger transaction is worth noticing. In the wait-die scheme, a younger transaction is
aborted when it requests for a resource held by an older transaction. The aborted
transaction will be restarted after a predetermined time and will be aborted again if the
older transaction is still holding the resource. This cycle may be repeated several times
before the younger transaction actually gets the resource. This problem of the wait-die
scheme can be solved by using an implementation mechanism that ensures that an aborted
transaction is restarted only when its requested resource becomes available.

On the other hand, in the wait-wound scheme, when a younger transaction is aborted
(wounded) by an older transaction, it will be restarted after a predetermined time, and this
time it will be blocked (will wait) if its preempted resource is being held by the older
transaction. Therefore, the implementation of the wait-wound scheme is simpler than the
wait-die scheme. Furthermore, to avoid starvation, it is important that in the
implementation of both schemes, a transaction should not be assigned a new timestamp
when it is restarted after being aborted (a younger transaction will become older as time
passes and will not be aborted again and again).

320 Chap. 6 • Synchronization

Deadlock Detection

In this approach for deadlock handling, the system does not make any attempt to prevent
deadlocks and allows processes to request resources and to wait for each other in an
uncontrolled manner. Rather, it uses an algorithm that keeps examining the state of the
system to determine whether a deadlock has occurred. When a deadlock is detected, the
system takes some action to recover from the deadlock. Some methods for deadlock
detection in distributed systems are presented below, and some of the ways to recover
from a deadlock situation are presented in the next section.

In principle, deadlock detection algorithms are the same in both centralized and
distributed systems. It is based on maintenance of information on resource allocation to
various processes in the form of a resource allocation graph and searching for a cyclelknot
in the graph depending on whether the system has single/multiple units of each 'resource
type. However, for simplicity, in the following description we consider only the case of a
single unit of each resource type. Therefore, the deadlock detection algorithms get
simplified to maintaining WFG and searching for cycles in the WFG.

The following steps may be followed to construct the WFG for a distributed
system:

1. Construct a separate WFG for each site of the system in the following manner.
Using the convention of Figure 6.9, construct a resource allocation graph for all
the resources located on this site. That is, in the resource allocation graph of a site,
a resource node exists for all the local resources and a process node exists for all
processes that are either holding or waiting for a resource of this site immaterial
of whether the process is local or nonlocal.

2. Convert the resource allocation graph constructed in step 1 to a corresponding WFG
by removing the resource nodes and collapsing the appropriate edges. It may be
noted that step 1 and this step are mentioned here only for clarity of presentation.
The actual algorithm may be designed to directly construct a WFG.

3. Take the union of the WFGs of all sites and construct a single global WFG.

Let us illustrate the procedure with the help of the simple example shown in Figure
6.15. Suppose that the system is comprised of only two sites (S. and S2) with SJ having
two resources R I and R2 and S2 having one resource R3 • Also suppose that there are three
processes (PI' P2 , P3) that are competing for the three resources in the following
manner:

• PI is holding R I and requesting for R3

• P2 is holding R2 and requesting for R.

• P3 is holding R3 and requesting for R2

The corresponding resource allocation graphs for the two sites are shown in Figure
6.15(a). Notice that processes PI and P3 appear in the graph of both the sites because they
have requested for resources on both sites. On the other hand, process P2 appears only in
the graph of site S I because both resources requested by it are on SI .

Sec. 6.5 • Deadlock

Fig.6.15 Illustration of the construction of a
WFO in a distributed system: (a)

resource allocation graphs of each
site; (b) WFGs corresponding to
graphs in (a); (c) global WFG by

taking the union of the two local
WFOs of (b).

321

~

P2

Site 51
(a)

Site 52

P1

Site 51
(b)

SiteS2

(c)

Figure 6.15(b) shows the corresponding WFGs for the two sites and Figure 6.15(c)
shows the global WFG obtained by taking the union of the local WFGs of the two sites.
Notice that although the local WFGs of the two sites do not contain any cycle, the global
WFG contains a cycle, implying that the system is in a deadlock state. Therefore, this
example shows that the local WFGs are not sufficient to characterize all deadlocks in a
distributed system and the construction of a global WFG by taking the union of all local
WFGs is required to finally conclude whether the system is in a state of deadlock or not.

The main difficulty in implementing deadlock detection in a distributed system is
how to maintain the WFG. Three commonly used techniques for organizing the WFG in
a distributed system are centralized, hierarchical, and distributed. These techniques are
described below. However, before we describe them, it may be noted that one of the most
important features of deadlock detection algorithms is correctness, which depends on the
following properties [Knapp 1987]:

I. Progress property. This property states that all deadlocks must be detected in a
finite amount of time.

2. Safety property. If a deadlock is detected, it must indeed exist. Message delays and
out-of-date WFGs sometimes cause false cycles to be detected, resulting in the
detection of deadlocks that do not actually exist. Such deadlocks are called
phantom deadlocks.

