
CHAPTER 3

MessQge Passing

3.1 INTRODumON

A process is a program in execution. When we say that two computers of a distributed
system are communicating with each other, we mean that two processes, one running on
each computer, are in communication with each other. In a distributed system, processes
executing on different computers often need to communicate with each other to achieve
some common goal. For example, each computer of a distributed system may have a
resource managerprocess to monitor the current status of usage of its local resources, and
the resource managers of all the computers might communicate with each other from time
to time to dynamically balance the system load among all the computers. Therefore, a
distributed operating system needs to provide interprocess communication (lPC)
mechanisms to facilitate such communication activities.

Interprocess communication basically requires information sharing among two or
more processes. The two basic methods for information sharing are as follows:

1. Original sharing, or shared-data approach

2. Copy sharing, or message-passing approach

In the shared-data approach, the information to be shared is placed in a common
memory area that is accessible to all the processes involved in an IPC. The shared-data
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paradigm gives the conceptual communication pattern illustrated in Figure 3.1(a). On the
other hand, in the message-passing approach, the information to be shared is physically
copied from the sender process's address space to the address spaces of all the receiver
processes, and this is done by transmitting the data to be copied in the form of messages
(a message is a block of information). The message-passing paradigm gives the conceptual
communication pattern illustrated in Figure 3.1(b). That is, the communicating processes
interact directly with each other.

Sharedcommon
memoryarea

(a)

(b)

Fig. 3.1 The two basic interprocess communication paradigms: (a) The shared-data
approach. (b) The message-passing approach.

Since computers in a network do not share memory, processes in a distributed system
normally communicate by exchanging messages rather than through shared data.
Therefore, message passing is the basic IPe mechanism in distributed systems.

A message-passing system is a subsystem of a distributed operating system that
provides a set of message-based IPe protocols and does so by shielding the details of
complex network protocols and multiple heterogeneous platforms from programmers. It
enables processes to communicate by exchanging messages and allows programs to be
written by using simple communication primitives, such as send and receive. It serves as a
suitable infrastructure for building other higher levellPC systems, such as remote procedure
call (RPC; see Chapter 4) and distributed shared memory (DSM; see Chapter 5).

3.2 DESIRABlE FEATURES OF A GOOD MESSAGE·PASSING
SYSTEM

3.2.1 Simplicity

A message-passing system should be sitnple and easy to use. It must be straightforward
to construct new applications and to communicate with existing ones by using the
primitives provided by the message-passing system. It should also be possible for a
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programmer to designate the different modules of a distributed application and to send and
receive messages between them in a way as simple as possible without the need to worry
about the system and/or network aspects that are not relevant for the application level.
Clean and simple semantics of the IPe protocols of a message-passing system make it
easier to build distributed applications and to get them right.

3.2.1 Unlrorm Semantics

In a distributed system, a message-passing system may be used for the following two
types of interprocess communication:

1. Local communication, in which the communicating processes are on the same
node

2. Remote communication, in which the communicating processes are on different
nodes

An important issue in the design of a message-passing system is that the semantics
of remote communications should be as close as possible to those of local communica­
tions. This is an important requirement for ensuring that the message-passing system is
easy to use.

3.2.3 Efficiency

Efficiency is. normally a critical issue for a message-passing system to be acceptable by
the users. If the message-passing system is not efficient, interprocess communication may
become so expensive that application designers will strenuously try to avoid its use in their
applications. As a result, the developed application programs would be distorted. An IPe
protocol of a message-passing system can be made efficient by reducing the number of
message exchanges, as far as practicable, during the communication process. Some
optimizations normally adopted for efficiency include the following:

• Avoiding the costs of establishing and terminating connections between the same
pair of processes for each and every message exchange between them

• Minimizing the costs of maintaining the connections

• Piggybacking of acknowledgment of previous messages with the next message
during a connection between a sender and a receiver that involves several message
exchanges

3.1.4 Reliability

Distributed systems are prone to different catastrophic events such as node crashes or
communication link failures.. Such events may interrupt a communication that was in
progress between two processes, resulting in the loss of a message. A reliable IPe protocol
can cope with failure problems and guarantees the delivery of a message. Handling of lost
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messages usually involves acknowledgments and retransmissions on the basis of
timeouts.

Another issue related to reliability is that of duplicate messages. Duplicate messages
may be sent in the event of failures or because of timeouts. A reliable fPC protocol is also
capable of detecting and handling duplicates. Duplicate handling usually involves
generating and assigning appropriate sequence numbers to messages.

A good message-passing system must have IPC protocols to support these reliability
features.

3.2.5 Correctness

A message-passing system often has IPC protocols for group communication that allow a
sender to send a message to a group of receivers and a receiver to receive messages from
several senders. Correctness is a feature related to IPC protocols for group communica­
tion. Although not always required, correctness may be useful for some applications.
Issues related to correctness are as follows [Navratnam et al. 1988]:

• Atomicity

• Ordered delivery

• Survivability

Atomicity ensures that every message sent to a group of receivers will be delivered
to either all of them or none of them. Ordered delivery ensures that messages arrive at all
receivers in an order acceptable to the application. Survivability guarantees that messages
will be delivered correctly despite partial failures of processes, machines, or communica­
tion links. Survivability is a difficult property to achieve.

3.2.6 Flexibility

Not all applications require the same degree of reliability and correctness of the fPC
protocols. For example, in adaptive routing, it may be necessary to distribute the
information regarding queuing delays in different parts of the network. A broadcast
protocol could be used for this purpose. However, if a broadcast message is late in coming,
due to communication failures, it might just as well not arrive at all as it will soon be
outdated by a more recent one anyway. Similarly, many applications do not require
atomicity or ordered delivery of messages. For example, a client may multicast a request
message to a group of servers and offer the job to the first server that replies. Obviously,
atomicity of message delivery is not required in this case. Thus the IPC protocols of a
message-passing system must be flexible enough to cater to the various needs of different
applications. That is, the IPC primitives should be such that the users have the flexibility
to choose and specify the types and levels of reliability and correctness requirements of
their applications. Moreover, IPC primitives must also have the flexibility to permit any
kind of control flow between the cooperating processes, including synchronous and
asynchronous send/receive.
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A good message-passing system must also be capable of providing a secure end-to-end
communication. That is, a message in transit on the network should not be accessible to
any user other than those to whom it is addressed and the sender. Steps necessary for
secure communication include the following:

• Authentication of the receiver(s) of a message by the sender

• Authentication of the sender of a message by its receiver(s)

• Encryption of a message before sending it over the network

These issues will be described in detail in Chapter 11.

3.1.8 Portability

There are two different aspects of portability in a message-passing system:

1. The message-passing system should itself be portable. That is, it should be
possible to easily construct a new IPC facility on another system by reusing the basic
design of the existing message-passing system.

2. The applications written by using the primitives of the IPC protocols of the
message-passing system should be portable. This requires that heterogeneity must be
considered while designing a message-passing system. This may require the use of an
external data representation format for the communications taking place between two or
more processes running on computers of different architectures. The design of high-level
primitives for the IPC protocols of a message-passing system should be done so as to hide
the heterogeneous nature of the network.

3.3 ISSUES IN IPC BY MESSAGE PASSING

A message is a block of information formatted by a sending process in such a manner that
it is meaningful to the receiving process. It consists of a fixed-length header and a
variable-size collection of typed data objects. As shown in Figure 3.2, the header usually
consists of the following elements:

• Address. It contains characters that uniquely identify the sending and receiv­
ing processes in the network. Thus, this element has two parts-one part is
the sending process address and the other part is the receiving process
address.

• Sequence number. This is the message identifier (ID), which is very useful
for identifying lost messages and duplicate messages in case of system
failures.
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Fig.3.2 A typical message structure.

• Structural information. This element also has two parts. The type part specifies
whether the data to be passed on to the receiver is included within the message or
the message only contains a pointer to the data, which is stored somewhere outside
the contiguous portion of the message. The second part of this element specifies
the length of the variable-size message data.

In a message-oriented IPC protocol, the sending process determines the actual
contents of a message and the receiving process is aware of how to interpret the
contents. Special primitives are explicitly used for sending and receiving the mes­
sages. Therefore, in this method, the users are fully aware of the message formats
used in the communication process and the mechanisms used to send and receive
messages.

In the design of an IPe protocol for a message-passing system, the following
important issues need to be considered:

• Who is the sender?

• Who is the receiver?

• Is there one receiver or many receivers?

• Is the message guaranteed to have been accepted by its receiver(s)?

• Does the sender need to wait for a reply?

• What should be done if a catastrophic event such as a node crash or a
communication link failure occurs during the course of communication?

• What should be done if the receiver is not ready to accept the message: Will the
message be discarded or stored in a buffer? In the case of buffering, what should
be done if the buffer is full?

• If there are several outstanding messages for a receiver, can it choose the order in
which to service the outstanding messages?

These issues are addressed by the semantics of the set of communication primitives
provided by the fPC protocol. A general description of the various ways in which these
issues are addressed by message-oriented IPC protocols is presented below.
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3.4 SYNCHRONIZATION
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A central issue in the communication structure is the synchronization imposed on the
communicating processes by the communication primitives. The semantics used for
synchronization may be broadly classified as blocking and nonblocking types. A primitive
is said to have nonblocking semantics if its invocation does not block the execution of its
invoker (the control returns almost immediately to the invoker); otherwise a primitive is
said to be of the blocking type. The synchronization imposed on the communicating
processes basically depends on one of the two types of semantics used for the send and
receive primitives.