322 Chap. 6 • Synchronization

Centralized Approach for Deadlock Detection. In the centralized deadlock
detection approach, there is a local coordinator at each site that maintains a WFG for its local
resources, and there is a central coordinator (also known as a centralized deadlock detector)
that is responsible for constructing the union of all the individual WFGs. The central
coordinator constructs the global WFG from information received from the local
coordinators of all the sites. In this approach, deadlock detection is performed as follows:

1. If a cycle exists in the local WFG of any site, it represents a local deadlock. Such
deadlocks are detected and resolved locally by the local coordinator of the site.

2. Deadlocks involving resources at two or more sites get reflected as cycles in the
global WFG. Therefore, such deadlocks are detected and resolved by the central
coordinator.

In the centralized approach, the local coordinators send local state information to the
central coordinator in the form of messages. One of the following methods is used to
transfer information from local coordinators to the central coordinator:

1. Continuous transfer. A local coordinator sends a message providing the update
done in the local WFG whenever a new edge is added to or deleted from it.

2. Periodic transfer. To reduce the number of messages, a local coordinator
periodically (when a number of changes have occurred in its local WFG) sends a list
of edges added to or deleted from its WFG since the previous message was sent.

3. Transfer-on-request. A local coordinator sends a list of edges added to or deleted
from its WFG since the previous message is sent only when the central
coordinator makes a request for it. In this case, the central coordinator invokes the
cycle detection algorithm periodically and requests information from each site just
before invoking the algorithm.

Although the centralized deadlock detection approach is conceptually simple, it suffers
from several drawbacks. First, it is vulnerable to failures of the central coordinator. Hence
special provision for handling such faults have to be made. One approach is to provide a
back..up central coordinator that duplicates the job of the central coordinator. Second, the
centralized coordinator can constitute a performance bottleneck in large systems having too
many sites. Third, the centralized coordinator may detect false deadlocks. Below we
illustrate with a simple example how the algorithm may lead to the detection of false
deadlocks and then we describe a method to overcome this third drawback.

Let us consider the same system configuration as that of Figure 6.15 and this time
suppose that the three processes (PI' P2 , P3) compete for the three resources (R 1, R2 , R3)

in the following manner:

Step 1: P I requests for R I and R I is allocated to it.

Step 2: P2 requests for R2 and R2 is allocated to it.

Step 3: P3 requests for R3 and R3 is allocated to it.

Step 4: P2 requests for R1 and waits for it.

Sec. 6.5 • Deadlock

Step 5: P3 requests for Rz and waits for it.

Step 6: PI releases R1 and R, is allocated to Pz­
Step 7: P I requests for R3 and waits for it.

323

Assuming that the method of continuous transfer is employed by the algorithm, the
following sequence of messages will be sent to the central coordinator:

ml: from site SI to add the edge (RI , PI)

m2: from site SI to add the edge (Rz, Pz)

m-: from site S2 to add the edge (R3 , P3)

m4: from site S I to add the edge (P2' RI)

mi: from site SI to add the edge (P3 , Rz)

m.; from site SI to delete edges (R I , PI) and (Pz, R1) , and add edge (R), P2)

m7: from site 5z to add edge (PI' R3)

The resource allocation graphs maintained by the local coordinators of the two sites
and the central coordinator are shown in Figure 6.16 (for clarity of presentation, the
resource allocation graphs are shown instead of the WFGs). Figure 6.16(a) shows the
graphs after step 5, that is, after message ms has been received by the central coordinator,
and Figure 6.16(b) shows the graphs after message m-, has been received by the central
coordinator. The graph of the central coordinator in Figure 6.16(b) has no cycles,
indicating that the system is free from deadlocks. However, suppose that message m7 from
site Sz is received before message m6 from site 51 by the central coordinator. In this case,
the central coordinator's view of the system will be as shown in the resource allocation
graph of Figure 6.16(c). Therefore, the central coordinator will incorrectly conclude that
a deadlock has occurred and may initiate deadlock recovery actions. Although the above
example shows the possibility of detection of phantom deadlocks when the method of
continuous transfer of information is used, phantom deadlocks may even get detected in
the other two methods of information transfer due to incomplete or delayed
information.

One method to avoid the detection of false deadlocks is to use Lamport's
algorithm to append a unique global timestamp with each message. In our above
example, since message m- from site Sz to the central coordinator is caused by the
request from site S I (see step 7), message m- will have a later timestamp than
message m6' Now if the central coordinator receives message m- before m6 and
detects a false deadlock, before taking any action to resolve the deadlock, it first
confirms if the detected deadlock is a real one. For confirmation, it broadcasts a
message asking all sites if any site has a message with timestamp earlier than T for
updation of the global WFG. On receiving this message, if a site has a message with
timestamp earlier than T, it immediately sends it to the central coordinator; otherwise
it simply sends a negative reply. After receiving replies from all the sites, the central
coordinator updates the global WFG (if there are any update messages), and if the
cycle detected before still exists, it concludes that the deadlock is a real one and

324

Resource allocation
graphof the local
coordinator of site 81

Resource allocation
graphof the local
coordinator of site 52

(a)

Chap. 6 • Synchronization

Resource allocation
graphmaintained by
the centralcoordinator

R

Site 51 Site 52

(b)

Central coordinator
(c)

Central coordinator

Fig. 6.16 Local and global resource allocation graphs in the centralized deadlock
detection approach: (a) resource allocation graphs after step 5; (b) resource
allocation graphs after step 7; (c) resource allocation graph of the central
coordinator showing false deadlock if message m7 is received before m6 by
the central coordinator.

initiates recovery actions. Notice that in our above example, in reply to its broadcast
message, the central coordinator will receive message m6 from site S, and a negative
reply from site S2. Therefore, after final updation of the global graph, the central
coordinator's view of the system will change from that of Figure 6.16(c) to that in
Figure 6.16(b). Hence no deadlock resolution action will be initiated.

Hierarchical Approachfor Deadlock Detection. It has been observed that for
typical applications most WFG cycles are very short. In particular, experimental
measurements have shown that 90% of all deadlock cycles involve only two processes
[Gray et al. 1981]. Therefore, the centralized approach seems to be less attractive for most
real applications because of the significant time and message overhead involved in

Sec. 6.5 • Deadlock 325

assembling all the local WFGs at the central coordinator. Furthermore, to minimize
communications cost, in geographically distributed systems, deadlock should be detected
by a site located as close as possible to the sites involved in the cycle. But this is not
possible in the centralized approach. The hierarchical approach overcomes these and other
drawbacks of the centralized approach.

The hierarchical deadlock detection approach uses a logical hierarchy (tree) of
deadlock detectors. These deadlock detectors are called controllers. Each controller is
responsible for detecting only those deadlocks that involve the sites falling within its range
in the hierarchy. Therefore, unlike the centralized approach in which the entire global
WFG is maintained at a single site, in the hierarchical approach it is distributed over a
number of different controllers. Each site has its own local controller that maintains its
own local graph.

In the tree representing the hierarchy of controllers, the WF(i to be maintained by a
particular controller is decided according to the following rules:

1. Each controller that forms a leaf of the hierarchy tree maintains the local WFG of
a single site.

2. Each nonleaf controller maintains a WFG that is the union of the WFGs of its
immediate children in the hierarchy tree.

The lowest level controller that finds a cycle in its WFG detects a deadlock and takes
necessary action to resolve it. Therefore, a WFG that contains a cycle will never be passed
as it is to a higher level controller.

Let us illustrate the method with the help of the example shown in Figure 6.17. There
are four sites and seven controllers in the system. Controllers A, B, C, and D maintain the
local WFGs of sites 51' 52, 53' and 54, respectively. They form the leaves of the
controllers' hierarchy tree. Controller E, being the parent of controllers A and B, maintains
the union of the WFGs of controllers A and B. Similarly, controller F maintains the union
of the WFGs of controllers C and D. Finally, controller G maintains the union of the
WFGs of controllers E and F.

Notice from the figure that the deadlock cycle (PI' P3' Pz, PI) that involves sites S,
and Sz gets reflected in the WFG of controller E, but the deadlock cycle (P4' Ps, P6 , P7'
P4) that involves sites S2' S3' and 54gets reflected only in the WFG of controller G. This
is because controller G is the first controlJer in the hierarchy in whose range all the three
sites 82 , S3' and 84 are covered. Also notice that although we have shown the deadlock
cycle (p), P3 , P2' P, in the WFG of controller G to reflect the union of the WFGs of
controllers E and F, this will never happen in practice. This is because, when controller E
detects the deadlock, it will initiate a recovery action instead of passing its WFG as it is
to controller G.

Fully Distributed Approaches for Deadlock Detection. In the fully dis­
tributed deadlock detection approach, each site of the system shares equal responsibility
for deadlock detection. Surveys of several algorithms based on this approach can be found
in [Knapp 1987, Singhal 1989]. Below we describe two such algorithms. The first one is
based on the construction of WFGs, and the second one is a probe-based algorithm.

326 Chap. 6 • Synchronization

Controller F

Site 81

Controller A

Site 82

Controller B

Site 83

Controller C

Site 54

Controller 0

Fig.6.17 Hierarchical deadlock detection approach.

WFG-Based Distributed Algorithm for Deadlock Detection. The descrip­
tion below follows from the description of the fully distributed deadlock detection
algorithm presented in (Silberschatz and Galvin 1994]. As in the centralized and
hierarchical approaches, in the WFG-based distributed algorithm, each site maintains its
own local WFG. However, to model waiting situations that involve external (nonlocal)
processes, a slightly modified form of WFG is used. In this modified WFG, an extra node
Pex is added to the local WFG of each site, and this node is connected to the WFG of the
corresponding site in the following manner:

1. An edge (Ph Pex) is added if process Pi is waiting for a resource in another site
being held by any process.

2. An edge (Pex' Pj) is added if Pj is a process of another site that is waiting for a
resource currently being held by a process of this site.