In case of a blocking send primitive, after execution of the send statement, the
sending process is blocked until it receives an acknowledgment from the receiver that the
message has been received. On the other hand, for nonblocking send primitive, after
execution of the send statement, the sending process is allowed to proceed with its
execution as soon as the message has been copied to a buffer.

In the case of a blocking receive primitive, after execution of the receive statement,
the receiving process is blocked until it receives a message. On the other hand, for a
nonblocking receive primitive, the receiving process proceeds with its execution after
execution of the receive statement, which returns control almost immediately just after
telling the kernel where the message buffer is.

An important issue in a nonblocking receive primitive is how the receiving process
knows that the message has arrived in the message buffer. One of the following two
methods is commonly used for this purpose:

1. Polling. In this method, a test primitive is provided to allow the receiver to check
the buffer status. The receiver uses this primitive to periodically poll the kernel to check
if the message is already available in the buffer.

2. Interrupt. In this method, when the message has been filled in the buffer and is
ready for use by the receiver, a software interrupt is used to notify the receiving process.
This method permits the receiving process to continue with its execution without having
to issue unsuccessful test requests. Although this method is highly efficient and allows
maximum parallelism, its main drawback is that user-level interrupts make programming
difficult [Tanenbaum 1995].

A variant of the nonblocking receive primitive is the conditional receive primitive,
which also returns control to the invoking process almost immediately, either with a
message or with an indicator that no message is available.

In a blocking send primitive, the sending process could get blocked forever in
situations where the potential receiving process has crashed or the sent message has been
lost on the network due to communication failure. To prevent this situation, blocking send
primitives often use a timeout value that specifies an interval of time after which the send
operation is terminated with an error status. Either the timeout value may be a default
value or the users may be provided with the flexibility to specify it as a parameter of the
send primitive.
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A timeout value may also be associated with a blocking receive primitive to prevent
the receiving process from getting blocked indefinitely in situations where the potential
sending process has crashed or the expected message has been lost on the network due to
communication failure.

When both the send and receive primitives of a communication between two
processes use blocking semantics, the communication is said to be synchronous; otherwise
it is asynchronous. That is, for synchronous communication, the sender and the receiver
must be synchronized to exchange a message. This is illustrated in Figure 3.3.
Conceptually, the sending process sends a message to the receiving process, then waits for
an acknowledgment. After executing the receive statement, the receiver remains blocked
until it receives the message sent by the sender. On receiving the message, the receiver
sends an acknowledgment message to the sender. The sender resumes execution only after
receiving this acknowledgment message.

Sender's
execution

Receiver's
execution

Receive (message);
I execution suspended
I
I
I
I
I
I
I

Execution resumed

Send(message);
execution suspended

I
I
I
I
I
I
I
I

Execution resumed I

Send (acknowledgment)

Blocked state
Executing state

Fig.3.3 Synchronous mode of communication with both send and receive primitives
having blocking-type semantics.

As compared to asynchronous communication, synchronous communication is simple
and easy to implement. It also contributes to reliability because it assures the sending
process that its message has been accepted before the sending process resumes execution.
As a result, if the message gets lost or is undelivered, no backward error recovery is
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necessary for the sending process to establish a consistent state and resume execution [Shatz
1984]. However, the main drawback of synchronous communication is that it limits
concurrency and is subject to communication deadlocks (communication deadlock is
described in Chapter 6). It is less flexible than asynchronous communication because the
sending process always has to wait for an acknowledgment from the receiving process even
when this is not necessary. In a system that supports multiple threads in a single process (see
Chapter 8), the blocking primitives can be used without the disadvantage of limited
concurrency. How this is made possible is explained in Chapter 8.

A flexible message-passing system usually provides both blocking and nonblocking
primitives for send and receive so that users can choose the most suitable one to match the
specific needs of their applications.

3.5 BUFFERING

Messages can be transmitted from one process to another by copying the body of the
message from the address space of the sending process to the address space of the receiving
process (possibly via the address spaces of the kernels of the sending and receiving
computers). In some cases, the receiving process may not be ready to receive a message
transmitted to it but it wants the operating system to save that message for later reception. In
these cases, the operating system will rely on the receiver having a buffer in which messages
can be stored prior to the receiving process executing specific code to receive the message.

In interprocess communication, the message-buffering strategy is strongly related to
synchronization strategy. The synchronous and asynchronous modes of communication
correspond respectively to the two extremes of buffering: a null buffer, or no buffering,
and a buffer with unbounded capacity. Other two commonly used buffering strategies are
single-message and finite-bound, or multiple-message, buffers. These four types of
buffering strategies are described below.

3.5.1 Null luff.r (or No luff.rlng)

In case of no buffering, there is no place to temporarily store the message. Hence one of
the following implementation strategies may be used:

1. The message remains in the sender process's address space and the execution of
the send is delayed until the.receiver executes the corresponding receive. To do this, the
sender process is backed up and suspended in such a way that when it is unblocked, it
starts by reexecuting the send statement. When the receiver executes receive, an
acknowledgment is sent to the sender's kernel saying that the sender can now send the
message. On receiving the acknowledgment message, the sender is unblocked, causing the
send to be executed once again. This time, the message is successfully transferred from the
sender's address space to the receiver's address space because the receiver is waiting to
receive the message.

2. The message is simply discarded and the timeout mechanism is used to resend the
message after a timeout period. That is, after executing send, the sender process waits for
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an acknowledgment from the receiver process. If no acknowledgment is received within
the timeout period, it assumes that its message was discarded and tries again hoping that
this time the receiver has already executed receive. The sender may have to try several
times before succeeding. The sender gives up after retrying for a predecided number of
times.

As shown in Figure 3.4(a), in the case of no buffering, the logical path of message
transfer is directly from the sender's address space to the receiver's address space,
involving a single copy operation.

Sending Receiving

~~------------~@
(a)

Sending
process

Receiving
process

Node
boundary

(b)

Sending
process

IMessage 21
IMessage 31

Multiple·message
buffer/mailbox/port

(c)

Fig. 3.4 The three types of buffering strategies used in interprocess comunication
mechanisms: (a) Message transfer in synchronous send with no buffering
strategy (only one copy operation is needed). (b) Message transfer in
synchronous send with single-message buffering strategy (two copy
operations are needed). (c) Message transfer in asynchronous send with
multiple-message buffering strategy (two copy operations are needed).
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3.5.1 Single-Messap luff.r

The null buffer strategy is generally not suitable for synchronous communication between
two processes in a distributed system because if the receiver is not ready, a message has
to be transferred two or more times, and the receiver of the message has to wait for the
entire time taken to transfer the message across the network. In a distributed system,
message transfer across the network may require significant time in some cases.
Therefore, instead of using the null buffer strategy, synchronous communication
mechanisms in network/distributed systems use a single-message buffer strategy. In this
strategy, a buffer having a capacity to store a single message is used on the receiver's
node. This is because in systems based on synchronous communication, an application
module may have at most one message outstanding at a time. The main idea behind the
single-message buffer strategy is to keep the message ready for use at the location of the
receiver. Therefore, in this method, the request message is buffered on the receiver's node
if the receiver is not ready to receive the message. The message buffer may either be
located in the kernel's address space or in the receiver process's address space. As shown
in Figure 3.4(b), in this case the logical path of message transfer involves two copy
operations.

3.5.3 Unbounded-Capacity luffe,

In the asynchronous mode of communication, since a sender does not wait for the receiver
to be ready, there may be several pending messages that have not yet been accepted by the
receiver. Therefore, an unbounded-capacity message buffer that can store all unreceived
messages is needed to support asynchronous communication with the assurance that all
the messages sent to the receiver will be delivered.

3.5.4 Flnlte-80und (or Multlpl.-MuSQge) lu".r

Unbounded capacity of a buffer is practically impossible. Therefore, in practice, systems
using asynchronous mode of communication use finite-bound buffers, also known as
multiple-message buffers. When the buffer has finite bounds, a strategy is also needed for
handling the problem of a possible buffer overflow. The buffer overflow problem can be
dealt with in one of the following two ways:

1. Unsuccessful communication. In this method, message transfers simply fail
whenever there is no more buffer space. The send normally returns an error message to the
sending process, indicating that the message could not be delivered to the receiver because
the buffer is full. Unfortunately, the use of this method makes message passing less
reliable.

2. Flow-controlled communication. The second method is to use flow control, which
means that the sender is blocked until the receiver accepts some messages, thus creating



Sec. 3.6 • Multidatagram Messages 125

space in the buffer for new messages. This method introduces a synchronization between
the sender and the receiver and may result in unexpected deadlocks. Moreover, due to the
synchronization imposed, the asynchronous send does not operate in the truly
asynchronous mode for all send commands.

The amount of buffer space to be allocated in the bounded-buffer strategy is a
matter of implementation. In the most often used approach, a create_buffer system
call is provided to the users. This system call, when executed by a receiver process,
creates a buffer (sometimes called a mailbox or port) of a size specified by the
receiver. The receiver's mailbox may be located either in the kernel's address space
or in the receiver process's address space. If it is located in the kernel's address
space, mailboxes are a system resource that must be allocated to processes as and
when required. This will tend to limit the number of messages that an individual
process may keep in its mailbox. On the other hand, if the mailbox is located in the
receiver process's address space, the operating system will have to rely on the
process allocating an appropriate amount of memory, protecting the mailbox from
mishaps, and so on.

As shown in Figure 3.4(c), in the case of asynchronous send with bounded-buffer
strategy, the message is first copied from the sending process's memory into the receiving
process's mailbox and then copied from the mailbox to the receiver's memory when the
receiver calls for the message. Therefore, in this case also, the logical path of message
transfer involves two copy operations.