To illustrate the construction of this modified WFG, let us consider the example of
Figure 6.18. In this example there are two sites, and the local WFGs of each site are shown in
Figure6.18(a). The modified WFGs of the two sites after the addition ofnode Pex are shown
in Figure 6.18(b). The explanation for the edges involving node Pex are as follows:

Sec. 6.5 • Deadlock

Site 8,

(a)

(b)

327

Fig.6.18 Example illustrating the
WFG-based fully distributed
deadlock detection algorithm:
(u) local WFGs; (b) local WFGs
after addition of node Pe x ;

(c) updated local WFG of site 52
after receiving the deadlock
detection message from site 5 I' (c)

I. In the WFG of site Sf, edge (P" j>ex) is added because process P, is waiting for
a resource in site 52 that is held by process P3' and edge (Pex ' P3) is added
because process P3 is a process of site 52 that is waiting to acquire a resource
currently held by process Pz of site S,.

2. In the WFG of site S2' edge (P 3 , Pex) is added because process P3 is waiting for
a resource in site 5) that is held by process P2' and edge (Pex' PI) is added
because process P I is a process of site S I that is waiting to acquire a resource
currently held by process P3 of site 52'

Now these modified WFGs are used for deadlock detection in the following manner.
If a local WFG contains a cycle that does not involve node Pex ' a deadlock that involves
only local processes of that site has occurred. Such deadlocks can be locally resolved
without the need to consult any other site.

On the other hand, if a local WFG contains a cycle that involves node Pex' there is
a possibility of a distributed deadlock that involves processes of multiple sites. To confirm
a distributed deadlock, a distributed deadlock detection algorithm is invoked by the site

328 Chap. 6 • Synchronization

whose WFG contains the cycle involving node Pex • The algorithm works as described
below.

Suppose a cycle involving node Pex is detected in the WFG of site Sj. This cycle must
be of the form

which means that process Pk is waiting for an external resource that belongs to some other
site (say Sj). Therefore, site Sj sends a deadlock detection message to site Sj. This message
does not contain the complete WFG of site S, but only that part of the WFG that forms the
cycle. For instance, in our example of Figure 6.18, if site S I detects its cycle first, it sends
a message like (Pex ' P3 , P2 , P" Pex) to site S2 since PI is waiting for a resource in site

S2·
On receiving the message, site S, updates its local WFG by adding those edges ofthe

cycle that do not involve node Pex to its WFG. That is, in our example, edges (P3 , P2) and
(P2 , PI) will be added to the local WFG of site S2' resulting in the new WFG of Figure
6.18(c).

Now if the newly constructed WFG of site Sj contains a cycle that does not involve
node Pex ' a deadlock exists and an appropriate recovery procedure must be initiated. For
instance, in our example, the newly constructed WFG of site S2 contains a cycle (P J , P3 ,

P2 , P J) that does not involve node Pexo Hence, in our example, the system is in a deadlock
state.

On the other hand, if a cycle involving node Pex is found in the newly constructed
WFG of site Sj' S, sends a deadlock detection message to the appropriate site (say Ss), and
the whole procedure is repeated by site Sko In this manner, after a finite number of
deadlock detection message transfers from one site to another, either a deadlock is
detected or the computation for deadlock detection halts.

A problem associated with the above algorithm is that two sites may initiate the
deadlock detection algorithm independently for a deadlock that involves the same
processes. For instance, in our example of Figure 6.18, sites Sl and S2 may almost
simultaneously detect the cycles (Pex ' P3 , P2 , PI' Pex) and (Pex ' P J, P3 , Pex) respectively
in their local WFGs, and both may send a deadlock detection message to the other site.
The result will be that both sites will update their local WFGs and search for cycles. After
detecting a deadlock, both may initiate a recovery procedure that may result in killing
more processes than is actually required to resolve the deadlock. Furthermore, this
problem also leads to extra overhead in unnecessary message transfers and duplication of
deadlock detection jobs performed at the two sites.

One way to solve the above problem is to assign a unique identifier to each process
Pi [denoted as ID(Pi)]. Now when a cycle of the form (Pex 9 Pi' Pj' .. 0' Pi, Pex) is found
in the local WFG of a site, this site initiates the deadlock detection algorithm by sending
a deadlock detection message to the appropriate site only if

Otherwise, this site does not take any action and leaves the job of initiating the deadlock
detection algorithm to some other site.

Sec. 6.5 • Deadlock

Let us apply the modified algorithm to our example of Figure 6.18. Let

329

Now suppose both sites SI and Sz almost simultaneously detect the cycles (Pex ' P3 ,

r; P 1, Pe,.) and (Pex ' P J , P3 , Pex) , respectively, in their local WFGs. Since ID(P 1) <
ID(P3), so site SI will initiate the deadlock detection algorithm. On the other hand, since
ID(P3) > ID(P,), site Sz does not take any action on seeing the cycle in its local WFG.
When site S2 receives the deadlock detection message sent to it by site SI' it updates its
local WFG and searches for a cycle in the updated WFG. It detects the cycle (PI, P3 , Pz,
PI) in the graph and then initiates a deadlock recovery procedure.

Probe-Based Distributed Algorithm for Deadlock Detection. The probe­
based distributed deadlock detection algorithm described below was proposed by Chandy
et al. [1983] and is known as the Chandy-Misra-Hass (or eMH) algorithm. It is considered
to be the best algorithm to date for detecting global deadlocks in distributed systems. The
algorithm allows a process to request for multiple resources at a time.