Although message communication based on multiple-message-buffering capability
provides better concurrency and flexibility as compared to no buffering or single-message
buffering, it is more complex to design and use. This is because of the extra work and
overhead involved in the mechanisms needed for the creation, deletion, protection, and
other issues involved in buffer management.

3.6 MUlTIDATAGRAM MESSAGES

Almost all networks have an upper bound on the size of data that can be transmitted at a
time. This size is known as the maximum transfer unit (MTU) of a network. A message
whose size is greater than the MTU has to be fragmented into multiples of the MTU, and
then each fragment has to be sent separately. Each fragment is sent in a packet that has
some control information in addition to the message data. Each packet is known as a
datagram. Messages smaller than the Ml'U of the network can be sent in a single packet
and are known as single-datagram messages. On the other hand, messages larger than the
MTU of the network have to be fragmented and sent in multiple packets. Such messages
are known as multidatagram messages. Obviously, different packets of a multidatagram
message bear a sequential relationship to one another. The disassembling of a
multidatagram message into multiple packets on the sender side and the reassembling of
the packets on the receiver side is usually the responsibility of the message-passing
system.
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3.7 ENCODING AND DECODING OF MESSAGE DATA
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A message data should be meaningful to the receiving process. This implies that, ideally,
the structure of program objects should be preserved while they are being transmitted from
the address space of the sending process to the address space of the receiving process. This
obviously is not possible in a heterogeneous system in which the sending and receiving
processes are on computers of different architectures. However, even in homogeneous
systems, it is very difficult to achieve this goal mainly because of two reasons:

1. An absolute pointer value loses its meaning when transferred from one process
address space to another. Therefore, such program objects that use absolute pointer values
cannot be transferred in their original form, and some other form of representation must
be used to transfer them. For example, to transmit a tree object, each element of the tree
must be copied in a leaf record and properly aligned in some fixed order in a buffer before
it can be sent to another process. The leaf records themselves have no meaning in the
address space of the receiving process, but the tree can be regenerated easily from them.
To facilitate such regeneration, object-type information must be passed between the
sender and receiver, indicating not only that a tree object is being passed but also the order
in which the leaf records are aligned. This process of flattening and shaping of tree objects
also extends to other structured program objects, such as linked lists.

2. Different program objects occupy varying amount of storage space. To be
meaningful, a message must normally contain several types of program objects, such as
long integers, short integers, variable-length character strings, and so on. In this .case, to
make the message meaningful to the receiver, there must be some way for the receiver to
identify which program object is stored where in the message buffer and how much space
each program object occupies.

Due to the problems mentioned above in transferring program objects in their
original form, they are first converted to a stream form that is suitable for transmission and
placed into a message buffer. This conversion process takes place on the sender side and
is known as encoding of a message data. The encoded message, when received by the
receiver, must be converted back from the stream form to the original program objects
before it can be used. The process of reconstruction of program objects from message data
on the receiver side is known as decoding of the message data.

One of the following two representations may be used for the encoding and 'decoding
of a message data:

1. In tagged representation the type of each program object along with its value is
encoded in the message. In this method, it is a simple matter for the receiving process to
check the type of each program object in the message because of the self-describing nature
of the coded data format.

2. In untagged representation the message data only contains program objects. No
information is included in the message data to specify the type of each program object. In
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this method, the receiving process must have a prior knowledge of how to decode the
received data because the coded data format is not self-describing.

The untagged representation is used in Sun XDR (eXternal Data Representation)
[Sun 1990] and Courier [Xerox 1981], whereas the tagged representation is used in the
ASN.1 (Abstract Syntax Notation) standard [CCITf 1985] and the Mach distributed
operating system [Fitzgerald and Rashid 1986].

In general, tagged representation is more expensive than untagged representation,
both in terms of the quantity of data transferred and the processing time needed at each
side to encode and decode the message data. No matter which representation is used, both
the sender and the receiver must be fully aware of the format of data coded in the message.
The sender possesses the encoding routine for the coded data format and the receiver
possesses the corresponding decoding routine. The encoding and decoding operations are
perfectly symmetrical in the sense that decoding exactly reproduces the data that was
encoded, allowing for differences in local representations. Sometimes, a receiver may
receive a badly encoded data, such as encoded data that exceeds a maximum-length
argument. In such a situation, the receiver cannot successfully decode the received data
and normally returns an error message to the sender indicating that the data is not
intelligible.

3.8 PROCESS ADDRESSING

Another important issue in message-based communication is addressing (or naming) of
the parties involved in an interaction: To whom does the sender wish to send its
message and, conversely, from whom does the receiver wish to accept a message? For
greater flexibility, a message-passing system usually supports two types of process
addressing:

1. Explicit addressing. The process with which communication is desired is
explicitly named as a parameter in the communication primitive used. Primitives (a)

and (b) of Figure 3.5 require explicit process addressing.

2. Implicit addressing. A process willing to communicate does not explicitly name
a process for communication. Primitives (c) and (d) of Figure 3.5 support implicit
process addressing. In primitive (c), the sender names a service instead of a process.
This type of primitive is useful in client-server communications when the client is not
concerned with which particular server out of a set of servers providing the service
desired by the client actually services its request. This type of process addressing is also
known as functional addressing because the address used in the communication
primitive identifies a service rather than a process.

On the other hand, in primitive (d), the receiver is willing to accept a message
from any sender. This type of primitive is again useful in client-server communications
when the server is meant to service requests of all clients that are authorized to use its
service.
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(a) send (process_id, message)
Senda message to the process identified by"process_id".

(b) receive (process_id, message)
Receive a messagefromthe processidentified by"process_id".

(c) send_any (service_id, message)
Senda message to anyprocessthatprovides the serviceof type
"service_ief'.

(d) receive_any (process_id, message)
Receive a messagefromany processand return the process
identifier("process_id") of the process fromwhichthe message
was received.

Fig.3.5 Primitives for explicit and implicit addressing of processes.

With the two basic types of process addressing used in communication primitives, we
now look at the commonly used methods for process addressing.

A simple method to identify a process is by a combination of machine_id and local_
id, such as machine_id@local_id. The local_id part is a process identifier, or a port
identifier of a receiving process, or something else that can be used to uniquely identify
a process on a machine. A process willing to send a message to another process specifies
the receiving process's address in the form machine_id@local_id. The machine_id part of
the address is used by the sending machine's kernel to send the message to the receiving
process's machine, and the local_id part of the address is then used by the kernel of the
receiving process's machine to forward the message to the process for which it is intended.
This method of process addressing is used in Berkeley UNIX with 32-bit Internet
addresses for machine_id and 16-bit numbers for local_id.

An attractive feature of this method is that no global coordination is needed to
generate systemwide unique process identifiers because local_ids need to be unique only
for one machine and can be generated locally without consultation with other machines.
However, a drawback of this method is that it does not allow a process to migrate from
one machine to' another if such a need arises. For instance, one or more processes of a
heavily loaded machine may be migrated to a lightly loaded machine to balance the
overall system load.

To overcome the limitation of the above method, processes can be identified by a
combination of the following three fields: machineld, local_id, and machineid.

1. The first field identifies the node on which the process is created

2. The second field is a local indentifier generated by the node on which the process
is created

3. The third field identifies the last known location (node) of the process.

During the lifetime of a process, the values of the first two fields of its identifier
never change; the third field, however, may. This method of process addressing is known
as link-based process addressing. For this method to work properly, when a process is
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migrated from its current node to a new node, a link information (process identifier with
the value of its third field equal to the machineid of the process's new node) is left on
its previous node, and on the new node, a new local_id is assigned to the process, and its
process identifier and the new local_id is entered in a mapping table maintained by the
kernel of the new node for all processes created on another node but running on this node.
Note that the value of the third field of a process identifier is set equal to its first field
when the process is created.

A process willing to send a message to another process specifies the receiving
process's address in the form, say, machine_id@local_id@machine_id. The kernel of
the sending machine delivers the message to the machine whose machine_id is specified
in the third field of the receiving process's address. If the value of the third field is
equal to the first field, the message will be sent to the node on which the process was
created. If the receiving process was not migrated, the message is delivered to it by
using the local_id information in the process identifier. On the other hand, if the
receiving process was migrated, the link information left for it on that node is used to
forward the message to the node to which the receiving process was migrated from this
node. In this manner, the message may get forwarded from one node to another several
times before it reaches the current node of the receiving process. When the message
reaches the current node of the receiving process, the kernel of that node extracts the
process identifiers of the sending and receiving processes from the message. The first
two fields of the process identifier of the receiving process are used as its unique
identifier to extract its localid from the mapping table and then to deliver the message
to the proper process. On the other hand, the process identifier of the sending process is
used to return to it the current location of the receiving process. The sending process
uses this information to update the value of the third field of the receiving process's
identifier, which it caches in a local cache, so that from the next time the sending
process can directly send a message for the receiving process to this location of the
receiving process instead of sending it via the node on which the receiving process was
created. A variant of this method of process addressing is used in DEMOSIMP [Miller
et a1. 1987] and Charlotte [Artsy et al. 1987]. Although this method of process
addressing supports the process migration facility, it suffers from two main drawbacks:

1. The overload of locating a process may be large if the process has migrated
several times during its lifetime.

2. It may not be possible to locate a process if an intermediate node on which the
process once resided during its lifetime is down.