The algorithm is conceptually simple and works in the following manner. When a
process that requests for a resource (or resources) fails to get the requested resource (or
resources) and times out, it generates a special probe message and sends it to the process
(or processes) holding the requested resource (or resources). The probe message contains
the following fields (assuming that each process in the system is assigned a unique
identifier):

1. The identifier of the process just blocked

2. The identifier of the process sending this message

3. The identifier of the process to whom this message is being sent

On receiving a probe message, the recipient checks to see if it itself is waiting for any
resource (or resources). If not, this means that the recipient is using the resource requested
by the process that sent the probe message to it. In this case, the recipient simply ignores
the probe message. On the other hand, if the recipient is waiting for any resource (or
resources), it passes the probe message to the process (or processes) holding the resource
(or resources) for which it is waiting. However, before the probe message is forwarded,
the recipient modifies its fields in the following manner:

1. The first field is left unchanged.

2. The recipient changes the second field to its own process identifier.

3. The third field is changed to the identifier of the process that will be the new
recipient of this message.

Every new recipient of the probe message repeats this procedure. If the probe
message returns back to the original sender (the process whose identifier is in the first field
of the message), a cycle exists and the system is deadlocked.

330 Chap. 6 • Synchronization

Let us illustrate the algorithm with the help of the simple example shown in Figure
6.19. Notice that this figure depicts the same situation as that of Figure 6.18(a) but in a
slightly different style. Suppose that process PI gets blocked when it requests for the
resource held by process P3. Therefore PI generates a probe message (PI' PI, P3) and
sends it to P3. When P3 receives this message, it discovers that it is itself blocked on
processes P2 and r; Therefore P3 forwards the probes (PI' P3' P2) and (Pit P3' Ps) to
processes P2 and Ps, respectively. When Ps receives the probe message, it ignores it
because it is not blocked on any other process. However, when P2 receives the probe
message, it discovers that it is itself blocked on processes PI and P4· Therefore P2

forwards the probes (Ph P2 , P J) and (Pit P2 , P4) to processes PI and P4 , respectively.
Since the probe returns to its original sender (PI)' a cycle exists and the system is
deadlocked.

Site~

Fig.6.19 Example illustrating the eMH
distributed deadlock detection
algorithm.

The CMH algorithm is popular, and variants of this algorithm are used in most
distributed locking schemes due to the following attractive features of the algorithm:

1. The algorithm is easy to implement, since each message is of fixed length and
requires few computational steps.

2. The overhead of the algorithm is fairly low.

3. There is no graph constructing and information collecting involved.

4. False deadlocks are not detected by the algorithm.

5. It does not require any particular structure among the processes.

Ways for Recovery from Deadlock

When a system chooses to use the detection and recovery strategy for handling deadlocks,
it is not sufficient to simply detect deadlocks. The system must also have some way to
recover from a detected deadlock. One of the following methods may be used in a system
to recover from a deadlock:

• Asking for operator intervention

• Termination of process(es)

• Rollback of process(es)

Sec. 6.5 • Deadlock 331

Asking for Operator Intervention. The simplest way is to inform the operator
thata deadlock has occurred and to let the operator deal with it manually. The system may
assist the operator in decision making for recovery by providing him or her with a list of
the processes involved in the deadlock.

This method is not suitable for usc in modern systems because the concept of
an operator continuously monitoring the smooth running of the system from the
console has gradually vanished. Furthermore, although this method may work for a
centralized system, it does not work in a distributed environment because when a
deadlock involving processes of multiple sites is detected, it is not clear which site
should be informed. If all the sites whose processes are involved in the deadlock are
informed, each site's operator may independently take some action for recovery. On
the other hand, if the operator of only a single site is informed, the operator may
favor the process (or processes) of its own site while taking a recovery action.
Furthermore, the operator of one site may not have the right to interfere with a
process of another site for taking recovery action. Therefore, distributed systems
normally use other methods described below in which the system recovers automati­
cally from a deadlock.

Termination of Processies). The simplest way to automatically recover from a
deadlock is to terminate (kill) one or more processes and to reclaim the resources held
by them, which can then be reallocated. Deadlock recovery algorithms based on this
idea analyze the resource requirements and interdependencies of the processes involved
in a deadlock cycle and then select a set of processes, which, if killed, can break the
cycle.

Rollback of Process(es). Killing a process requires its restart from the very
beginning, which proves to be very expensive, particularly when the process has already
run for a substantially long time. To break a deadlock, it is sufficient to reclaim the needed
resources from the processes that were selected for being killed. Also notice that to
reclaim a resource from a process, it is sufficient to roll back the process to a point where
the resource was not allocated to the process. The method of rollback is based on this
idea.

In this method, processes are checkpointed periodically. That is, a process's state (its
memory image and the list of resources held by it) is written to a file at regular intervals.
Therefore, the file maintains a history of the process's states so that, if required, the
process can be restarted from any of its checkpoints. Now when a deadlock is detected,
the method described in the process termination approach is used to select a set of
processes to be killed. However, this time, instead of total rollback (killing) of the selected
processes, the processes are rolled back only as far as necessary to break the deadlock.
That is, each selected process is rolled back to a checkpoint at which the needed resources
can be reclaimed from it.