Both process-addressing methods previously described are nontransparent due to the
need to specify the machine identifier. The user is well aware of the location of the process
(or at least the location on which the process was created). However, we saw in Chapter
1 that location transparency is one of the main goals of a distributed operating system.
Hence a location-transparent process-addressing mechanism is more desirable for a
message-passing system. A simple method to achieve this goal is to ensure that the
systemwide unique identifier of a process does not contain an embedded machine
identifier. A centralized process identifier allocator that maintains a counter can be used
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for this purpose. When it receives a request for an identifier, it simply returns the current
value of the counter and then increments it by 1. This scheme, however, suffers from the
problems of poor reliability and poor scalability.

Another method to achieve the goal of location transparency in process addressing is
to use a two-level naming scheme for processes. In this method, each process has two
identifiers: a high-level name that is machine independent (an ASCII string) and a low­
level name that is machine dependent (such as machine_id@local_id). A name server is
used to maintain a mapping table that maps high-level names of processes to their low­
level names. When this method of process addressing is used, a process that wants to send
a message to another process specifies the high-level name of the receiving process in the
communication primitive. The kernel of the sending machine first contacts the name
server (whose address is well known to all machines) to get the low-level name of the
receiving process from its high-level name. Using the low-level name, the kernel sends the
message to the proper machine, where the receiving kernel delivers the message to the
receiving process. The sending kernel also caches the high-level name to low-level name­
mapping information of the receiving process in a local cache for future use, so that the
name server need not be contacted when a message has to be sent again to the receiving
process.

Notice that the name server approach allows a process to be migrated from one node
to another without the need to change the code in the program of any process that wants
to communicate with it. This is because when a process migrates its low-level identifier
changes, and this change is incorporated in the name server's mapping table. However, the
high-level name of the process remains unchanged.

The name server approach is also suitable for functional addressing. In this case, a
high-level name identifies a service instead of a process, and the name server maps a
service identifier to one or more processes that provide that service.

The name server approach also suffers from the problems of poor reliability and poor
scalability because the name server is a centralized component of the system. One way to
overcome these problems is to replicate the name server. However, this leads to extra
overhead needed in keeping the replicas consistent.

3.9 FAilURE HANDLING

While a distributed system may offer potential for parallelism, it is also prone to partial
failures such as a node crash or a communication link failure. As shown in Figure 3.6,
during interprocess communication, such failures may lead to the following problems:

1. Loss of request message. This may happen either due to the failure of
communication link between the sender and receiver or because the receiver's node is
down at the time the request message reaches there.

2. Loss of response message. This may happen either due to the failure of
communication link between the sender and receiver or because the sender's node is down
at the time the response message reaches there.
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Fig.3.6 Possible problems in IPe due to different types of system failures. (a)

Request message is lost. (b) Response message is lost. (c) Receiver's
computer crashed.

3. Unsuccessful execution of the request. This happens due to the receiver's node
crashing while the request is being processed.

To cope with these problems, a reliable IPC protocol of a message-passing system is
normally designed based on the idea of internal retransmissions of messages after timeouts
and the return of an acknowledgment message to the sending machine's kernel by the
receiving machine's kernel. That is, the kernel of the sending machine is responsible for
retransmitting the message after waiting for a timeout period if no acknowledgment is
received from the receiver's machine within this time. The kernel of the sending machine
frees the sending process only when the acknowledgment is received. The time duration



132 Chap. 3 • Message Passing

for which the sender waits before retransmitting the request is normally slightly more than
the approximate round-trip time between the sender and the receiver nodes plus the
average time required for executing the request.

Based on the above idea, a four-message reliable IPC protocol for client-server
communication between two processes works as follows (see Fig. 3.7):

Client

- - - - Blocked state
-.- Executing state

Fig. 3.7 The four-message reliable IPC
protocol for client-server
communication between two
processes.

1. The client sends a request message to the server.

2. When the request message is received at the server's machine, the kernel of that
machine returns an acknowledgment message to the kernel of the client machine. If the
acknowledgment is not received within the timeout period, the kernel of the client
machine retransmits the request message.

3. When the server finishes processing the client's request, it returns a reply message
(containing the result of processing) to the client.

4. When the reply message is received at the client's machine, the kernel of that
machine returns an acknowledgment message to the kernel of the server machine. If the
acknowledgment message is not received within the timeout period, the kernel of the
server machine retransmits the reply message.
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In client-server communication, the result of the processed request is sufficient
acknowledgment that the request message was received by the server. Based on this idea,
a three-message reliable IPC protocol for client-server communication between two
processes works as follows (see Fig. 3.8):

Fig.3.8 The three-message reliable IPC
protocol for client-server
communication between two
processes.

- - - - - Blocked state
-- Executing state

1. The client sends a request message to the server.

2. When the server finishes processing the client's request, it returns a reply message
(containing the result of processing) to the client. The client remains blocked until the
reply is received. If the reply is not recei ved within the timeout period, the kernel of the
client machine retransmits the request message.

3. When the reply message is received at the client's machine, the kernel of that
machine returns an acknowledgment message to the kernel of the server machine. If the
acknowledgment message is not received within the timeout period, the kernel of the
server machine retransmits the reply message.

In the protocol of Figure 3.8, a problem occurs if a request processing takes a long
time. If the request message is lost, it will be retransmitted only after the timeout period,
which has been set to a large value to avoid unnecessary retransmissions of the request
message. On the other hand, if the timeout value is not set properly taking into
consideration the long time needed for request processing, unnecessary retransmissions of
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the request message will take place. The following protocol may be used to handle this
problem:

1. The client sends a request message to the server.

2. When the request message is received at the server's machine, the kernel of that
machine starts a timer. If the server finishes processing the client's request and returns the
reply message to the client before the timer expires, the reply serves as the acknowledgment
of the request message. Otherwise, a separate acknowledgment is sent by the kernel of the
server machine to acknowledge the request message. If an acknowledgment is not received
within the timeout period, the kernel of the client machine retransmits the request
message.

3. When the reply message is received at the client's machine, the kernel of that
machine returns an acknowledgment message to the kernel of the server machine. If the
acknowledgment message is not received within the timeout period, the kernel of the
server machine retransmits the reply message.

Notice that the acknowledgment message from client to server machine in the
protocol of Figure 3.8 is convenient but not a necessity. This is because if the reply
message is lost, the request message will be retransmitted after timeout. The server can
process the request once again and return the reply to the client. Therefore, a message­
passing system may be designed to use the following two-message IPC protocol for client­
server communication between two processes (see Fig. 3.9):

- - - Blocked state
-- Executing state

Fig.3.9 The two-message IPC protocol used
in many systems for client-server
communication between two
processes.
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1. The client sends a request message to the server and remains blocked until a reply
is received from the server.

2. When the server finishes processing the client's request, it returns a reply message
(containing the result of processing) to the client. If the reply is not received
within the timeout period, the kernel of the client machine retransmits the request
message.

Based on the protocol of Figure 3.9, an example of failure handling during
communication between two processes is shown in Figure 3.10. The protocol of Figure
3.9 is said to obey at-Least-once semantics, which ensures that at least one execution of the
receiver's operation has been performed (but possibly more). It is more appropriate to call
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'\
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executions of the same
request may produce
different results.

Successful
request execution
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Fig.3.10 An example of fault-tolerant communication between a client and a server.
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this semantics the last-one semantics because the results of the last execution of the
request are used by the sender, although earlier (abandoned) executions of the request may
have had side effects that survived the failure. As explained later, this semantics may not
be acceptable to several applications.

3.9.1 Idempotency and Handling or Duplicate Request
Messages

Idempotency basically means "repeatability." That is, an idempotent operation produces the
same results without any side effects no matter how many. times it is performed with the
same arguments. An example of an idempotent routine is a simple GetSqrt procedure for
calculating the square root of a given number. For example, GetSqrt(64) always returns 8.

On the other hand, operations that do not necessarily produce the same results when
executed repeatedly with the same arguments are said to be nonidempotent. For example,
consider the following routine of a server process that debits a specified amount from a
bank account and returns the balance amount to a requesting client:

debit (amount)
if (balance ~ amount)

{balance = balance - amount;
return ("success", balance);}

else return ("failure", balance);

end;

Figure 3.11 shows a sequence of debiti I 00) requests made by a client for processing
the debit routine. The first request asks the server to debit an amount of 100 from the
balance. The server receives the request and processes it. Suppose the initial balance was
1000, so the server sends a reply ("success," 900) to the client indicating that the balance
remaining is 900. This reply, for some reason, could not be delivered to the client. The
client then times out waiting for the response of its request and retransmits the debiti 100)
request. The server processes the debit( 100) request once again and sends a reply
("success," 8(0) to the client indicating that the remaining balance is 800, which is not
correct. Therefore, we see from this example that multiple executions of nonidempotent
routines produce undesirable results.

Clearly, when no response is received by the client, it is impossible to determine
whether the failure was due to a server crash.or the loss of the request or response message.
Therefore, as can be seen in Figure 3.10, due to the use of timeout-based retransmission of
requests, the server may execute (either partially or fully) the same request message more
than once. This behavior mayor may not be tolerable depending on whether multiple
executions of the request have the same effect as a single execution (as in idempotent
routines). If the execution of the request is nonidempotent, then its repeated execution will
destroy the consistency of information. Therefore such "orphan" executions must, in general,
be avoided. The orphan phenomenon has led to the identification and use of exactly-once
semantics, which ensures that only one execution of the server's operation is performed.
Primitives based on exactly-once semantics are most desired but difficult to implement.
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debit (amount)
{

if (balance >= amount)
{ balance = balance - amount;

retum ("success", balance);
}
else return (Ufailure", balance);

Fig. 3.11 A nonidempotent routine.

One way to implement exactly-once semantics is to use a unique identifier for every
request that the client makes and to set up a reply cache in the kernel's address space on the
server machine to cache replies. In this case, before forwarding a request to a server for
processing, the kernel of the server machine checks to see if a reply already exists in the
reply cache for the request. If yes, this means that this is a duplicate request that has already
been processed. Therefore, the previously computed result is extracted from the reply cache
and a new response message is sent to the client. Otherwise, the request is a new one. In this
case, the kernel forwards the request to the appropriate server for processing, and when the
processing is over, it caches the request identifier along with the result of processing in the
reply cache before sending a response message to the client.

An example of implementing exactly-once semantics is shown in Figure 3.12. This
figure is similar to Figure 3.11 except that requests are now numbered, and a reply cache
has been added to the server machine. The client makes request-I ; the server machine's
kernel receives request-l and then checks the reply cache to see if there is a cached reply
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Fig. 3.12 An example of exactly-once semantics using request identifiers and reply cache.

for request-I, There is no match, so it forwards the request to the appropriate server. The
server processes the request and returns the result to the kernel. The kernel copies the
request identifier and the result of execution to the reply cache and then sends the result
in the form of a response message to the client. "This reply is lost, and the client times out
on request ... l and retransmits request-I, The server machine's kernel receives request-I
once again and checks the reply cache to see if there is a cached reply for request-I, This
time a match is found so it extracts the result corresponding to request-J from the reply
cache and once again sends it to the client as a response message. Thus the reprocessing
of a duplicate request is avoided. Note that the range of the request identifiers should be
much larger than the number of entries in the cache.
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It is important to remember that the use of a reply cache does not make a
nonidempotent routine idempotent. The cache is simply one possible way to implement
nonidempotent routines with exactly-once semantics.

3.9.2 K••plng Track of lost Qnd Out-of-Sequence Packets
in MultldGtGgram MessGges

In the case of multidatagram messages, the logical transfer of a message consists of physical
transfer of several packets. Therefore, a message t.ransmission can be considered to be
complete only when all the packets of the message have been received by the process to
which it is sent. For successful completion of a multidatagram message transfer, reliable
delivery of every packet is important. A simple way to ensure this is to acknowledge each
packet separately (called stop-and-wait protocol). But a separate acknowledgment packet
for each request packet leads to a communication overhead. Therefore, to improve
communication performance, a better approach is to use a single acknowledgment packet
for all the packets of a multidatagram message (called blast protocol). However, when this
approach is used, a node crash or a communication link failure may lead to the following
problems:

• One or more packets of the multidatagram message are lost in communication.

• The packets arc received out of sequence by the receiver.

An efficient mechanism to cope with these problems is to use a bitmap to identify the
packets of a message. In this mechanism, the header part of each packet consists of two extra
fields, one of which specifies the total number of packets in the multidatagram message and
the other is the bitmap field that specifies the position of this packet in the complete
message. The first field helps the receiving process to set aside a suitably sized buffer area
for the message and the second field helps in deciding the position of this packet in that
buffer. Since all packets have information about the total number of packets in the message,
so even in the case of out-of-sequence receipt of the packets, that is, even when the first
packet is not received first, a suitably sized buffer area can be set aside by the receiver for the
entire message and the received packet can be placed in its proper position inside the buffer
area. After timeout, if all packets have not yet been received, a bitmap indicating the
unreceived packets is sent to the sender. Using the bitmap information, the sender
retransmits only those packets that have not been received by the receiver. This technique is
called selective repeat. When all the packets of a multidatagram message are received, the
message transfer is complete, and the receiver sends an acknowledgment message to the
sending process. This method of multidatagram message communication is illustrated with
an example in Figure 3.13 in which the multidatagram message consists of five packets.

3.10 GROUP COMMUNICATION

The most elementary form of message-based interaction is one-to-one communication
(also known as point-to-point, or unicast, communication) in which a single-sender
process sends a message to a single-receiver process. However, for performance and ease
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of programming, several highly parallel distributed applications require that a message­
passing system should also provide group communication facility. Depending on single or
multiple senders and receivers, the following three types of group communication are
possible:

1. One to many (single sender and multiple receivers)

2. Many to one (multiple senders and single receiver)
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3. Many to many (multiple senders and multiple receivers)

The issues related to these communication schemes are described below.

3.10.1 On8-to-Many Communication
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In this scheme, there are multiple receivers for a message sent by a single sender. One-to­
many scheme is also known as multicast communication. A special case of multicast
communication is broadcast communication, in which the message is sent to all
processors connected to a network.

Multicastlbroadcast communication is very useful for several practical applications.
For example, consider a server manager managing a group of server processes all
providing the same type of service. The server manager can multicast a message to all the
server processes, requesting that a free server volunteer to serve the current request. It then
selects the first server that responds. The server manager does not have to keep track of
the free servers. Similarly, to locate a processor providing a specific service, an inquiry
message may be broadcast. In this case, it is not necessary to receive an answer from every
processor; just finding one instance of the desired service is sufficient.

Group Management

In case of one-to-many communication, receiver processes of a message form a group.
Such groups are of two types--closed and open. A closed group is one in which only the
members of the group can send a message to the group. An outside process cannot send
a message to the group as a whole, although it may send a message to an individual
member of the group. On the other hand, an open group is one in which any process in
the system can send a message to the group as a whole.

Whether to use a closed group or an open group is application dependent. For
example, a group of processes working on a common problem need not communicate with
outside processes and can form a closed group. On the other hand, a group of replicated
servers meant for distributed processing of client requests must form an open group so that
client processes can send their requests to them. Therefore, a flexible message-passing
system with group communication facility should support both types of groups.

A message-passing system with group communication facility provides the flexibility
to create and delete groups dynamically and to allow a process to join or leave a group at
any time. Obviously, the message-passing system must have a mechanism to manage the
groups and their membership information. A simple mechanism for this is to use a
centralized group server process. All requests to create a group, to delete a group, to add
a member to a group, or to remove a member from a group are sent to this process.
Therefore, it is easy for the group server to maintain up-to-date information of all existing
groups and their exact membership. This approach, however, suffers from the problems of
poor reliability and poor scalability common to all centralized techniques. Replication of
the group server may be done to solve these problems to some extent. However,
replication leads to the extra overhead involved in keeping the group information of all
group servers consistent.
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Group Addressing

A two-level naming scheme is normally used for group addressing. The high-level group
name is an ASCII string that is independent of the location information of the processes
in the group. On the other hand, the low-level group name depends to a large extent on
the underlying hardware. For example, on some networks it is possible to create a special
network address to which multiple machines can listen. Such a network address is called
a multicast address. A packet sent to a multicast address is automatically delivered to all
machines listening to the address. Therefore, in such systems a multicast address is used
as a low-level name for a group.

Some networks that do not have the facility to create multicast addresses may have
broadcasting facility. Networks with broadcasting facility declare a certain address, such
as zero, as a broadcast address. A packet sent to a broadcast address is automatically
delivered to all machines on the network. Therefore, the broadcast address of a network
may be used as a low-level name for a group. In this case, the software of each machine
must check to see if the packet is intended for it. If not, the packet is simply discarded.
Since all machines receive every broadcast packet and must check if the packet is intended
for it, the use of a broadcast address is less efficient than the use of a multicast address for
group addressing. Also notice that in a system that uses a broadcast address for group
addressing, aU groups have the same low-level name, the broadcast address.

If a network does not support either the facility to create multicast addresses or the
broadcasting facility, a one-to-one communication mechanism has to be used to
implement the group communication facility. That is, the kernel of the sending machine
sends the message packet separately to each machine that has a process belonging to the
group. Therefore, in this case, the low-level name of a group contains a list of machine
identifiers of an machines that have a process belonging to the group.

Notice that in the first two methods a single message packet is sent over the network,
whereas in the third method the number of packets sent over the network depends on the
number of machines that have one or more processes belonging to the group. Therefore
the third method generates more network traffic than the other two methods and is in
general less efficient. However, it is better than the broadcasting method in systems in
which most groups involve only a few out of many machines on the network. Moreover
the first two methods are suitable for use only on a single LAN. If the network contains
multiple LANs interconnected by gateways and the processes of a group are spread over
multiple LANs, the third method is simpler and easier to implement than the other two
methods.

Message Delivery to Receiver Processes

User applications use high-level group names in programs. The centralized group server
maintains a mapping of high-level group names to their low-level names. The group
server also maintains a list of the process identifiers of all the processes for each
group.

When a sender sends a message to a group specifying its high..level name, the kernel
of the sending machine contacts the group server to obtain the low-level name of the group
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and the list of process identifiers of the processes belonging to the group. The list of
process identifiers is inserted in the message packet. If the low-level group name is either
a multicast address or a broadcast address, the kernel simply sends the packet to the
multicastlbroadcast address. On the other hand, if the low-level group name is a list of
machine identifiers, the kernel sends a copy of the packet separately to each machine in
the list.

When the packet reaches a machine, the kernel of that machine extracts the list of
process identifiers from the packet and forwards the message in the packet to those
processes in the list that belong to its own machine. Note that when the broadcast address
is used as a low-level group name, the kernel of a machine may find that none of the
processes in the list belongs to its own machine. In this case, the kernel simply discards
the packet.

Notice that a sender is not at all aware of either the size of the group or the actual
mechanism used for group addressing. The sender simply sends a message to a group
specifying its high-level name, and the operating system takes the responsibility to deliver
the message to all the group members.

Buffered and Unbuffered Multicast

Multicasting is an asynchronous communication mechanism. This is because multicast
send cannot be synchronous due to the following reasons [Gehani 1984]:

1. It is unrealistic to expect a sending process to wait until all the receiving processes
that belong to the multicast group are ready to receive the multicast message.