Although the rollback approach may appear to be less expensive than the process
termination approach, this is not always true because of the extra overhead involved in the
periodic checkpointing of all the processes. If deadlocks are rare in a system, it may be
cheaper to use the process termination approach.

332 Chap. 6 • Synchronization

Issues in Recovery from Deadlock

Two important issues in the recovery action are selection of victims and use of transaction
mechanism. These are described below.

Selection of Victim(s). In any of the recovery approaches described above,
deadlock is broken by killing or rolling back one or more processes. These processes are
called victims. Notice that even in the operator intervention approach, recovery involves
killing one or more victims. Therefore, an important issue in any recovery procedure is to
select the victims. Selection of victim(s) is normally based on two major factors:

1. Minimization ofrecovery cost. This factor suggests that those processes should be
selected as victims whose termination/rollback will incur the minimum recovery cost.
Unfortunately, it is not possible to have a universal cost function, and therefore, each
system should determine its own cost function to select victims. Some of the factors that
may be considered for this purpose are (a) the priority of the processes; (b) the nature of
the processes, such as interactive or batch and possibility of rerun with no ill effects; (c)
the number and types of resources held by the processes; (d) the length of service already
received and the expected length of service further needed by the processes; and (e) the
total number of processes that will be affected.

2. Prevention of starvation. If a system only aims at minimization of recovery cost,
it may happen that the same process (probably because its priority is very low) is
repeatedly selected as a victim and may never complete. This situation, known as
starvation, must be somehow prevented in any practical system. One approach to handle
this problem is to raise the priority of the process every time it is victimized. Another
approach is to include the number of times a process is victimized as a parameter in the
cost function.

Use of Transaction Mechanism. After a process is killed or rolled back for
recovery from deadlock, it has to be rerun. However, rerunning a process may not always be
safe, especially when the operations already performed by the process are nonidempotent.
For example, if a process has updated the amount of a bank account by adding a certain
amount to it, reexecution of the process will result in adding the same amount once again,
leaving the balance in the account in an incorrect state. Therefore, the use of a transaction
mechanism (which ensures all or no effect) becomes almost inevitable for most processes
when the system chooses the method of detection and recovery for handling deadlocks.
However, notice that the transaction mechanism need not be used for those processes that
can be rerun with no ill effects. For example, rerun of a compilation process has no ill effects
because all it does is read a source file and produce an object file.

6.6 ElEalON AlGORITHMS

Several distributed algorithms require that there be a coordinator process in the entire
system that performs some type of coordination activity needed for the smooth running of
other processes in the system. Two examples of such coordinator processes encountered

Sec. 6.6 • Election Algorithms 333

in this chapter are the coordinator in the centralized algorithm for mutual exclusion and
the central coordinator in the centralized deadlock detection algorithm. Since all other
processes in the system have to interact with the coordinator, they all must unanimously
agree on who the coordinator is. Furthermore, if the coordinator process fails due to the
failure of the site on which it is located, a new coordinator process must be elected to take
up the job of the failed coordinator. Election algorithms are meant for electing a
coordinator process from among the currently running processes in such a manner that at
any instance of time there is a single coordinator for all processes in the system.

Election algorithms are based on the following assumptions:

1. Each process in the system has a unique priority number.

2. Whenever an election is held, the process having the highest priority number
among the currently active processes is elected as the coordinator.

3. On recovery, a failed process can take appropriate actions to rejoin the set of
active processes.

Therefore, whenever initiated, an election algorithm basically finds out which of the
currently active processes has the highest priority number and then informs this to all other
active processes. Different election algorithms differ in the way they do this. Two such
election algorithms are described below. Readers interested in other election algorithms
may refer to [Tel 1994]. For simplicity, in the description of both algorithms we will
assume that there is only one process on each node of the distributed system.

6.6.1 The Bully Algorithm

This algorithm was proposed by Garcia-Molina [1982]. In this algorithm it is assumed that
every process knows the priority number of every other process in the system. The
algorithm works as follows.

When a process (say Pi) sends a request message to the coordinator and does not
receive a reply within a fixed timeout period, it assumes that the coordinator has failed.
It then initiates an election by sending an election message to every process with a higher
priority number than itself. If Pi does not receive any response to its election message
within a fixed timeout period, it assumes that among the currently active processes it has
the highest priority number. Therefore it takes up the job of the coordinator and sends a
message (let us call it a coordinator message) to all processes having lower priority
numbers than itself, informing that from now on it is the new coordinator. On the other
hand, if Pi receives a response for its election message, this means that some other process
having higher priority number is alive. Therefore Pi does not take any further action and
just waits to receive the final result (a coordinator message from the new coordinator) of
the election it initiated.

When a process (say Pj) receives an election message (obviously from a process
having a lower priority number than itself), it sends -aresponse message (let us call it alive
message) to the sender informing that it is alive and will take over the election activity.
Now Pj holds an election if it is not already holding one. In this way, the election activity
gradually moves on to the process that has the highest priority number among the

334 Chap. 6 • Synchronization

currently active processes and eventually wins the election and becomes the new
coordinator.