2. The sending process may not be aware of all the receiving processes that belong
to the multicast group.

How a multicast message is treated on a receiving process side depends on whether
the multicast mechanism is buffered or unbuffered. For an unbuffered multicast, the
message is not buffered for the receiving process and is lost if the receiving process is not
in a state ready to receive it. Therefore, the message is received only by those processes
of the multicast group that are ready to receive it. On the other hand, for a buffered
multicast, the message is buffered for the receiving processes, so each process of the
multicast group will eventually receive the message.

Send-to-All and Bulletin-Board Semantics

Ahamad and Bernstein [1985] described the following two types of semantics for one-to­
many communications:

1. Send-to-all semantics. A copy of the message is sent to each process of the
multicast group and the message is buffered until it is accepted by the process.

2. Bulletin-board semantics. A message to be multicast is addressed to a channel
instead of being sent to every individual process of the multicast group. From a logical
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point of view, the channel plays the role of a bulletin board. A receiving process copies
the message from the channel instead of removing it when it makes a receive request on
the channel. Thus a multicast message remains available to other processes as if it has
been posted on the bulletin board. The processes that have receive access right on the
channel constitute the multicast group.

Bulletin-board semantics is more flexible than send-to-all semantics because it takes
care of the following two factors that are ignored by send-to-all semantics [Ahamad and
Bernstein 1985]:

1. The relevance of a message to a particular receiver may depend on the receiver's
state.

2. Messages not accepted within a certain time after transmission may no longer be
useful; their value may depend on the sender's state.

To illustrate this, let us once again consider the example of a server manager
multicasting a message to all the server processes to volunteer to serve the current request.
Using send-to-all semantics, it would be necessary to multicast to all the servers, causing
many contractors to process extraneous messages. Using bulletin-board semantics, only
those contractors that are idle and in a state suitable for serving requests will make a
receive request on the concerned channel, and thus. only contractors in the correct state
will process such messages [Ahamad and Bernstein 1985]. Furthermore, the message is
withdrawn from the channel by the server manager as soon as the bid period is over; that
is, the first bidder is selected (in this case). Therefore, the message remains available for
being received only as long as the server manager is in a state in which bids are
acceptable. While this does not completely eliminate extraneous messages (contractors
may still reply after the bid period is over), it does help in reducing them.

Flexible Reliability in Multicast Communication

Different applications require different degrees of reliability. Therefore multicast
primitives normally provide the flexibility for user-definable reliability. Thus, the sender
of a multicast message can specify the number of receivers from which a response
message is expected. In one-to-many communication, the degree of reliability is normally
expressed in the following forms:

1. The O-reliable. No response is expected by the sender from any of the receivers.
This is useful for applications using asynchronous multicast in which the sender does not
wait for any response after multicasting the message. An example of this type of
application is a time signal generator.

2. The l-reliable. The sender expects a response from any of the receivers. The
already described application in which a server manager multicasts a message to all the
servers to volunteer to serve the current request and selects the first server that responds
is an example of l-reliable multicast communication.
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3. The m-out-of-n-reliable. The multicast group consists of n receivers and the
sender expects a response from m (1 <m <n) of the n receivers. Majority consensus
algorithms (described in Chapter 9) used for the consistency control of replicated
information use this form of reliability, with the value m = n/2.

4. All-reliable. The sender expects a response message from all the receivers of the
multicast group. For example, suppose a message for updating the replicas of a file is
multicast to all the file servers having a replica of the file. Naturally, such a sender process
will expect a response from all the concerned file servers.

Atomic Multicast

Atomic multicast has an all-or-nothing property. That is, when a message is sent to a group
by atomic multicast, it is either received by all the processes that are members of the group
or else it is not received by any of them. An implicit assumption usually made in atomic
multicast is that when a process fails, it is no longer a member of the multicast group.
When the process comes up after failure, it must join the group afresh.

Atomic multicast is not always necessary. For example, applications for which the
degree of reliability requirement is O-reliable., l-reliable, or m-out-of-n-reliable do not
need atomic multicast facility. On the other hand, applications for which the degree of
reliability requirement is all-reliable need atomic multicast facility. Therefore, a flexible
message-passing system should support both atomic and nonatomic multicast facilities
and should provide the flexibility to the sender of a multicast message to specify in the
send primitive whether atomicity property is required or not for the message being
multicast.

A simple method to implement atomic multicast is to multicast a message, with the
degree of reliability requirement being all-reliable. In this case, the kernel of the sending
machine sends the message to all members of the group and waits for an acknowledgment
from each member (we assume that a one-to-one communication mechanism is used to
implement the multicast facility). After a timeout period, the kernel retransmits the
message to all those members from whom an acknowledgment message has not yet been
received. The timeout-based retransmission of the message is repeated until an
acknowledgment is received from all members of the group. When all acknowledgments
have been received, the kernel confirms to the sender that the atomic multicast process is
complete.

The above method works fine only as long as the machines of the sender process and
the receiver processes do not fail during an atomic multicast operation. This is because if
the machine of the sender process fails, the message cannot be retransmitted if one or
more members did not receive the message due to packet loss or some other reason.
Similarly, if the machine of a receiver process fails and remains down for some time, the
message cannot be delivered to that process because retransmissions of the message
cannot be continued indefinitely and have to be aborted after some predetermined time.
Therefore, a fault-tolerant atomic multicast protocol must ensure that a multicast will be
delivered to all members of the multicast group even in the event of failure of the sender's
machine or a receiver's machine. One method to implement such a protocol is described
next [Tanenbaum 1995}.
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In this method, each message has a message identifier field to distinguish it from all
other messages and a field to indicate that it is an atomic multicast message. The sender
sends the message to a multicast group. The kernel of the sending machine sends the
message to all members of the group and uses timeout-based retransmissions as in the
previous method. A process that receives the message checks its message identifier field
to see if it is a new message. If not, it is simply discarded. Otherwise, the receiver checks
to see. if it is an atomic multicast message. If so, the receiver also performs an atomic
multicast of the same message, sending it to the same multicast group. The kernel of this
machine treats this message as an ordinary atomic multicast message and uses timeout­
based retransmissions when needed. In this way, each receiver of an atomic multicast
message will perform an atomic multicast of the message to the same multicast group. The
method ensures that eventually all the surviving processes of the multicast group will
receive the message even if the sender machine fails after sending the message or a
receiver machine fails after receiving the message.

Notice that an atomic multicast is in general very expensive as compared to a normal
multicast due to the large number of messages involved in its implementation. Therefore,
a message-passing system should not use the atomicity property as a default property of
multicast messages but should provide this facility as an option.

Group Communication Primitives

In both one-to-one communication and one-to-many communication, the sender of a
process basically has to specify two parameters: destination address and a pointer to the
message data. Therefore ideally the same send primitive can be used for both one-to-one
communication and one-to-many communication. If the destination address specified in
the send primitive is that of a single process, the message is sent to that one process. On
the other hand, if the destination address is a group address, the message is sent to all
processes that belong to that group.

However, most systems having a group communication facility provide a different
primitive (such as sendgroup) for sending a message to a group. There are two main
reasons for this. First, it simplifies the design and implementation of a group
communication facility. For example, suppose the two-level naming mechanism is
used for both process addressing and group addressing. The high-level to low-level
name mapping for processes is done by the name server, and for groups it is done by
the group server. With this design, if a single send primitive is used for both one-to­
one communication and one-to-many communication, the kernel of the sending
machine cannot know whether the destination address specified by a user is a single
process address or a group address. Consequently, it does not know whether the name
server or the group server should be contacted for obtaining the low-level name of the
specified destination address. Implementation methods to solve this problem are
possible theoretically, but the design will become complicated. On the other hand, if
separate primitives such as send and sendgroup are used, the kernel can easily make
out whether the specified destination address is a single process address or a group
address and can contact the appropriate server to obtain the corresponding low-level
name.
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Second, it helps in providing greater flexibility to the users. For instance» a separate
parameter may be used in the sendgroup primitive to allow users to specify the degree
of reliability desired (number of receivers from which a response message is expected),
and another parameter may be used to specify whether the atomicity property is required
or not.

3.10.2 Many-to-One Communication

In this scheme, multiple senders send messages to a single receiver. The single receiver
may be selective or nonselective. A selective receiver specifies a unique sender; a message
exchange takes place only if that sender sends a message. On the other hand, a
nonselective receiver specifies a set of senders, and if anyone sender in the set sends a
message to this receiver, a message exchange takes place.

Thus we see that an important issue related to the many-to-one communication
scheme is nondeterminism. The receiver may want to wait for information from any of a
group of senders, rather than from one specific sender. As it is not known in advance
which member (or members) of the group will have its information available first, such
behavior is nondeterministic. In some cases it is useful to dynamicalJy control the group
of senders from whom to accept message. For example, a buffer process may accept a
request from a producer process to store an item in the buffer whenever the buffer is not
full; it may accept a request from a consumer process to get an item from the buffer
whenever the buffer is not empty. To program such behavior, a notation is needed to
express and control nondeterminism. One such construct is the "guarded command"
statement introduced by Dijkstra l19751. Since this issue is related to programming
languages rather than operating systems, we will not discuss it any further.

3.10.3 Many-to-Many Communication

In this scheme, multiple senders send messages to multiple receivers. The one-to-many
and many-to-one schemes are implicit in this scheme. Hence the issues related to one-to­
many and many-to-one schemes, which have already been described above, also apply to
the many-to-many communication scheme. In addition, an important issue related to
many-to-many communication scheme is that of ordered message delivery.

Ordered message delivery ensures that all messages are delivered to all receivers in
an order acceptable to the application. This property is needed by many applications for
their correct functioning. For example, suppose two senders send messages to update the
same record of a database to two server processes having a replica of the database. If the
messages of the two senders are received by the two servers in different orders, then the
final values of the updated record of the database may be different in its two replicas.
Therefore, this application requires that all messages be delivered in the same order to all
receivers.

Ordered message delivery requires message sequencing. In a system with a single
sender and multiple receivers (one-to-many communication), sequencing messages to all
the receivers is trivial. If the sender initiates the next multicast transmission only after
confirming that the previous multicast message has been received by all the members, the
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messages win be delivered in the same order. On the other hand. in a system with multiple
senders and a single receiver (many-to-one communication), the messages will be
delivered to the receiver in the order in which they arrive at the receiver's machine.
Ordering in this case is simply handled by the receiver. Thus we see that it is not difficult
to ensure ordered delivery of messages in many-to-one 'or one-to-many communication
schemes.

However, in many-to-many communication, a message sent from a sender may
arrive at a receiver's destination before the arrival of a message from another sender;
but this order may be reversed at another receiver's destination (see Fig. 3.14). The
reason why messages of different senders may arrive at the machines of different
receivers in different orders is that when two processes are contending for access to a
LAN, the order in which messages of the two processes are sent over the LAN is
nondeterministic. Moreover, in a WAN environment, the messages of different senders
may be routed to the same destination using different routes that take different amounts
of time (which cannot be correctly predicted) to the destination. Therefore, ensuring
ordered message delivery requires a special message-handling mechanism in many-to­
many communication scheme.

The commonly used semantics for ordered delivery of multicast messages are
absolute ordering, consistent ordering, and causal ordering. These are described
below.

Time

1

Fig. 3.14 No ordering constraint for
message delivery.

Absolute Ordering

This semantics ensures that all messages are delivered to all receiver processes in the exact
order in which they were sent (see Fig. 3.15). One method to implement this semantics is
to use global timestamps as message identifiers. That is, the system is assumed to have a
clock at each machine and all clocks are synchronized with each other, and when a sender
sends a message, the clock value (timestamp) is taken as the identifier of that message and
embedded in the message.

The kernel of each receiver's machine saves all incoming messages meant for a
receiver in a separate queue. A sliding-window mechanism is used to periodically
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Fig.3.]5 Absolute ordering of messages.

deliver the message from the queue to the receiver. That is, a fixed time interval is
selected as the window size, and periodically all messages whose timestamp values
fall within the current window are delivered to the receiver. Messages whose
timestamp values fall outside the window are left in the queue because of the
possibility that a tardy message having a timestamp value lower than that of any of
the messages in the queue might still arrive. The window size is properly chosen
taking into consideration the maximum possible time that may be required by a
message to go from one machine to any other machine in the network.

Consistent Ordering

Absolute-ordering semantics requires globally synchronized clocks, which are not easy
to implement. Moreover, absolute ordering is not really what many applications need
to function correctly. For instance, in the replicated database updation example, it is
sufficient to ensure that both servers receive the update messages of the two senders
in the same order even if this order is not the real order in which the two messages
were sent. Therefore, instead of supporting absolute-ordering semantics, most systems
support consistent-ordering semantics. This semantics ensures that all messages are
delivered to all receiver processes in the same order. However, this order may be
different from the order in which messages were sent (see Fig. 3.16).

One method to implement consistent-ordering semantics is to make the many-to­
many scheme appear as a combination of many-to-one and one-to-many schemes
[Chang and Maxemchuk 1985]. That is, the kernels of the sending machines send
messages to a single receiver (known as a sequencer) that assigns a sequence number
to each message and then multicasts it. The kernel of each receiver's machine saves
all incoming messages meant for a receiver in a separate queue. Messages in a queue
are delivered immediately to the receiver unless there is a gap in the message
identifiers, in which case messages after the gap are not delivered until the ones in the
gap have arrived.
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Fig.3.16 Consistent ordering of messages.

The sequencer-based method for implementing consistent-ordering semantics is
subject to single point of failure and hence has poor reliability. A distributed algorithm for
implementing consistent-ordering semantics that does not suffer from this problem is the
ABCAST protocol of the ISIS system [Birman and Van Renesse 1994, Birman 1993,
Birman et al. 1991, Birman and Joseph 1987]. It assigns a sequence number to a message
by distributed agreement among the group members and the sender and works as
follows:

1. The sender assigns a temporary sequence number to the message and sends it
to all the members of the multicast group. The sequence number assigned by the
sender must be larger than any previous sequence number used by the sender.
Therefore, a simple counter can be used by the sender to assign sequence numbers to
its messages.

2. On receiving the message, each member of the group returns a proposed
sequence number to the sender. A member (i) calculates its proposed sequencenumber
by using the function

max(Fmax ' P max) + 1 + ilN

where Fmax is the largest final sequence number agreed upon so far for a message received
by the group (each member makes a record of this when a final sequence number is agreed
upon), Pmax is the largest proposed sequence number by this member, and N is the total
number of members in the multicast group.

3. When the sender has received the proposed sequence numbers from all the
members, it selects the largest one as the final sequence number for the message and sends
it to all members in a commit message. The chosen final sequence number is guaranteed
to be unique because of the term UN in the function used for the calculation of a proposed
sequence number.

4. On receiving the commit message, each member attaches the final sequence
number to the message.
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5. Committed messages with final sequence numbers are delivered to the application
programs in order of their final sequence numbers. Note that the algorithm for sequence
number assignment to a message is a part of the runtime system, not the user
processes.

It can be shown that this protocol ensures consistent ordering semantics.

Causal Ordering

For some applications consistent-ordering semantics is not necessary and even weaker
semantics is acceptable. Therefore, an application can have better performance if the
message-passing system used supports a weaker ordering semantics that is acceptable to
the application. .One such weaker ordering semantics that is acceptable to many
applications is the causal-ordering semantics. This semantics ensures that if the event of
sending one message is causally related to the event of sending another message, the two
messages are delivered to all receivers in the correct order. However, if two message­
sending events are not causally related, the two messages may be delivered to the
receivers in any order. Two message-sending events are said to be causally related if they
are corelated by the happened-before relation (for a definition of happened-before relation
see Chapter 6). That is, two message-sending events are causally related if there is any
possibility of the second one being influenced in any way by the first one. The basic idea
behind causal-ordering semantics is that when it matters, messages are always delivered
in the proper order, but when it does not matter, they may be delivered in any arbitrary
order.

An example of causal ordering of messages is given in Figure 3.17. In this example,
sender SI sends message mJ to receivers R], R2 , and R3 and sender S2 sends message m2
to receivers R2 , and R3 . On receiving nu , receiver R] inspects it, creates a new message
ms, and sends m-; to R2 and R3 . Note that the event of sending m3 is causally related to
the event of sending m, because the contents of m-; might have been derived in part from
ml; hence the two messages must be delivered to both R2 and R3 in the proper order, m,

Time
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F'ig.3.17 Causal ordering of messages.
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before m3' Also note that since m2 is not causally related to either m, or m3' m2 can be
delivered at any time to R2 and R3 irrespective of m, or m-, This is exactly what the
example of Figure 3.17 shows.

One method for implementing causal-ordering semantics is the CBCASTprotocol of
the ISIS system [Birman et al. 1991]. It works as follows:

1. Each member process of a group maintains a vector of n components, where n is
the total number of members in the group. Each member is assigned a sequence number
from 0 to n, and the ith component of the vectors corresponds to the member with
sequence number i. In particular, the value of the ith component of a member's vector is
equal to the number of the last message received in sequence by this member from
member i.

2. To send a message, a process increments the value of its own component in its
own vector and sends the vector as part of the message.

3. When the message arrives at a receiver process's site, it is buffered by the runtime
system. The runtime system tests the two conditions given below to decide whether the
message can be delivered to the user process or its delivery must be delayed to ensure
causaJ...ordering semantics. Let S be the vector of the sender process that is attached to the
message and R be the vector of the receiver process. Also let i be the sequence number of
the sender process. Then the two conditions to be tested are

S[i] = R[i] + 1 and SUl::; RUJ for all j ~ i

The first condition ensures that the receiver has not missed any message from the
sender. This test is needed because two messages from the same sender are always
causally related. The second condition ensures that the sender has not received any
message that the receiver has not yet received. This test is needed to make sure that the
sender's message is not causally related to a message missed by the receiver.

If the message passes these two tests, the runtime system delivers it to the user
process. Otherwise, the message is left in the buffer and the test is carried out again for
it when a new message arrives.

A simple example to illustrate the algorithm is given in Figure 3.18. In this
example, there' are four processes A, B, C, and D. The status of their vectors at some
instance of time is (3, 2, 5, I), (3, 2, 5, 1), (2, 2, 5, 1), and (3, 2, 4, 1), respectively.
This means that, until now, A has sent three messages, B has sent two messages, C
has sent five messages, and D has sent one message to other processes. Now A sends
a new message to other processes. Therefore, the vector attached to the message will
be (4, 2, 5, 1). The message can be delivered to B because it passes both tests.
However, the message has to be delayed by the runtime systems of sites of processes
C and D because the first test fails at the site of process C and the second test fails
at the site of process D.