As part of the recovery action, this method requires that a failed process (say Pk)

must initiate an election on recovery. If the current coordinator's priority number is higher
than that of Pk» then the current coordinator will win the election initiated by Pk and will
continue to be the coordinator. On the other hand, if Pk's priority number is higher than
that of the current coordinator, it will not receive any response for its election message.
So it wins the election and takes over the coordinator's job from the currently active
coordinator. Therefore, the active process having the highest priority number always wins
the election. Hence the algorithm is caJled the "bully" algorithm. It may also be noted here
that if the process having the highest priority number recovers after a failure, it does not
initiate an election because it knows from its list of priority numbers that all other
processes in the system have lower priority numbers than that of its own. Therefore, on
recovery, it simply sends a coordinator message to all other processes and bullies the
current coordinator into submission.

Let us now see the working of this algorithm with the help of an example. Suppose
the system consists of five processes PI, P2' P3' P4 , and Ps and their priority numbers are
1, 2, 3, 4, and 5 respectively. Also suppose that at a particular instance of time the system
is in a state in which P2 is crashed, and PI' P3 , P4 , and Ps are active. Starting from this
state, the functioning of the bully algorithm with the changing system states is illustrated
below.

1. Obviously, Psis the coordinator in the starting state.

2. Suppose P5 crashes.

3. Process P3 sends a request message to Ps and does not receive a reply within the
fixed timeout period.

4. Process P3 assumes that Ps has crashed and initiates an election by sending an
election message to P4 and Ps (recall that an election message is sent only to
processes with higher priority numbers).

5. When P4 receives P3's election message, it sends an alive message to P3'

informing that it is alive and will take over the election activity. Process Ps cannot
respond to P3's election message because it is down.

6. Now P4 holds an election by sending an election message to Ps-

7. Process Ps does not respond to P4's election message because it is down, and
therefore, P4 wins the election and sends a coordinator message to PI' P2 , and P3,

informing them that from now on it is the new coordinator. Obviously, this
message is not received by P2 because it is currently down.

8. Now suppose P2 recovers from failure and initiates an election by sending an
election message to P3' P4 , and Ps. Since P2's priority number is lower than that
of P4 (current coordinator), P4 will win the election initiated by P2 and will
continue to be the coordinator.

9. Finally, suppose Ps recovers from failure. Since Psis the process with the highest
priority number, it simply sends a coordinator message to PI, P2' P3 , and P4 and
becomes the new coordinator.

Sec. 6.6 • Election Algorithms

6.6.2 A Ring Algorithm

335

The following algorithm is based on the ring-based election algorithms presented in
[Tanenbaum 1995, Silberschatz and Galvin 1994]. In this algorithm it is assumed that all
the processes in the system are organized in a logical ring. The ring is unidirectional in the
sense that all messages related to the election algorithm are always passed only in one
direction (clockwise/anticlockwise). Every process in the system knows the .structure of
the ring, so that while trying to circulate a message over the ring, if the successor of the
sender process is down, the sender can skip over the successor, or the one after that, until
an active member is located. The algorithm works as follows.

When a process (say Pi) sends a request message to the current coordinator and does
not receive a reply within a fixed timeout period, it assumes that the coordinator has
crashed. Therefore it initiates an election by sending an election message to its successor
(actually to the first successor that is currently active). This message contains the priority
number of process Pi' On receiving the election message, the successor appends its own
priority number to the message and passes it on to the next active member in the ring. This
member appends its own priority number to the message and forwards it to its own
successor. In this manner, the election message circulates over the ring from one active
process to another and eventually returns back to process Pi. Process Pi recognizes the
message as its own election message by seeing that in the list of priority numbers held
within the message the first priority number is its own priority number.

Note that when process Pi receives its own election message, the message contains
the list of priority numbers of all processes that are currently active. Therefore of the
processes in this list, it elects the process having the highest priority number as the new
coordinator. It then circulates a coordinator message over the ring to inform all the other
active processes who the new coordinator is. When the coordinator message comes back
to process Pi after completing its one round along the ring, it is removed by process Pi.
At this point all the active processes know who the current coordinator is.

When a process (say Pj) recovers after failure, it creates an inquiry message and
sends it to its successor. The message contains the identity of process Pj • If the successor
is not the current coordinator, it simply forwards the enquiry message to its own successor.
In this way, the inquiry message moves forward along the ring until it reaches the current
coordinator. On receiving an inquiry message, the current coordinator sends a reply to
process P, informing that it is the current coordinator.

Notice that in this algorithm two or more processes may almost simultaneously
discover that the coordinator has crashed and then each one may circulate an election
message over the ring. Although this results in a little waste of network bandwidth, it does
not cause any problem because every process that initiated an election will receive the
same list of active processes, and all of them will choose the same process as the new
coordinator.