A good message-passing system should support at least consistent- and causal­
ordering semantics and should provide the flexibility to the users to choose one of these
in their applications.
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Fig. 3.18 An example to illustrate the CBCAST protocol for implementing causal
ordering semantics.
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The socket-based IPC of the 4.3BSD UNIX system illustrates how a message-passing
system can be designed using the concepts and mechanisms presented in this chapter.The
system was produced by the Computer Systems Research Group (CSRG) of the
University of California at Berkeley and is the most widely used and well documented
message-passing system.

3. 11.1 8aslc Concepts and Main Features

The IPe mechanism of the 4.3BSD UNIX provides a general interface for constructing
network-based applications. Its basic concepts and main features are as follows:

1. It is network independent in the sense that it can support communicationnetworks
that use different sets of protocols, different naming conventions, different hardware, and
so on. For this, it uses the notion of communication domain, which refers to a standard set
of communication properties. In this chapter we have seen that there are different methods
of naming a communication endpoint. We also have seen that there are different semantics
of communication related to synchronization, reliability, ordering, and so on. Different
networks often use different naming conventions for naming communication endpoints
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and possess different semantics of communication. These properties of a network are
known as its communication properties. Networks with the same communication
properties belong to a common communication domain (or protocol family). By providing
the flexibility to specify a communication domain as a parameter of the communication
primitive used, the IPC mechanism of the 4.3B5D UNIX allows the users to select a
domain appropriate to their applications.

2. It uses a unified abstraction, called socket, for an endpoint of communication. That
is, a socket is an abstract object from which messages are sent and received. The IPC
operations are based on socket pairs, one belonging to each of a pair of communicating
processes that may be on the same or different computers. A pair of sockets may be used for
unidirectional or bidirectional communication between two processes. A message sent by a
sending process is queued in its socket until it has been transmitted across the network by the
networking protocol and an acknowledgment has been received (only if the protocol
requires one). On the receiver side, the message is queued in the receiving process's socket
until the receiving process makes an appropriate system call to receive it.

Any process can create a socket for use in communication with another process.
Sockets are created within a communication domain. A created socket exists until it is
explicitly closed or until every process having a reference to it exits.

3. For location transparency, it uses a two-level naming scheme for naming
communication endpoints. That is, a socket can be assigned a high-level name that is a
human-readable string. The low-level name of a socket is communication-domain
dependent. For example, it may consist of a local port number and an Internet address. For
translation of high-level socket names to their low-level names, 4.3B50 provides
functions for application programs rather than placing the translation functions in the
kernel. Note that a socket's high-level name is meaningful only within the context of the
communication domain in which the socket is created.

4. It is highly flexible in the sense that it uses a typing mechanism for sockets to
provide the semantic aspects of communication to applications in a controlled and uniform
manner. That is, all sockets are typed according to their communication semantics, such
as ordered delivery, unduplicated delivery, reliable delivery, connectionless communica­
tion, connection-oriented communication, and so on. The system defines some standard
socket types and provides the flexibility to the users to define and use their own socket
types when needed. For example, a socket of type datagram models potentially unreliable,
connectionless packet communication, and a socket of type stream models a reliable
connection-based byte stream.

5. Messages can be broadcast if the underlying network provides broadcast
facility.

3.11.2 TM IPC Prlmltlv.s

The primitives of the 4.3BSD UNIX IPC mechanism are provided as system calls
implemented as a layer on top of network communication protocols such as TCP, UDP,
and so on. Layering the IPC mechanism directly on top of network communication
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protocols helps in making it efficient. The most important available IPC primitives are
briefly described below.

s =socket (domain, type, protocol)

When a process wants to communicate with another process, it must first create a socket
by using the socket system call. The first parameter of this call specifies the
communication domain. The most commonly used domain is the Internet communication
domain because a large number of hosts in the world support the Internet communication
protocols. The second parameter specifies the socket type that is selected according to the
communication semantics requirements of the application. The third parameter specifies
the communication protocol (e.g., TCP/IP or UDPIIP) to be used for the socket's
operation. If the value of this parameter is specified as zero, the system chooses an
appropriate protocol. The socket call returns a descriptor by which the socket may be
referenced in subsequent system calls. A created socket is discarded with the normal close
system call.

bind (s, addr, addrlen)

After creating a socket, the receiver must bind it to a socket address. Note that if two-way
communication is desired between two processes, both processes have to receive
messages, and hence both must separately bind their sockets to a socket address. The bind
system call is used for this purpose. The three parameters of this call are the descriptor of
the created socket, a reference to a structure containing the socket address to which the
socket is to be bound, and the number of bytes in the socket address. Once a socket has
been bound, its address cannot be changed.

It might seem more reasonable to combine the system calls for socket creation and
binding a socket to a socket address (name) in a single system call. There are two main
reasons for separating these two operations in different system calls. First, with this
approach a socket can be useful without names. Forcing users to name every socket that
is created causes extra burden on users and may lead to the assignment of meaningless
names. Second, some communication domains might require additional, nonstandard
information (such as type of service) for binding of a name to a socket. The need to supply
this information at socket creation time will further complicate the interface.

connect (s, server_addr, server_addrlen)

The two most commonly used communication types in the 4.3BSDUNIX IPC mechanism
are connection-based (stream) communication and connectionless (datagram) commu­
nication. In connection-based communication, two processes first establish a connection
between their pairs of sockets. The connection establishment process is asymmetric
because one of the processes keeps waiting for a request for a connection and the other
makes a request for a connection. Once connection has been established, data can be
transmitted between the two processes in either direction. This type of communication is
useful for implementing client-server applications. A server creates a socket, binds a name
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to it, and makes the name publicly known. It then waits for a connection request from
client processes. Clients send connection requests to the server. Once the connection is
established, they can exchange request and reply messages. Connection-based commu­
nication supports reliable exchange of messages.

In connectionless communication, a socket pair is identified each time a
communication is made. For this, the sending process specifies its local socket descriptor
and the socket address of the receiving process's socket each time it sends a message.
Connectionless communication is potentially unreliable.

The connect system call is used in connection-based communication by a client
process to request a connection establishment between its own socket and the socket of the
server process with which it wants to communicate. The three parameters of this call are
the descriptor of the client's socket, a reference to a structure containing the socket address
of the server's socket, and the number of bytes in the socket address. The connect call
automatically binds a socket address (name) to the client's socket. Hence prior binding is
not needed.

listen (s, backlog)

The listen system call is used in case of connection-based communication by a server
process to listen on its socket for client requests for connections. The two parameters of
this call are the descriptor of the server's socket and the maximum number of pending
connections that should be queued for acceptance.

snew = accept (s, client_addr, client_addrlen)

The accept system can is used in a connection-based communication by a server process
to accept a request for a connection establishment made by a client and to obtain a new
socket for communication with that client. The three parameters of this call are the
descriptor of the server's socket, a reference to a structure containing the socket address
of the client's socket, and the number of bytes in the socket address. Note that the call
returns a descriptor (snew) that is the descriptor of a new socket that is automatically
created upon execution of the accept call. This new socket is paired with the client's
socket so that the server can continue to use the original socket with descriptor s for
accepting further connection requests from other clients.

Primitives for Sending and Receiving Data

A variety of system calls are available for sending and receiving data. The four most
commonly used are:

nbytes = read (sneMl, buffer, amount)

write (s, "message," msg_length)

amount = recvfrom (s, buffer, sender_address)

sendtots, "message," receiver_address)
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The read and write system calls are most suitable for use in connection-based
communication. The write operation is used by a client to send a message to a server. The
socket to be used for sending the message, the message, and the length of the message are
specified as parameters to the call. The read operation is used by the server process to
receive the message sent by the client. The socket of the server to which the client's socket
is connected and the buffer for storing the received message are specified as parameters
to the call. The call returns the actual number of characters received. The socket
connection establishment between the client and the server behaves like a channel of
stream data that does not contain any message boundary indications. That is, the sender
pumps data into the channel and the receiver reads them in the same sequence as written
by the corresponding write operations. The channel size is limited by a bounded queue at
the receiving socket. The sender blocks if the queue is full and the receiver blocks if the
queue is empty.

On the other hand, the recvfrom and sendto system calls are most suitable for use in
case of connectionless communication. The sendto operation is used by a sender to send
a message to a particular receiver. The socket through which the message is to be sent, the
message, and a reference to a structure containing the socket address of the receiver to
which the message is to be sent are specified as parameters to this call. The reevfrom
operation is used by a receiver to receive a message from a particular sender. The socket
through which the message is to be received, the buffer where the message is to be stored,
and a reference to a structure containing the socket address of the sender from which the
message is to be received are specified as parameters to this call. The recvfrom call
collects the first message in the queue at the socket. However, if the queue is empty, it
blocks until a message arrives.

Figure 3.19 illustrates the use of sockets for connectionless communication between
two processes. In the socket call, the specification of AF_INET as the first parameter
indicates that the communication domain is the Internet communication domain, and the
specification of SOCK_DGRAM as the second parameter indicates that the socket is of the
datagram type (used for unreliable, connectionless communication).

Alternatively, Figure 3.20 illustrates the use of sockets for connection-based
communication between a client process and a server process. The specification of SOCK_
STREAM as the second parameter of the socket call indicates that the socket is of the
stream type (used for reliable, connection-based communication).

3.12 SUMMARY

Interprocess communication (IPC) requires information sharing among two or more
processes. The two basic methods for information sharing are original sharing (shared­
data approach) and copy sharing (message-passing approach). Since computers in a
network do not share memory, the message-passing approach is most commonly used in
distributed systems.

A message-passing system is a subsystem of a distributed operating system that
provides a set of message-based protocols, and it does so by shielding the details of
complex network protocols and multiple heterogeneous platforms from programmers,
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