6.6.3 Discussion of the Two Election Algorithms

In the bully algorithm, when the process having the lowest priority number detects the
coordinator's failure and initiates an election, in a system having total n processes,

336 Chap. 6 • Synchronization

altogether n-2 elections are performed one after another for the initiated one. That is, all
the processes, except the active process with the highest priority number and the
coordinator process that has just failed, perform elections by sending messages to all
processes with higher priority numbers. Hence, in the worst case, the bully algorithm
requires O(n2) messages. However, when the process having the priority number just
below the failed coordinator detects that the coordinator has failed, it immediately elects
itself as the coordinator and sends n-2 coordinator messages. Hence, in the best case, the
bully algorithm requires only n-2 messages.

On the other hand, in the ring algorithm, irrespective of which process detects the
failure of the coordinator and initiates an election, an election always requires 2(n-l)
messages (assuming that only the coordinator process has failed); n-l messages are
needed for one round rotation of the election message, and another n-l messages are
needed for one round rotation of the coordinator message.

Next let us consider the complexity involved in the recovery of a process. In the bully
algorithm, a failed process must initiate an election on recovery. Therefore, once again
depending on the priority number of the process that initiates the recovery action, the bully
algorithm requires O(n2

) messages in the worst case, and n-l messages in the best case.
On the other hand, in the ring algorithm, a failed process does not initiate an election on
recovery but simply searches for the current coordinator. Hence, the ring algorithm
requires only nl2 messages on an average for recovery action.

In conclusion, as compared to the bully algorithm, the ring algorithm is more
efficient and easier to implement.

6.7 SUMMARY

Sharing system resources among multiple concurrent processes may be cooperative or
competitive in nature. Both cooperative and competitive sharing require adherence to
certain rules of behavior that guarantee that correct interaction occurs. The rules for
enforcing correct interaction are implemented in the form of synchronization mechanisms.
In this chapter we saw the synchronization issues in distributed systems and mechanisms
to handle these issues.

For correct functioning of several distributed applications, the clocks of different
nodes of a distributed system must be mutually synchronized as well as with the external
world (physical clock). Clock synchronization algorithms used in distributed systems are
broadly classified into two types-centralized and distributed. In the centralized
approach, there is a time server node and the goal of the algorithm is to keep the clocks
of all other nodes synchronized with the clock time of the time server node. In the
distributed approach, clock synchronization is done either by global averaging or localized
averaging of the clocks of various nodes of the system.

Lamport observed that for most applications clock synchronization is not required,
and it is sufficient to ensure that all events that occur in a distributed system can be totally
ordered in a manner that is consistent with an observed behavior. Therefore, he defined the
happened-before relation and introduced the concept of logical clocks for ordering of
events based on the happened-before relation. The happened-before relation, however, is

Chap. 6 • Exercises 337

only a partial ordering on the set of all events in the system. Therefore, for total ordering
on the set of all system events, Lamport proposed the use of any arbitrary total ordering
of the processes.

There are several resources in a system for which exclusive access by a process must
be ensured. This exclusiveness of access is called mutual exclusion between processes,
and the sections of a program that need exclusive access to shared resources are referred
to as critical sections. The three basic approaches used by different algorithms for
implementing mutual exclusion in distributed systems are centralized, distributed, and
token passing. In the centralized approach, one of the processes in the system is elected
as the coordinator, which coordinates the entry to the critical sections. In the distributed
approach, all processes that \vant to enter the same critical section cooperate with each
other before reaching a decision on which process will enter the critical section next. In
the token-passing approach, mutual exclusion is achieved by using a single token that is
circulated among the processes in the system.

Deadlock is the state of permanent blocking of a set of processes each of which is
waiting for an event that only another process in the set can cause. In principle, deadlocks
in distributed systems are similar to deadlocks in centralized systems. However, handling
of deadlocks in distributed systems is more complex than in centralized systems because
the resources, the processes, and other relevant information are scattered on different
nodes of the system.

The three commonly used strategies to handle deadlocks are avoidance, prevention,
and detection and recovery. Deadlock avoidance methods use some advance knowledge of
the resource usage of processes to predict the future state of the system for avoiding
allocations that can eventually lead to a deadlock. Deadlock prevention consists of
carefully designing the system so that deadlocks become impossible. In the detection and
recovery approach, deadlocks are allowed to occur, are detected by the system, and then
are recovered. Of the three approaches, detection and recovery is the recommended
approach for handling deadlocks in distributed systems. The three approaches used for
deadlock detection in distributed systems are centralized, hierarchical, and fully
distributed. For recovery from a detected deadlock, a system may use one of the following
methods: asking for operator intervention, termination of process(es), or rollback of
process(es).

Several distributed algorithms require that there be a coordinator process in the entire
system. Election algorithms arc meant for electing a coordinator process from among the
currently running processes. Two election algorithms that were described in this chapter
are the bully algorithm and the ring algorithm.

EXERCISES

6.1. Write pseudocode for an algorithm that decides whether a given set of clocks are
synchronized or not. What input parameters are needed in your algorithm?

6.2. How do clock synchronization issues differ in centralized and distributed computing
systems?

	Chapter 5: Distributed Shared Memory
	Chapter 6: Synchronization

